Welcome 1o
Computer
Sclence 211




Road map Welcome to Computer Science 211

What'sit all about?



Road map Welcome to Computer Science 211

What'sit all about?

Course Topics



Road map Welcome to Computer Science 211

What'sit all about?

Course Topics

Policies & grades



Road map

What'sit all about?

Course Topics
Policies & grades

Academic honesty

Welcome to Computer Science 211



Road map

What'sit all about?

Course Topics
Policies & grades
Academic honesty

Help & advice

Welcome to Computer Science 211



Up next Welcome to Computer Science 211

What's it all about?



What CS 211is all about (1/2)

From the course abstract:



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale.



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.

e We aim to provide a bridge from the student-oriented HtDP languages



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.

e We aim to provide a bridge from the student-oriented HtDP languages
(thatis, CS111)



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.

e We aim to provide a bridge from the student-oriented HtDP languages
(thatis, CS 111) toreal, industry-standard languages and tools.



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.

e We aim to provide a bridge from the student-oriented HtDP languages
(thatis, CS 111) to real, industry-standard languages and tools. Like C11,
the UNIX shell, Make, C++14, and CLion.



What CS 211is all about (1/2)

From the course abstract:

e CS 211teaches foundational software design skills at a small-to-medium
scale. We will grow from writing single functions to writing interacting
systems of several components.

e We aim to provide a bridge from the student-oriented HtDP languages
(thatis, CS 111) to real, industry-standard languages and tools. Like C11,
the UNIX shell, Make, C++14, and CLion.

e Inthefirst half...



What CS 211is all about (2/2)

From the course abstract:

e Inthefirst half, you'lllearn the basics of imperative programming and
manual memory management using the C programming language.



What CS 211is all about (2/2)

From the course abstract:

e Inthefirst half, you'lllearn the basics of imperative programming and
manual memory management using the C programming language. This
will help you form connections between the high-level programming
concepts you learned in CS 111and the low-level machine concepts you
willlearnin CS 213.

e Inthe second half, we'll transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to express our
designideas.



What CS 211is all about (2/2)

From the course abstract:

e Inthefirst half, you'lllearn the basics of imperative programming and
manual memory management using the C programming language. This
will help you form connections between the high-level programming
concepts you learned in CS 111and the low-level machine concepts you
willlearnin CS 213.

e Inthe second half, we'll transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to express our
designideas. We'lllearn how to define our own, new types that act like
the built-in ones.



What CS 211is all about (2/2)

From the course abstract:

e Inthefirst half, you'lllearn the basics of imperative programming and
manual memory management using the C programming language. This
will help you form connections between the high-level programming
concepts you learned in CS 111and the low-level machine concepts you
willlearnin CS 213.

e Inthe second half, we'll transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to express our
designideas. We'lllearn how to define our own, new types that act like
the built-in ones.

e Topicsinclude...



Up next Welcome to Computer Science 211

Course Topics



Topics

e Language mechanisms

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers

e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing

e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
> RAIl
e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software
» Debugging



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software
» Debugging: to see what's happening in memory



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software
» Debugging: to see what's happening in memory
» The Unixshell



Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software
» Debugging: to see what's happening in memory
» The Unix shell: acompositional user interface
7



Up next Welcome to Computer Science 211

Policies & grades



Grade composition

what % when #
programming homeworks 65.0% Tuesdays 6
lab quizzes 50% Sundays® 8
final project prose 75% Thursdays 1
final project code 225% Tu,Mar9 1

* Except Lab1, which is due this Thursday (Jan 14)!



Homework policies

e Two will be done on your own (HW1& HW5)

10



Homework policies

e Two will be done on your own (HW1& HW5)
e Most will be pair-programmed with a registered partner

10



Homework policies

e Two will be done on your own (HW1& HW5)
e Most will be pair-programmed with a registered partner
e Don’tget behind!

10



Homework policies

Two will be done on your own (HW1&HWS5)

Most will be pair-programmed with a registered partner
Don't get behind!

You'll need to do a self evaluation for each

10



Homework policies

Two will be done on your own (HW1&HWS5)

Most will be pair-programmed with a registered partner
Don't get behind!

You'll need to do a self evaluation for each

No cheating...

10



Up next Welcome to Computer Science 211

Academic honesty



Levels of collaboration
We define three levels of collaboration™:

1. Partner Collaboration
» Your code and the other student’s code are identical because you share it
and work on it together
» Only for registered partners on specified homeworks

* Refer to the syllabus for the official version of this policy.
12



Levels of collaboration
We define three levels of collaboration™:

1. Partner Collaboration
» Your code and the other student’s code are identical because you share it
and work on it together
» Only for registered partners on specified homeworks
2. Close Collaboration

» Youcommunicate about code however you see fit
» Only acceptable when working on labs

* Refer to the syllabus for the official version of this policy.
12



Levels of collaboration
We define three levels of collaboration™:

1. Partner Collaboration
» Your code and the other student’s code are identical because you share it
and work on it together

» Only for registered partners on specified homeworks

2. Close Collaboration
» Youcommunicate about code however you see fit
» Only acceptable when working on labs

3. Arms-length Collaboration
» Youdiscuss problems and solutions at a high level
» MAY NOT read, write, look at, record, or transcribe code in question
» MAY NOT have the code up on screen during collaboration

» MUST submit a file named COLLABORATION. txt that lists your arms-length
collaborators

* Refer to the syllabus for the official version of this policy.
12



Academic honesty

In CS 211, we take cheating very seriously.

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:

» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:

» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:

» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow

o Please don’tdo these things, because:

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:

» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow

o Please don’tdo these things, because:
» |f youdon't write code, you won't learn; try to embrace the struggle!

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:
» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow
o Please don’tdo these things, because:
» |f youdon't write code, you won't learn; try to embrace the struggle!
» Allsuspected cheating will be reported to the relevant dean for
investigation

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis whenyou:
» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow
o Please don’tdo these things, because:

» |f youdon't write code, you won't learn; try to embrace the struggle!
» Allsuspected cheating will be reported to the relevant dean for
investigation

e Ifunsure about your particular situation, ask the instructor or other
course staff

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis when you:
» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow

o Please don’tdo these things, because:
» |f youdon't write code, you won't learn; try to embrace the struggle!
» All suspected cheating will be reported to the relevant dean for
investigation
e Ifunsure about your particular situation, ask the instructor or other
course staff
e For the official policy, please see the Collaboration and Academic Integrity
section of the syllabus

13


https://canvas.northwestern.edu/courses/130518/assignments/syllabus#collaboration

Up next Welcome to Computer Science 211

Help & advice



Getting help

e Synch. Your course staff has online office hours:

Instructors: Jesse Tov (M/W,10-11:30 AM CT)
Branden Ghena (Tu/Th,3:30-5PMCT)


https://campuswire.com/c/G0D1CAAD8

Getting help

e Synch. Your course staff has online office hours:

Instructors: Jesse Tov (M/W,10-11:30 AM CT)
Branden Ghena (Tu/Th,3:30-5PMCT)

Grad TA: Yihan Zhang


https://campuswire.com/c/G0D1CAAD8

Getting help

e Synch. Your course staff has online office hours:

Instructors: Jesse Tov (M/W,10-11:30 AM CT)
Branden Ghena (Tu/Th,3:30-5PMCT)

Grad TA: Yihan Zhang

Peer TAs: Ben Caterine, Nicole Chen, Naythen Farr,
Ben Fisk, Jules Gilligan, David Jin,
Mae Mastin, Alex Saavedra

The schedule and Zoom links are on Canvas.


https://campuswire.com/c/G0D1CAAD8

Getting help

e Synch. Your course staff has online office hours:

Instructors: Jesse Tov (M/W,10-11:30 AM CT)
Branden Ghena (Tu/Th,3:30-5PMCT)

Grad TA: Yihan Zhang

Peer TAs: Ben Caterine, Nicole Chen, Naythen Farr,
Ben Fisk, Jules Gilligan, David Jin,
Mae Mastin, Alex Saavedra

The schedule and Zoom links are on Canvas.

e Asynch. Ask questions on Campuswire:

https://campuswire.com/c/GOD1CAADS

15


https://campuswire.com/c/G0D1CAAD8

Advice

e If you're considering dropping, please talk to me first.

16



Advice

e If you're considering dropping, please talk to me first.

e Theonly prereqis CS 111, soif you succeeded there then you absolutely
do belong here.

16



Advice

e Ifyou're considering dropping, please talk to me first.

e Theonly prereqis CS 111, soif you succeeded there then you absolutely
do belong here.

o Ifyoufind the course difficult, that's because it is difficult.

16



Advice

If you're considering dropping, please talk to me first.

The only prereqis CS 111, so if you succeeded there then you absolutely
do belong here.

If you find the course difficult, that's because it is difficult.
Be kind to each other.

16



I TRYNOT T0 MAKE FUN OF PEDPLE FOR
ADMITTING THEY DON'T KNOW THINGS.

BECAUSE FOR EACH THING “EVERYONE
KNOWS' BY THE TME THEYRE ADULTS,
EVERY DAY THERE ARE, ON AVERAGE,
10,000 PEOPLE IN THE (S HEPRING
ABOUT IT FOR THE FIRST TIME.

FRACTION WHO HAVE —
HEARD OF IT ATBIRTH —

FRACTION WHO HAVE
HEARD OF IT BY 30

Us BRTH RATE
NOMBER HERIG ., 10000,

ARUT TFORTHE ~
fiRsT TIME

Oz
= 100%

IF T MAKE FUN OF PEOPLE.,
TTRAIN THEM NoT 0 TELL ME
WHEN THEY HAVE- THOSE. MOMENTS.

AND T MiS5 00T ON THE FUN.

‘DIET COKE AND MENTOS
1T-|N5 ? WHATS THAT?

OHMAN! COME ON, WERE
GOJNG TTHE GR‘OCER‘{ SIORE.

WHY? YOURE ONE OF

|

TODA\”S LUCKY
10,000.




Relative homework difficulties

HW Difficulty
1 3

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty
1 3
2 5

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty
1 3
2 5
3 7

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty
1 3
2 5
3 7
4 11

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty
1 3
2 5
3 7
4 11
5 6

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty

3
5

oOOTA WN =
0o =~

(Onascalefrom1to10)

18



Relative homework difficulties

HW Difficulty
1 g
2 5
3 7
4 11
5 6
6 8
FP 10ish*
(Onascale from1to 10)

*Butreally it's up to you

18



	What’s it all about?
	Course Topics
	Policies & grades
	Academic honesty
	Help & advice

