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Topics

e Language mechanisms
» New syntax for functional programming: expressions, values,
conditionals, variables, functions
» Imperative programming
» Statements: sequencing, iteration
» Mutation: objects, assignment
» Memory allocation on the stack and the heap
» Representing information with structs, arrays, pointers
» Static types, type erasure, generics
e Designtechniques
» Data abstraction: defining our own types
» Memory management via ownership and borrowing
» RAIl: Resource Acquisition Is Initialization
e Engineering practices
» Testing: for gaining confidence in our software
» Debugging: to see what's happening in memory
» The Unix shell: acompositional user interface
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Grade composition

what % when #
programming homeworks 65.0% Tuesdays 6
lab quizzes 50% Sundays® 8
final project prose 75% Thursdays 1
final project code 225% Tu,Mar9 1

* Except Lab1, which is due this Thursday (Jan 14)!
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Homework policies

Two will be done on your own (HW1&HWS5)

Most will be pair-programmed with a registered partner
Don't get behind!

You'll need to do a self evaluation for each

No cheating...

10
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Levels of collaboration
We define three levels of collaboration™:

1. Partner Collaboration
» Your code and the other student’s code are identical because you share it
and work on it together

» Only for registered partners on specified homeworks

2. Close Collaboration
» Youcommunicate about code however you see fit
» Only acceptable when working on labs

3. Arms-length Collaboration
» Youdiscuss problems and solutions at a high level
» MAY NOT read, write, look at, record, or transcribe code in question
» MAY NOT have the code up on screen during collaboration

» MUST submit a file named COLLABORATION. txt that lists your arms-length
collaborators

* Refer to the syllabus for the official version of this policy.
12
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Academic honesty

In CS 211, we take cheating very seriously.

e Cheatingis when you:
» Share (give or receive) homework code with anyone who is neither
course staff nor your official, registered partner
» Obtain code from an outside resource, such as Stack Overflow

o Please don’tdo these things, because:
» |f youdon't write code, you won't learn; try to embrace the struggle!
» All suspected cheating will be reported to the relevant dean for
investigation
e Ifunsure about your particular situation, ask the instructor or other
course staff
e For the official policy, please see the Collaboration and Academic Integrity
section of the syllabus
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Getting help

e Synch. Your course staff has online office hours:

Instructors: Jesse Tov (M/W,10-11:30 AM CT)
Branden Ghena (Tu/Th,3:30-5PMCT)

Grad TA: Yihan Zhang

Peer TAs: Ben Caterine, Nicole Chen, Naythen Farr,
Ben Fisk, Jules Gilligan, David Jin,
Mae Mastin, Alex Saavedra

The schedule and Zoom links are on Canvas.

e Asynch. Ask questions on Campuswire:

https://campuswire.com/c/GOD1CAADS
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Advice

If you're considering dropping, please talk to me first.

The only prereqis CS 111, so if you succeeded there then you absolutely
do belong here.

If you find the course difficult, that's because it is difficult.
Be kind to each other.

16



I TRYNOT T0 MAKE FUN OF PEDPLE FOR
ADMITTING THEY DON'T KNOW THINGS.

BECAUSE FOR EACH THING “EVERYONE
KNOWS' BY THE TME THEYRE ADULTS,
EVERY DAY THERE ARE, ON AVERAGE,
10,000 PEOPLE IN THE (S HEPRING
ABOUT IT FOR THE FIRST TIME.

FRACTION WHO HAVE —
HEARD OF IT ATBIRTH —

FRACTION WHO HAVE
HEARD OF IT BY 30

Us BRTH RATE
NOMBER HERIG ., 10000,

ARUT TFORTHE ~
fiRsT TIME

Oz
= 100%

IF T MAKE FUN OF PEOPLE.,
TTRAIN THEM NoT 0 TELL ME
WHEN THEY HAVE- THOSE. MOMENTS.

AND T MiS5 00T ON THE FUN.

‘DIET COKE AND MENTOS
1T-|N5 ? WHATS THAT?

OHMAN! COME ON, WERE
GOJNG TTHE GR‘OCER‘{ SIORE.

WHY? YOURE ONE OF

|

TODA\”S LUCKY
10,000.
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Relative homework difficulties

HW Difficulty
1 g
2 5
3 7
4 11
5 6
6 8
FP 10ish*
(Onascale from1to 10)

*Butreally it's up to you

18



	What’s it all about?
	Course Topics
	Policies & grades
	Academic honesty
	Help & advice

