
Homework 5: Brick Out
CS 211

Winter 2021

Code Due: February 16, 2021, 11:59 PM, Central Time
Self-Eval Due: February 18, 2021, 11:59 PM, Central Time
Partners: No; must be completed by yourself

Warning: This homework is done individually!
Contents
1 Purpose 1

2 Getting it 1

3 Game description 2
3.1 Physics 2
3.2 Game configuration 2

4 Design orientation 3
4.1 The model 3
4.2 The UI 3

5 Implementation hints 3
5.1 The model: struct Ball and friends . . 3

-- above_block() 3
-- Ballᖃᖅtop_left() 3
-- Ballᖃᖅhits_bottom() 3
-- Ballᖃᖅhits_top() 4
-- Ballᖃᖅhits_side() 4
-- Ballᖃᖅnext() 4
-- Ballᖃᖅhits_block() 4
-- Ballᖃᖅdestroy_brick() 4
-- operator᪭᪮(Ball const&, Ball const&) 4

5.2 The model: struct Model 4
-- ModelᖃᖅModel(Game_config const&) . . 4
-- Modelᖃᖅpaddle_to() 5
-- Modelᖃᖅon_frame() 5

5.3 The UI 5
-- Uiᖃᖅdraw() 5
-- Uiᖃᖅon_key() 5

-- Uiᖃᖅon_mouse_up() 5
-- Uiᖃᖅon_mouse_move() 5

6 Reference 5
6.1 The GE211 geometry types 5

-- ge211ᖃᖅPosn<T> 5
-- ge211ᖃᖅDims<T> 6
-- ge211ᖃᖅRect<T> 6

7 Deliverables & evaluation 6

8 Submission 7

1 Purpose
The primary goal of this assignment is to get you
programming in C++ with member functions and
stdᖃᖅvector. Secondarily, we want to familiarize you
with the mechanics of GE211.

2 Getting it
Download the project ZIP file to your computer1, un-
zip it, and open the resulting directory in CLion. (Be
careful that you open the hw05 directory and not
some sub- or superdirectory thereof. If you do, CLion
will create a bogus CMakeLists.txt that won’t be able
to find SDL2.)

1To complete this homework on your own computer, you need a C++14 toolchain and the SDL2 libraries. Follow these
instructions to install the software you need.

1

https://en.cppreference.com/w/cpp/container/vector
https://tov.github.io/ge211/
https://nu-cs211.github.io/cs211-files/hw/hw05.zip
https://nu-cs211.github.io/cs211-files/toolchain_setup.html
https://nu-cs211.github.io/cs211-files/toolchain_setup.html

3 Game description

3 Game description

In this classic arcade game, the player seeks to destroy
a field of bricks in the top portion of the screen by hit-
ting them with a ball, while controlling a horizontally-
moving paddle to prevent the ball from reaching the
bottom of the screen.

When the game starts, a grid of rectangular bricks
appears in the top portion of the screen, and the pad-
dle, also a rectangle, appears at the bottom of the
screen. The paddle moves horizontally with the x co-
ordinate of the mouse pointer, but its y coordinate
never changes.

Initially the ball is “dead”—rather then bouncing
around, it sticks to the paddle as the paddle follows
the mouse. When the player clicks the mouse or hits
the space key, the ball is launched and travels up-
ward toward the bricks. It then proceeds to bounce
off of bricks, the paddle, and the top and sides of the
screen, destroying each brick that it collides with, un-
til it reaches the bottom of the screen. At that point
the ball is again dead and stuck the paddle. No bricks
are restored, however, and the player may launch the
ball again.

3.1 Physics

Physics in the Brick Out world is highly idealized.
For the purpose of detecting collisions, we approxi-
mate the ball as its bounding box2. The ball’s mass is
insignificant compared to every object it meets, so it
rebounds fully and they never budge. Collisions with
the top and sides of the screen are perfectly elastic
and perfectly conventional—the top reflects vertically
and the sides reflect horizontally. Collisions with the
paddle are also elastic, with the ball reflecting in the
vertical dimension and continuing in the horizontal.
But collisions with bricks are a bit weirder.

Upon striking (and destroying) a brick, the ball is
reflected vertically, regardless of which edge of the
brick it contacts. In other words, the y component of
its velocity is negated and the x component is not. In
additional, the ball receives a random “boost” in the
x dimension. In particular, the horizontal component
of its velocity is adjusted by the addition of a random
small number (balanced between negative and posi-
tive to produce a random walk with constant expec-
tation). The potential range of that random number
is determined by the game configuration.

3.2 Game configuration
This diagram shows a 5-by-5 field of gray bricks (at
the top), the yellow paddle (at the bottom), and the
red ball in its dead position:

Unlike the diagram above, in the default game con-
figuration the brick field is 10-by-10. In addition to
the numbers of columns and rows of bricks, the con-
figuration lets you control:

• the dimensions of the screen;

• the distance from the top of the screen to the
top of the brick field;

• the distance from the sides of the screen to the
sides of the brick field;

• the distance from the top of the screen to bottom
of the brick field;

• the dimensions of the gaps between the bricks;

• the distance from the bottom of the screen to
the bottom of the paddle;

• the dimensions of the paddle;

• the radius of the ball;

• the initial velocity of the ball once it’s launched
from the paddle; and

• the maximum absolute “boost” value for when
the ball hits a brick.

From these properties the Game_config class computes
the dimensions of the bricks and the initial position of
the paddle, which cannot be adjusted independently.

You should test your code, both model and user
interface, with varying configurations. Not all combi-
nations are sensible, but your code should work cor-
rectly within a reasonable range.

2The bounding box of a figure is the smallest rectangle enclosing it; for the ball it’s a square sharing its center whose side
length is twice the radius of the ball.

2

4 Design orientation

4 Design orientation
The Brick Out game is composed of two major com-
ponents: the model, which keeps track of the state
of the game independent of how it is viewed or con-
trolled, and the UI, which provides an interface to
use the model by specifying how it appears on the
screen and reacts to our input.

4.1 The model
The model (struct Model in src/model.{hxx,cxx}) rep-
resents the game’s logical state and implements its
rules in a UI-independent manner. For Brick Out,
it keeps track of:

• the locations and sizes of all the bricks,

• the location and size of the paddle (the thing
at the bottom that you control),

• the state of the ball, including whether it’s in
play, and its size, location, and velocity, and

• a source of random numbers, which can be
stubbed to return predictable values for testing.

As far as operations, the model knows how to put
a dead ball back into play, how to move the paddle
to a new position (bringing a dead ball along with it),
and how to update its own state for each animation
frame.

Because the state and behavior of the ball ac-
count for much of the complexity of the model,
the ball is factored out into its own struct Ball (in
src/ball.{hxx,cxx}). It defines its own set of opera-
tions, mainly for detecting collisions with bricks, the
paddle, and the edges of the screen.

The model is also responsible for storing the game
configuration parameters (e.g., the sizes of things
such as bricks, the paddle, the margins, and the win-
dow), which are grouped into a struct Game_config (in
src/game_config.{hxx,cxx}). The game configuration
is passed to the Model constructor and is then fixed
for the duration of the game.

4.2 The UI
The UI (struct Ui in src/ui.{hxx,cxx}) combines the
view and controller components of the traditional
model–view–controller (MVC) design, along with a
reference to the model.

The view state defines the sprites used to represent
the game entities on the screen, as well as two oper-
ations: a drawing operation that places those sprites

based on the state of the model, and a simple func-
tion to convey the game dimensions from the config-
uration to GE211.

The controller portion of the UI is stateless and
defines four operations—three for reacting to user in-
put and one for reacting to the passage of time. It
reacts to two key events: it exits on q and launches
a possibly-dead ball on space. It also launches the
ball on mouse clicks. When the mouse moves, it tells
the model to move the paddle. And with each frame
(typically 1/60 s), it asks the model to update itself
to reflect the passage of time.

5 Implementation hints
There is no specification in this document—instead,
the functions you need to implement are specified in
the header files src/ball.hxx, src/model.hxx, and sr-
c/ui.hxx, so you should read those carefully. This
section provides supplementary material to help you
figure out how to implement what the header com-
ments specify.

5.1 The model: struct Ball and friends
The implementation of model logic related to the ball
is in src/ball.cxx. There are seven Ball member func-
tions and two free functions for you to complete.

static ge211::Posn <float >
above_block(Block const&,

Game_config const &)

This function is a helper for Ball’s constructor that
computes where the ball should be when it’s dead—
its bottom centered 1 pixel above the top center of
the paddle.

Given block (a ge211ᖃᖅRect<int> representing the
position and dimensions of the paddle), start at
its top-left corner (Rect<int>ᖇᖈtop_left()), move
to the right (Posn<int>ᖇᖈright_by()) by half the
width of block (Rect<int>ᖇᖈwidth), then move up
(Posn<int>ᖇᖈup_by()) by 1 plus the radius of the ball
(Game_configᖃᖅball_radius).

Ball:: top_left () const

Returns the position at the upper-left corner of the
ball’s bounding box. This is the position one ball ra-
dius to the left and one ball radius above the center
of the ball.

3

https://bit.ly/3jXFMEb
https://bit.ly/3mV6O0z
https://bit.ly/3jSpxIx
https://bit.ly/3jXC51h
https://bit.ly/2HZr0zw

5 Implementation hints

Ball:: hits_bottom(
Game_config const &) const

The ball hits the bottom of the scene when the y coor-
dinate of its bottom exceeds the height of the scene.

Ball:: hits_top(Game_config const &) const

The ball hits the top of the scene when the y coor-
dinate of its top is less than 0. (Note that the pa-
rameter isn’t used in this case, but we include it for
symmetry.)

Ball:: hits_side(Game_config const &) const

The ball hits the side of the scene when either the x
coordinate of its left side is less than 0 or the x co-
ordinate of its right side is greater than the width of
the scene.

Ball::next(double dt) const

Recall that this is a Ball const*, and you can create
a copy of a ball with the copy constructor. So to get
a new Ball to return, you can write

Ball result (*this);

Ball:: hits_block(Block const &) const

As with the edge collision functions, we want to use
the ball’s bounding box, which is the square whose
top is center.y - radius, whose left is center.x -
radius, whose bottom is center.y + radius, and whose
right is center.x + radius. We use the bounding box
so that we can check for the intersection of two rectan-
gles, which is easier than checking for the intersection
of a rectangle and a circle.

One way to think of that is that the rectangles
don’t intersect if either of these is true:

• The right side of either rectangle is to the left
of the left side of the other.

• The bottom of either rectangle is above the top
of the other.

Otherwise, they do.

Ball:: destroy_brick(
std::vector <Block >&) const

Once you’ve written Ballᖃᖅhits_block, finding an ele-
ment of bricks that collides with this ball isn’t hard—
use a range-for loop—but how to remove it once you
find it? The more obvious solution may be to shift
all the elements after it to the left, but that’s awk-
ward, and there’s a cleaner way when the order of
the elements of the vector doesn’t matter:

1. Replace the hit brick with the last brick in the
vector (bricks.back()) by assigning over it. (If
the hit brick is the last brick in the vector then
this step won’t do anything, but this algorithm
will still work without a special case.)

2. Now the last brick in the vector is redundant,
so remove it using stdᖃᖅvectorᖃᖅpop_back().

3. return true immediately after the pop_back().
The loop condition won’t adjust to the dimin-
ished vector size, so if you keep iterating af-
ter removing an element then you’ll go out of
bounds. One brick is enough.

operator ==(Ball const&, Ball const &)

This can be written as a four-way && expression.

5.2 The model: struct Model
The implementation of the remaining model logic is
in src/model.cxx. There are two Model member func-
tions and one constructor for you to complete.

Model::Model(Game_config const &)

Constructs a Model from the given Game_config. Note
that the Game_config is passed by const& but Model
saves its own copy of it.

This much is done for you: The config, paddle, and
ball member variables are initialized in a member
initializer list, not in the body of the constructor:

• The paddle is initialized with its top-left at
config.paddle_top_left_0() and with dimensions
config.paddle_dims.

• The ball is initialized with the state of the pad-
dle and the game configuration.

What you need to do: In the body of the construc-
tor, iterate through the positions of all the bricks
(config.brick_rows * config.brick_cols of them) and
push_back each into the bricks vector. The details:

4

https://en.cppreference.com/w/cpp/container/vector/back
https://en.cppreference.com/w/cpp/container/vector/pop_back

6 Reference

• Each brick should have dimensions
config.brick_dims().

• The first (top-left–most) brick should have its
top left at the position {config.side_margin, con-
fig.top_margin}.

• You will need nested loops to create all the
bricks in each row and column, but note that
the order in the vector doesn’t matter.

• The offset between each brick and the next
is given by the dimensions of each brick
plus config.brick_spacing. Or in other words,
the x offset is config.brick_spacing.width +
config.brick_dims().width, and the y offset is
likewise but with heights.

Model:: paddle_to(int x)

In addition to moving the paddle, this may need to
move the ball. If the ball isn’t live then then it needs
to follow the paddle, which is best done by construct-
ing a new Ball and assigning it to ball.

Model:: on_frame(double dt)

The description in src/model.hxx is pretty detailed.
You probably want to call Ballᖃᖅnext(double) const at
most twice: once speculatively as soon as you know
that the ball is live, and once again at the end, storing
the result back to the ball for real that time.

When the ball destroys a brick, you will need
to generate a random boost. The model con-
tains a data member, random_boost_source, whose
type is ge211ᖃᖅRandom_source<float>, which can be
used the generate random floats. The Model
constructor, which we’ve defined for you, takes
a Game_config const& config parameter and initial-
izes its random_boost_source member to gener-
ate random values between -config.max_boost and
config.max_boost. Thus, you can generate a random
boost from random_boost_source using the member
function Random_source<float>ᖇᖈnext().

5.3 The UI
The implementation of the user interface, including
both drawing and reacting to input, is in src/ui.cxx.
There are five Ui member functions for you to com-
plete.

Ui::draw(ge211:: Sprite_set &)

Use Sprite_setᖃᖅadd_sprite(Sprite&, Posn<int>) to
add each sprite to sprites. Note that add_sprite po-
sitions the sprite using the top-left corner of the its
bounding box, so you don’t want to position a circle
by its center.

Ui:: on_key(ge211::Key)

The starter code already quits on q. To make a dead
ball start moving on spacebar, you need to check for
ge211ᖃᖅKeyᖃᖅcode('␣') and call model.launch() when
you get it. (That’s a “visible” space character, not
an underscore.)

Ui:: on_mouse_up(ge211:: Mouse_button ,
ge211::Posn <int >)

Makes the ball live via Modelᖃᖅlaunch().

Ui:: on_mouse_move(ge211::Posn <int >)

Informs the model of the mouse position
(and thus the desired paddle position) via
Modelᖃᖅpaddle_to(int).

6 Reference
6.1 The GE211 geometry types
The GE211 library defines three types for represent-
ing the geometry of points and rectangles. You will
need to use these types to calculate the positions of
game entities and place them on the screen, so read
on.

struct ge211::Posn <T>

For representing 2-D positions, either logical or in
screen pixels, GE211 provides the Posn<T> struct.
While the actual definition is more complicated, the
basic idea can be understood as:

struct ge211::Posn <float >
{

float x;
float y;

};
However, ge211ᖃᖅPosn is a struct template, which
means that the coordinate type isn’t fixed at float.
You can make a Posn<double> whose coordinates
are doubles, a Posn<int> whose coordinates are ints,

5

https://bit.ly/360iIzH
https://bit.ly/3mVbiEr
https://bit.ly/3mPTZ7R
https://bit.ly/2I6H5n6
https://bit.ly/2I6H5n6

7 Deliverables & evaluation

general term memory time C++ STL GE211
point pointer time point iterator Posn<T>

displacement integer duration difference type Dims<T>
span array time span range Rect<T>

Figure 1: Affine spaces

and so on. It provides a variety of member
functions, such as Posn<int>ᖇᖈup_by(int) const and
Posn<int>ᖇᖈdown_right_by(Dims<int>) const, for com-
puting related positions.

struct ge211::Dims <T>

For representing the width and height of a 2-D objects
(such as bounding boxes), GE211 provides the Dims<T>
struct template. As with ge211ᖃᖅPosn, the real defini-
tion is a bit more complicated, but you can think of
it as:

struct ge211 ::Dims <float >
{

float width;
float height;

};
Why do we need Dims if we have Posn? Aren’t these

basically the same thing? Yes, each is a pair of num-
bers, one with a horizontal sense and the other ver-
tical, but semantically they are different and their
operations differ. For example, it makes sense to add
two Dimses, or to multiply a Dims by a scalar, so the
infix operators + and * are overloaded with signatures
such as

• Dims<T>ᖇᖈoperator+(Dims<T>) const and

• Dims<T>ᖇᖈoperator*(double) const.

But it doesn’t mean anything to add two Posns, or
to scale a Posn. So having separate types for Posn
and Dims helps us keep the two concepts precise and
prevents at least some kinds of nonsense.

The algebra of positions and dimensions is a two
dimensional generalization of the algebra of pointers
and integer offsets (see Fig. 1), which can help us un-
derstand what other operations are meaningful. Like
adding an integer to a pointer in order to offset the
pointer, it makes sense to add a Dims to a Posn to
get an offset Posn. And as the difference between
two pointers is an integer, the difference between two
Posns is a Dims.

struct ge211::Rect <T>

In Brick Out, we use ge211ᖃᖅRect<int>s to repre-
sent blocks (both bricks and the paddle), so for
convenience, src/ball.hxx typedefs Block to mean
ge211ᖃᖅRect<int>.

A Rect is essentially a pairing of a Posn (its top left
corner) with a Dims. You can create one from those
parts and project each part back out. To create one
you might use

static Rect <int >
Rect <int >:: from_top_left(

Posn <int >, // top left vertex
Dims <int >) // width and height

among other static factory functions. To project, you
will want member functions such as

• Dims<T> Rect<T>ᖇᖈdimensions() const and

• Posn<T> Rect<T>ᖇᖈtop_left() const
among others.

You can also access the data members of a
ge211ᖃᖅRect directly, but note that they don’t actually
include a Rect and a Dims, but rather both flattened
together:

struct ge211::Rect <int >
{

int x;
int y;
int width;
int height;

};

7 Deliverables & evaluation
For this homework you must:

1. Complete the seven unimplemented Ball
member functions and two free functions
(above_block() and operator᪭᪮(Ball const&,
Ball const&)) in src/ball.cxx.

2. Complete the unimplemented Model constructor
and two member functions in src/model.cxx.

6

https://bit.ly/2HZr0zw
https://bit.ly/3jRQsUB
https://bit.ly/3mR8EzL
https://bit.ly/2I6H5n6
https://bit.ly/3mR8EzL
https://bit.ly/3mR8EzL
https://bit.ly/2I5mQ8Z
https://bit.ly/3jQp3CA
https://bit.ly/2TSzaMQ
https://bit.ly/2TSzaMQ
https://bit.ly/388mh9s
https://bit.ly/388mh9s
https://bit.ly/3jXFMEb
https://bit.ly/2I6BRrw
https://bit.ly/3mV6O0z

8 Submission

3. Complete the five unimplemented Ui member
functions in src/ui.cxx.

4. Add more test cases to test/ball_test.cxx and
test/model_test.cxx in order to the test the func-
tions that you wrote.
We don’t require you to write automated tests
for the UI, but it wouldn’t be a bad idea.

As usual, self evaluation will spot-check your test cov-
erage by asking for just a few particular test cases.
You certainly want to test each significant event, such
as the ball hitting the paddle or the ball falling off
the bottom of the screen. You can’t anticipate what
other cases we may ask about, so you should try to
cover everything.

Your grade will be based on:
• the correctness of your implementations with

respect to the specifications,

• the presence of sufficient test cases to ensure
your model code’s correctness, and

• adherence to the CS 211 Style Manual.

8 Submission

Homework submission and grading will use the GSC
grading server. You must include any files that
you create or change. For this homework, that
will include src/ball.cxx, src/model.cxx, src/ui.cxx,
test/ball_test.cxx, and test/model_test.cxx. (You
should not need to submit a modified CMakeLists.txt
and you must not modify any of the .hxx files besides
src/ui.hxx.

Per the syllabus, if you engaged in arms-length col-
laboration on this assignment, you must also submit
a file named COLLABORATION.txt that lists your
arms-length collaborators. See the syllabus for def-
initions and other details.

You should upload your files on the GSC web site.3

3It’s also possible to install the command-line GSC client gsc(1) on your local machine.

7

https://nu-cs211.github.io/cs211-files/style.html
https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://cs211.cs.northwestern.edu/gsc

	Purpose
	Getting it
	Game description
	Physics
	Game configuration

	Design orientation
	The model
	The UI

	Implementation hints
	The model: black!50!blackgreen!30!blackstruct Ball and friends
	– above_block()
	– Ball::top_left()
	– Ball::hits_bottom()
	– Ball::hits_top()
	– Ball::hits_side()
	– Ball::next()
	– Ball::hits_block()
	– Ball::destroy_brick()
	– operator==(Ball const&, Ball const&)

	The model: black!50!blackgreen!30!blackstruct Model
	– Model::Model(Game_config const&)
	– Model::paddle_to()
	– Model::on_frame()

	The UI
	– Ui::draw()
	– Ui::on_key()
	– Ui::on_mouse_up()
	– Ui::on_mouse_move()

	Reference
	The GE211 geometry types
	– ge211::Posn<T>
	– ge211::Dims<T>
	– ge211::Rect<T>

	Deliverables & evaluation
	Submission

