
CS 211 Homework 2

Winter 2021

Code Due: January 26, 2021, 11:59 PM, Central Time
Self-Eval Due: January 28, 2021, 11:59 PM, Central Time
Partners: Yes; register on GSC before submission

Purpose

The goal of this assignment is to get you programming with strings,
iteration, and dynamic memory.

Preliminaries

Login to the server of your choice and cd to the directory where you This homework assignment
must be completed on Linux
by logging into a Linux work-
station. Each time you login
to work on CS 211, you should
run fish to ensure your environ-
ment is setup correctly. (If you
get an error saying that 211.h
doesn’t exist, that probably
means you missed the step in
Lab 1 where you needed to run
~cs211/setup211.)

Contents

Orientation 2

Make targets 3

Specifications 3

Character sequences . . . 3

The translate library . . . 4

The tr program 5

Reference 6

Command-line arguments 6

Reading a line 6

Managing memory with

malloc(3) and free(3) 7

Working with C strings . 7

Better testing assertions . 9

Algorithm hints 9

charseq_length() 9

expand_charseq() 10

translate_char() 11

translate() 11

The tr program 11

Deliverables & evaluation 12

Submission 13

Partners 13

keep your CS 211 work. Then unarchive the starter code, and change
into the project directory:

% cd cs211
% tar -kxvf ~cs211/hw/hw02.tgz
...
% cd hw02

If you have correctly downloaded and configured everything then
the project should build cleanly:

% make
...
cc -fsanitize=address,undefined -l211 -o test_translate...
%

Background

In this project, you will implement a clone of the standard Unix utility
tr(1), which is a filter program that performs transliteration. Given
two equal-length sequences of characters, from and to, it replaces all
occurrences of characters appearing in from with the character in the
corresponding position in to.

The tr program takes the from and to character sequences as
command-line arguments. In the simplest case, they are strings of
the same length:

% ./tr abc xyz
a
x

https://bit.ly/3c1qyui
https://bit.ly/3c1qyui
https://nu-cs211.github.io/cs211-files/lab/lab01.pdf
https://linux.die.net/man/1/tr

cs 211 homework 2 2

bbbcd
yyyzd
tag the cat
txg the zxt
abracadabra
xyrxzxdxyrx
^D ^D means press Control-D.
% echo Hello, world. | ./tr e a
Hallo, world.
% echo Hello, world. | ./tr elo 310
H3110, w0r1d.
% echo Hello, world. | ./tr ',. ' ___ Characters that have special

meaning for the shell, such as
space, !, *, ?, $, and \, need to
be quoted in arguments.

Hello__world_

tr also understands ranges of characters and some backslash escape
sequences:

% echo Hello, world. | ./tr a-z A-Z
HELLO, WORLD.
% echo Hello, world. | ./tr a-zA-Z. 'A-Za-z?'
hELLO, WORLD?
% function rot13; ./tr a-zA-Z n-za-mN-ZA-M; end Fish’s function command de-

fines a new shell command in
terms of other shell commands.
Here we use it to define rot13
as shorthand for ./tr a-zA-Z
n-za-mN-ZA-M.

% echo Hello, world. | rot13
Uryyb, jbeyq.
% echo Hello, world. | rot13 | rot13
Hello, world.
% echo Hello, world. | ./tr ' ' '\n'
Hello,
world.
%

The above examples won’t work until you’ve finished the assign-
ment, but if you replace ./tr with just tr, you should get the sys-
tem’s /usr/bin/tr, which will do the same thing.

Orientation

As in Homework 1, your code is divided into three .c files:

• Most significant functionality will be defined in the “translate
library,” src/translate.c.

• Tests for those functions will be written in test/test_translate.c.

• The main() function that implements the tr program will be
defined in src/tr.c.

Function signatures for src/translate.c are provided for you in src/trans-
late.h; since the grading tests expect to interface with your code via

cs 211 homework 2 3

this header file, you must not modify src/translate.h in any way.
All of your code will be written in the three .c files.

Make targets

The project also provides a Makefile with several targets:

Target test is the default, which
means you can run it by typ-
ing make alone, with no target
name.

target description

test builds everything & runs the tests * &

all builds everything, runs nothing&

test_translate builds the unit tests
tr builds the tr program
clean removes all build products&

* default & phony

Specifications

The project comprises two functional components, which are specified
in this section. First, though, we define charseqs (character sequences).

Character sequences

The tr program uses charseqs to specify which characters to replace
and what to replace them with. The C type of a charseq is just
char*—that is, a C string—but they can be represented in two forms
having different interpretations:

• A literal charseq is just a sequence of characters, each standing
for itself. For example, interpreted as a literal charseq, the string
"a-e" contains the three characters 'a', '-', and 'e' at indices 0, In C (but not C++) those lit-

erals don’t actually have type
char!—they have type int for
obscure historical reasons. That
is, 'A' is an alternative way of
writing the int value 65. Try
printing sizeof 'A' and see. . . .

1, and 2, respectively. In a literal charseq, no character has special
meaning.

• An unexpanded charseq may contain ranges, written “c-d”, and
escape sequences, written “\c”.

– The range “c-d” stands for the interval of characters from 'c' to
'd', inclusive. (This means that if 'c' > 'd' then the range is
empty, and if 'c' == 'd' then the range contains only 'c'.)
Range bounds, both lower and upper, are always represented by
single characters. They are never the result of another range or
escape expansion.

– If the escape “\c” is valid C string literal escape sequence, then it We have provided you a function
mapping character 'c' to the
meaning of \c, so you don’t
have to figure that part out.

has the same meaning for tr as in C; otherwise it just stands for
character 'c' itself.

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html
https://en.cppreference.com/w/c/language/escape

cs 211 homework 2 4

– Every other character stands for itself. In particular, a “-” char-
acter that is not part of a range stands for itself, as does “\”
character that is not followed by another character.

– In cases of ambiguity, the leftmost possible expansion takes
priority, and a range takes priority over a potential escape at the
same position.

Here is a table showing several unexpanded charseqs along with
their literal expansions, written as C string literals:

How could we figure out what
characters should appear in
these ranges? See the manual
page: man ascii.

unexpanded literal
"abc" "abc"
"a-e" "abcde"
"a-e_" "abcde_"
"a-df-i" "abcdfghi"
"-i" "-i"
"a-d-i" "abcd-i"
"\\t" (2 characters) "\t" (1 character)
"\\-_" (3 characters) "\\]^_" (4 characters)
"X-\\n" (4 characters) "XYZ[\\n" (6 characters)

The tr program takes charseqs in unexpanded form, and must expand
them to literal form before it can do its work.

The translate library

The translate library is responsible for expanding charseqs from un-
expanded to literal form, and for using a pair of literal charseqs to
translate a string. It provides a function for each of these purposes
that will be used in src/tr.c. Additionally, the header file exposes two
helper functions to facilitate testing. Thus, src/translate.c defines four
functions:

• Function expand_charseq(const char*) takes a charseq in unex-
panded form and expands it, returning it in literal form.

The returned charseq is allocated by malloc(3), which means that See the Reference section below
for more explanation of what
this means.

the caller is responsible for deallocating it with free(3) when fin-
ished with it.

Error case: If expand_charseq() is unable to allocate memory
then it returns the special pointer value NULL.

• Function charseq_length(const char*) is a helper to expand_-
charseq() that determines how long the literal result of expanding
its argument will be.

https://linux.die.net/man/3/malloc
https://linux.die.net/man/3/free

cs 211 homework 2 5

• Function translate(char* s, const char* from, const
char* to) takes a string to modify (s) and two literal charseqs
(from and to). Each character in string s that appears in charseq
from is replaced by the character at the same index in charseq to.

To be precise: For each index i in s, if there is some j such that
s[i] == from[j] (and there is no k < j such that s[i] ==
from[k]), then s[i] is replaced by to[j].

Undefined behavior: Function translate() has an unchecked

precondition whose violation will result in undefined behavior. In
particular, for it to work properly, from must not be a longer string
than to. However, translate() should not check this condition,
as ensuring it is the caller’s responsibility.

• Function translate_char(char c, const char* from, const
char* to) is a helper to function translate(). It takes a char-
acter to translate (c) and two literal charseqs (from and to). It
returns the translation of character c as given by the two charseqs.

To be precise: If there is some j such that c == from[j] (and
there is no k < j such that c == from[k]), then this function re-
turns to[j]; but if there is no such j then it returns c unchanged.

Undefined behavior: Function translate_char() has the same
unchecked precondition as function translate(), with the same
results if violated. (This is a natural consequence of translate()
calling translate_char().)

An additional unchecked precondition for all four of the above
functions is that all char*s that they are given as arguments must be
non-null pointers to 0-terminated character arrays—that is, valid C
strings. If this precondition is violated then the functions’ behaviors
are undefined. (This means that these functions should not check
whether their arguments are null.)

The tr program

The tr program must be run with two command-line arguments. If
run with more or fewer than two, it prints the message

Usage: tr FROM TO < INPUT_FILE

to stderr, where tr is replaced by argv[0] (the actual name that the
program was called with), and then exits with error code 1.

The arguments FROM (argv[1]) and TO (argv[2]) are unexpanded
charseqs, so tr must expand them to literal charseqs. If the lengths of
the two literal charseqs differ (post-expansion, that is) then it prints
the message

cs 211 homework 2 6

tr: error: lengths of FROM and TO differ

to stderr, where again tr is replaced by argv[0], and then exits with
error code 2.

Now that argument checking has succeeded, tr begins filtering. For The examples in the Background

section involve sending your tr
program one line at a time. Be
sure to test it interactively, too,
to make sure it handles multiple
lines correctly:

% ./tr a-z A-Z
Be sure to test
BE SURE TO TEST
your program
YOUR PROGRAM
interactively.
INTERACTIVELY.
^D
%

each line read from the standard input, it translates the line according
to the literal expansions of FROM and TO and prints the result. When
there is no more input to process, the program terminates successfully.

Reference

Accepting command-line arguments

When running a C program from the command line, the user can
supply it with command-line arguments, which the program’s main()
function then receives as an array of strings. In particular, main() can
be declared to accept two function arguments, as follows:

int main(int argc , char* argv []);

Then argc will contain the number of command-line arguments (in-
cluding the name of the program itself in argv[0]), and argv will
contain the comnand line arguments themselves.

For example, if a C program is run like

% my_prog foo bar bazzz

then argc is 4 and argv is the array

{
" my_prog ",
"foo",
"bar",
"bazzz"

}.

Reading input a line at a time

The C programming language doesn’t provide an easy way to read It provides gets(3), which is
easy to use but inherently un-
safe, and fgets(3), which can be
used safely but requires you to
specify a limit on the length of
the line.

a line of input whose length is unknown, so I have provided you a
small library, lib211, on the Unix login machines. The library exports a
function read_line() for this purpose. Here is its signature:

char* read_line (void);

The read_line function returns a character array allocated by
malloc(3), which means that the caller is responsible for deallocating it
with free(3) when finished with it. See the next subsection for more on
this topic, and see the read_line(3) manual page on the lab machines
for information on the read_line function.

https://linux.die.net/man/3/gets
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/242.html
https://linux.die.net/man/3/fgets

cs 211 homework 2 7

Managing memory with malloc(3) and free(3)

In Homework 1, all memory used by your program was allocated and
deallocated automatically. But to work with strings, especially strings
whose length is not known when the program is written, we need a
different technique.

Function malloc(3) (from <stdlib.h>) takes the number of bytes The result of function malloc()
has type void*, which is the
type of a pointer whose referent
type is unknown. In C (but not
C++), void* converts automat-
ically to and from any other
pointer type.

that you need and attempts to allocate that much memory. For exam-
ple, we can allocate enough memory for one int, or for an array of N
ints:

int* just_one = malloc (sizeof (int));
int* several = malloc (N * sizeof (int));

If malloc() succeeds, it returns a pointer to the newly allocated mem-
ory, which can be used to hold any type that fits. The memory this
pointer points to is uninitialized, so you must initialize it to avoid
undefined behavior. When you are done with this memory, you must Failure to free memory that

you no longer need can lead to
a memory leak, which causes
your program to use more mem-
ory than it should, or even run
out. But worse things can hap-
pen: freeing a pointer twice,
or dereferencing a pointer that
has already been freed, causes
undefined behavior.

free it by passing the pointer to free(3).
If malloc() fails to find sufficient memory, which it can, it returns

the special pointer value NULL, which is a valid pointer that points
nowhere. Dereferencing NULL is undefined behavior, but you can
compare it using the == operator. Consequently, every call to malloc()
must be followed by a NULL check. We provide this call to malloc()
and the obligatory NULL check in src/translate.c:

char* result = malloc (charseq_length (src) + 1);
char* dst = result ;

if (result == NULL) {
return NULL;

}

Two things to note about the above malloc() call:

• We are allocating one more byte than the length that src will
expand to, because we need an extra byte to store the string’s 0
terminator.

• There is no need to multiply the desired number of chars by
sizeof(char) because sizeof(char) is always 1.

Working with C strings

When testing your functions, you might be tempted to write assertions
like this:

assert (expand_charseq ("a-e") == "abcde");

But there are three problems with this:

https://linux.die.net/man/3/malloc
https://linux.die.net/man/3/free

cs 211 homework 2 8

1. It leaks memory. The second and third prob-
lems here are also solved by
CHECK_STRING, which is de-
scribed in the next subsection.

2. It compares the addresses of the strings rather than the characters
in them.

3. In rare cases, it might cause undefined behavior.

It leaks memory because expand_charseq() allocates memory and
the code above doesn’t free it. To fix that, we need to store the result
of expand_charseq() in a variable, which lets us refer to it twice:

char* actual_result = expand_charseq ("a-e");
assert (actual_result == "abcde");
free(actual_result);

However, this still won’t work, because when you use == to compare
pointers, it compares the addresses, not the pointed-to values. And the
address returned by expand_charseq() will never be the same as the
address of a string literal.

Instead, to compare strings, we need to use the strcmp(3) function
(from <string.h>), which compares them character by character. You
may expect, incorrectly, that strcmp() would return true for equal
strings and false for unequal strings, but actually it does something
more useful: strcmp(s1, s2) determines the lexicographical order-
ing for s1 and s2. If s1 should come before s2 when sorting then it Lexicographical order is a gen-

eralization of alphabetical order
to sequences of non-letters (or
more than just letters). strcmp()
compares the numeric values
of chars, which means that
'a' < 'b' and 'A' < 'B', but
also 'B' < 'a' and '$' < ','.

returns a negative int; if s1 should come after s2 then it returns a
positive int. If they are equal, it returns 0. Thus we should write:

char* actual_result = expand_charseq ("a-e");
assert (strcmp (actual_result , "abcde") == 0);
free(actual_result);

This almost works! In fact, it usually will work. But to be completely
correct, we need to deal with the possibility that expand_charseq()
fails to allocate memory and returns NULL. In that case, strcmp() will
deference NULL, which is undefined behavior. Thus, we need to ensure
that actual_result is not NULL before we try to use the string that it
points to:

char* actual_result = expand_charseq ("a-e");
assert (actual_result);
assert (strcmp (actual_result , "abcde") == 0);
free(actual_result);

Here are some more functions from <string.h> that you may find
useful:

char* strchr(const char* s, int c) Why does strchr() take an int
rather than a char? Many C
functions take a character as
type int for obscure historical
reasons.

Searches string s for the first occurrence of (char)c, returning a
pointer to the occurrence if found or NULL if not.

https://linux.die.net/man/3/strcmp
https://en.wikipedia.org/wiki/Lexicographical_order
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html

cs 211 homework 2 9

char* strcpy(char* dst, const char* src)
Copies string pointed to by src into string pointed to by dst
(which must have sufficient capacity, or you’ll get UB).

size_t strlen(const char*)
Computes the length of a string (not including the 0).

Better testing assertions

In Homework 1 we used CHECK() from the lib211 library for testing.
Starting with this homework, you have access to the full suite of
testing forms that lib211 provides. Here’s what writing test assertions
with these macros looks like:

static void example_checks (void)
{ The difference between

CHECK(a == b); and
CHECK_INT(a, b); is that
the latter prints the values of a
and b when it fails, whereas the
former does not.

CHECK_INT (2 * 3, 6);
CHECK_SIZE (sizeof (double), 8);
CHECK_CHAR (toupper ('a'), 'A');
CHECK (islower ('a'));

}

The provided checks are summarized here:

Form . . . checks that . . .
CHECK_CHAR(x, y); x and y are equal chars
CHECK_INT(x, y); x and y are equal ints
CHECK_UINT(x, y); x and y are equal unsigned ints
CHECK_SIZE(x, y); x and y are equal size_ts
CHECK_DOUBLE(x, y); x and y are equal doubles
CHECK_STRING(x, y); x and y point to equal 0-terminated strings
CHECK_POINTER(x, y); x and y point to the same object
CHECK(x); x is true, non-zero, or non-null

Algorithm hints

In this section, we provide suggestions, such as algorithms, for writing
the necessary functions. These hints are given in what we expect will
be the best order of implementation. It’s a very good idea to test
each function as you write it, rather than testing them all at the end,
because you will find bugs sooner that way.

The charseq_length() function

The charseq_length() function scans its argument string (an un-
expanded character sequence) while counting how many characters

cs 211 homework 2 10

it will take when expanded. Thus, you need two variables: one to To scan a string you can use
either an index size_t i or
pointer char* p. If you hold
onto the original string s then
the two approaches are inter-
changeble, since p == s + i, or
equivalently i == p - s.

count, and one to keep track of the position while scanning the string.
Start the count at 0 and the position at the beginning of the argument
string. Then iterate and evaluate the following conditions for each
iteration:

• If the character at the current position is 0, then you’ve reached
the end and should return the count.

• If the character at the next position is '-', and the character at
the position after that is not 0, then you’ve found a range. If we This implies that a hyphen at

the beginning or end of the
string, or immediately following
the end of a character range, is
interpreted literally rather than
denoting a range.

call the character before the hyphen start and the character after
the hyphen end, then we can determine the length of the range by
comparing the two characters: If start > end then the range is
empty; otherwise the length of the range is end - start + 1. Add
this to the count, and then advance the current position by 3 to get
to the first character past the right side of the range.

• If the character at the current position is '\\' (a single backslash), This case should be checked
after the range case, which im-
plies that the literal expansion
of unexpanded charseq “\-_” is
“\]^_”, not “-_”.

and the character at the next position is not 0 then you have found
an escape sequence. Its expanded length is 1, so add that much to
the count, and advance the current position by 2 to get to the first
character after the escape sequence.

• Otherwise, the character at the current position will be copied as is,
so increment the count by 1 and advance the current position to the
next character.

The expand_charseq() function

Like charseq_length(), the expand_charseq() function scans its
argument string (an unexpanded character sequence), but instead of
counting, it copies the characters into a fresh string, expanding ranges
and escape characters into their literal meanings.

The first thing it must do is allocate memory for its result. We This function is probably the
trickiest part of the whole
homework. One way to develop
your code would be to hold off
writing this function and move
forward, while temporarily con-
sidering all input charseqs to
be literal. It’s not hard to add
a call to expand_charseq() to
src/tr.c’s main() function once
you get it working.

have provided you code that calls charseq_length() to find out
how much memory is needed, allocates the memory, and checks that
the allocation succeeded. Then the algorithm works by scanning the
argument string while storing characters into the result string. To do
this, you will likely need three variables: one to remember the start
of the result string in order to return it; one to keep track of your
position in the unexpanded character sequence being scanned (the
source); and one to keep track of your position in the result string
being filled in (the destination).

The control logic of the scanning-and-copying loop is the same as in
the charseq_length() function, but the actions at each step differ:

cs 211 homework 2 11

• If the character at the current source position is 0, then you’ve
reached the end. Don’t forget to store a 0 at the destination posi-
tion (which should be the end of the result string) before returning.

• If the character at the next source position is '-', and the charac-
ter at the position after that is not 0, then you’ve found a range.
If we call the character before the hyphen start and the character
after the hyphen end, then we can generate the range by iteration,
incrementing start until it passes end. That is, so long as start
<= end, we want to store start to the destination position, advance
the destination position, and increment start. Once we’ve fully To avoid undefined behavior

here, you should store start
and end as ints, not chars.
To understand why, consider
what would happen if end were
CHAR_MAX.

expanded the range, we advance the source position past it (by
adding 3).

• If the character at the current source position is '\\', and the char-
acter at the next source position is not 0 then you have found an
escape sequence. Its expansion is given by interpret_escape(c)
(provided in src/translate.c), where c is the character following
the backlash. Store the expansion to the destination position, ad-
vance the destination position, and advance the source position past
the escape sequence (by adding 2).

• Otherwise, the character at the current position stands for itself, so
store it at the current destination position and then advance both The traditional C way to do this

is *dst++ = *src++;.the source and destination positions by 1.

The translate_char() function

The translate_char() function takes a character to translate (c) and
two literal charseqs (from and to). The idea is to scan charseq from
searching for c. If we find c at some index i then return to[i]. If we
get to the end of from without finding c then return c unchanged.

The translate() function

The translate() function takes a string to translate in place (s) and
two literal charseqs (from and to). The idea is to iterate through each
position in s, replacing each character with its translation according to
translate_char().

The tr program

The tr program has three phases: first it validates and interpets its
arguments, then it transforms its input to its output, and then it
cleans up its resources.

cs 211 homework 2 12

We’ve provided you with the first check, for the correct number of
arguments. This serves as an example of how to use fprintf (3) and
stderr(4) for printing error messages.

Next, use expand_charseq() to expand both command-line argu- Two calls to expand_charseq()
mean you will need two calls to
free() in order to clean up in
the end.

mente argv[1] and argv[2] into literal charseqs. Since expand_charseq()
returns NULL if it cannot allocate memory, you need to NULL-check
both results; if it fails, print the error message (using OOM_MESSAGE
and argv[0]) and exit with error code 10.

If character sequence expansion succeeds but the charseqs, once ex-
panded, don’t have the same length, it is an error; print the specified
error message (LENGTH_MESSAGE) to stderr and exit with error code
2.

Now, if there are no errors then we are ready to iterate over the
input lines until read_line() returns NULL, translating each line and
printing the result. Since each input line read by read_line() is
allocated by malloc(), you need to free each line with free() when
you are done with it. This should be straightforward because you
process one line at a time and never need to hold onto one longer.

Deliverables & evaluation

For this homework you must:

1. Implement the specification for the translate library from the
previous section in src/translate.c.

2. Implement the specification for the tr program from the previous
section in src/tr.c.

3. Add more test cases to test/test_translate.c in order to test the four
functions that you defined in src/translate.c.

The file test/test_convert.c already contains two tests cases for each
of the four functions, and helper functions to facilitate testing for two
of them. Because the functions you are implementing are complex
and have many corner cases, you need to add many more tests for
each. Try to cover all the possibilities, because for this week’s self
evaluation we will spot-check your test coverage by asking for just a
few particular test cases. You can’t anticipate which we’ll ask about,
so you should try to cover everything.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness, and

cs 211 homework 2 13

• adherence to the CS 211 Style Manual.

Submission

Homework submission and grading will use the GSC grading server.
You must include any files that you create or change. For this home-
work, that will include src/translate.c, src/tr.c, and test/test_translate.c.
(You should not need to modify Makefile and you must not modify
src/translate.h.)

Per the syllabus, if you engaged in arms-length collaboration on
this assignment, you must also submit a file named COLLABORA-
TION.txt that lists your arms-length collaborators. See the syllabus for
definitions and other details.

Submit using the command-line GSC client gsc(1). Instructions
are available in the submit211(7) manual page on the Unix login and
lab machines. To view the manual page, run:

% man submit211

Partners

If you work with a partner then you must registeryour partnership Be careful with partner regis-
tration, because once a partner
request is accepted, undoing
it requires an appeal to the
instructor.

before uploading to GSC. There are two steps to this: one partner
must create a partner request (referring to their intended partner by
NetID), and then the other partner must accept that request for it to
take effect.

Partner requests are created with the gsc partner request com-
mand and accepted using using the gsc partner accept command.
You can list outstanding partner requests with the gsc status com-
mand and cancel them with the gsc partner cancel command. See It’s also possible to manage

partner requests via the website.the gsc(1) manual page for details.
Before a partner request can be accepted, the files in the two sub-

missions must be disjoint. (The system will not choose whose file to
delete if you both have files with the same name.) Once a partner
request is accepted, you and your partner’s submissions are joined to-
gether: when one partner uploads files to the GSC server or performs
self evaluation, the results will be visible to both.

https://nu-cs211.github.io/cs211-files/style.html
https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Orientation
	Specifications
	Reference
	Algorithm hints
	Deliverables & evaluation
	Submission

