
CS 211 Homework 1

Winter 2021

Code Due: January 19, 2021, 11:59 PM, Central Time
Self-Eval Due: January 21, 2021, 11:59 PM, Central Time
Partners: No; must be completed by yourself

Purpose

The goal of this assignment is to get you programming in C, including
simple I/O, separate compilation, and testing.

Preliminaries

Login to the server of your choice and cd to the directory where you This homework assignment
must be completed on Linux
by logging into a Linux work-
station. Each time you login
to work on CS 211, you should
run fish to ensure your environ-
ment is setup correctly. (If you
get an error saying that 211.h
doesn’t exist, that probably
means you missed the step in
Lab 1 where you needed to run
~cs211/setup211.)

Contents

Orientation 1

Make targets 2

Specifications 2

The circle library 2

The overlapped client

program 3

Reference 3

Unit testing 3

Hints 4

Definition of overlap for

circles 4

Strategy for the read_-
circle function . . . 4

Algorithm for the over-
lapped program . . . 4

Deliverables & evaluation 5

Submission 6

keep your CS 211 work. Then unarchive the starter code, and change
into the project directory:

% cd cs211
% tar -kxvf ~cs211/hw/hw01.tgz
...
% cd hw01

You can check that you have correctly downloaded and configured
everything by building and running the tests:

% make
cc -c -o src/overlapped.o src/overlapped.c -g -O1 -std=. . .
cc -c -o src/circle.o src/circle.c -g -O1 -std=c11 -ped. . .
cc -o overlapped test/overlapped.o src/circle.o -lm -fsa. . .
cc -c -o test/test_circle.o test/test_circle.c -g -O1 -. . .
cc -o test_circle test/test_circle.o src/circle.o -lm -f. . .
./test_circle

All 3 checks passed.
%

The build and tests should complete successfully. This doesn’t mean
that the code is correct, but rather that the tests are inadequate.

Orientation

In this project, you will write:

• a tiny computational geometry library (src/circle.h and src/circle.c),

• a tiny client program that uses it (src/overlapped.c), and

https://bit.ly/3c1qyui
https://bit.ly/3c1qyui
https://nu-cs211.github.io/cs211-files/lab/lab01.pdf

cs 211 homework 1 2

• some tests for the library (test/test_circle.c).

Type definitions and function signatures for the library are provided
for you in src/circle.h; since the grading tests expect to interface with
your code via this header file, you must not modify src/circle.h in
any way. All of your code will be written in the three .c files.

Make targets

The project also provides a Makefile with several targets:

Target test is the default, which
means you can run it by typ-
ing make alone, with no target
name.

target description

test builds everything & runs the tests * &

all builds everything, runs nothing&

test_circle builds the unit tests
overlapped builds the overlapped program
clean removes all build products&

* default & phony

Specifications

The project comprises two functional components, which are specified
in the next two subsections.

The circle library

The circle library defines one struct type and three functions, as
follows:

• The circle structure type represents a circle positioned on a
Euclidean plane in terms its center (x and y coordinates) and its
radius.

• Function valid_circle(struct circle c) returns a bool indicat-
ing whether circle c is valid. A circle is valid if and only if its radius
is positive.

• Function read_circle(void) parses a struct circle from the
standard input and returns it. It should expect the values of the
three fields in order: x, y, radius.

Exceptional cases: The returned circle must be fully initialized
even if scanf () fails due to bad or end of input. If the input ends
or is malformed, read_circle() returns a circle with center (0.0, 0.0)
and radius −1.0.

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://linux.die.net/man/3/scanf

cs 211 homework 1 3

• Function overlapped_circles(struct circle, struct circle)
returns a bool indicating whether the two given circles overlap.
Circles are considered to overlap only if they contain some area in
common, not if they are merely tangent to each other.

The overlapped client program

The overlapped client program reads a first (“target”) circle. If there is
an error in reading the target circle, the program terminates with an
exit code of 1 to indicate an error.

Then the program reads as many subsequent (“candidate”) circles
as are provided by the user; for each valid circle read after the target
circle, it prints "overlapped\n" if the candidate circle overlaps the It’s a bug if your output differs

from the specification.target, or "not overlapped\n" if not. If the program reads an invalid
candidate circle, then it terminates with an exit code of 0 to indicate
success, printing nothing.

The program does not print anything else.

Here are two examples of running overlapped:

% ./overlapped
0 0 5
0 2 1
overlapped
0 10 1
not overlapped
2020 211 -1
%

% ./overlapped
1 0 1
0 1 0.4
not overlapped
0 1 0.41
not overlapped
0 1 0.414
not overlapped
0 1 0.415
overlapped
1 -1 0.415
overlapped
-2020 -211 -2
%

Reading documentation ef-
fectively can depend on un-
derstanding typesetting con-
ventions. In the transcripts
on the left, the bold text is
what the user types, and the
medium weight text is what the
computer responds with. Your
actual prompt will probably dif-
fer from %, which is a convention
for printing Unix shell prompts
in documentation.

Reference

CHECK() forms for unit testing

Unlike many newer programming languages, C does not provide any The C standard library provides
a macro assert(〈expression〉),
which aborts your program if
〈expression〉 is false. Assertions
are not intended for testing,
but as a fail-safe mechanism for
stopping your program when a
bug is detected.

built-in testing mechanism. Instead, we test C code using a library,
often written in C itself.

In CS 211 we will use a library called lib211, which includes a ba-
sic testing framework. To access lib211’s definitions, you need to
#include <211.h> from whichever files you want to use them in, so
we have written that line in test/test_circle.c for you already.

cs 211 homework 1 4

The lib211 library provides several forms that do various kinds
of checks, but in this homework, we need only one: the CHECK(3)
macro. CHECK() takes one argument, which it evaluates to a bool. For details on CHECK(3) and

related forms, see man CHECK.If the resulting value is is true then the check passes silently, but if
it is false then it CHECK() prints a message showing you the line
number of the failed check.

For example, here is a test case with one passing and two failing
checks:

void test_less_than (void)
{

CHECK (2 < 3); // passes silently
CHECK (3 < 3); // fails noisily
CHECK (4 < 3); // fails noisily also

}

When all tests have finished, lib211’s testing framework prints
information about the total number of successful and unsuccessful
checks.

Hints

Definition of overlap for circles

Two circles overlap if the distance between their centers is less than You don’t need sqrt(3) here
because this statement is equiv-
alent: Two circles overlap if
square of the sum of their radii
exceeds the square of the dis-
tance between their centers.

(Note that the “3” in exit(3)
is not the argument you should
pass, but the section of the Unix
manual system where docume-
nation for the exit function is
found. To see why this matters,
compare the result of running
man exit with the result of
running man 3 exit.)

the sum of their radii.

Strategy for the read_circle function

First define a struct circle variable, without initializer, to hold
the function’s result. Then, try to initialize its three fields using the
scanf (3) function. If scanf () is unable to convert all three doubles as
indicated by its result value, then initialize the struct circle to the
invalid state {0.0, 0.0, -1.0} instead (per the specification above).
Then, whether or not the input succeeded, return the struct circle.

Algorithm for the overlapped program

Here is an algorithm you can use in src/overlapped.c:

1. Define a struct circle variable to hold the target circle, and
initialize it to the result of calling read_circle().

2. If the target circle is invalid according to valid_circle(), exit with From main, exiting can be ac-
complished by returning the
desired error code, but to exit
directly from any other func-
tion one must call the exit(3)
function.

an error code of 1.

3. Repeat indefinitely:

https://linux.die.net/man/3/sqrt
https://linux.die.net/man/3/scanf
https://linux.die.net/man/3/exit

cs 211 homework 1 5

(a) Define a struct circle variable to hold the candidate circle,
and initialize it to the result of calling read_circle().

(b) If the candidate circle is invalid according to valid_circle(), exit
with an error code of 0.

(c) Use overlapped_circles() in the condition of an if–else state-
ment to check whether the target circle overlaps the candidate
circle and print the correct message in either case.

To get an infinite loop that repeats some statements, use a for loop
with empty condition:

for (;;) {
// Statements to repeat go here.

}

Deliverables & evaluation

For this homework you must:

1. Implement the specification for the circle library from the previous
section in src/circle.c.

2. Implement the specification for the overlapped client program from
the previous section in src/overlapped.c.

3. Add more test cases for the overlapped_circles function pro-
vided by the circle library in test/test_circle.c.

In particular, file test/test_circle.c already contains two test cases,
test_tangent and test_not_overlapped, both of which are called
from main. Your job is to add two more test cases, demonstrating
that:

• overlapped_circles returns true given different but overlap-
ping circles, and

• overlapped_circles returns true given the same circle for
both arguments.

Grading will be based on:

• the correctness of your implementations with respect to the specifi- In particular, pay careful atten-
tion to case and spacing, and
note that extra output beyond
what is specified is a bug, not a
feature.

cations,

• the presence of the two required test cases, and

• adherence to the CS 211 Style Manual.

https://nu-cs211.github.io/cs211-files/style.html

cs 211 homework 1 6

Submission

Homework submission and grading will use the GSC grading server.
You must include any files that you create or change. For this home-
work, that will include src/circle.c, src/overlapped.c, and test/test_-
circle.c. (You should not need to modify Makefile and you must not
modify src/circle.h.)

Per the syllabus, if you engaged in arms-length collaboration on
this assignment, you must also submit a file named COLLABORA-
TION.txt that lists your arms-length collaborators. See the syllabus for
definitions and other details.

Submit using the command-line GSC client gsc(1). Instructions
are available in the submit211(7) manual page on the Unix login and
lab machines. To view the manual page, run:

% man submit211

https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Orientation
	Specifications
	Reference
	Hints
	Deliverables & evaluation
	Submission

