
Final Project
CS 211

Winter 2021

Proposal due: Tuesday, February 23 at 11:59 PM Central Time (via Campuswire)
Specification due: Tuesday, February 25 at 11:59 PM Central Time (via Campuswire)
Code due: Tuesday, March 9 at 11:59 PM Central Time (as HW7 on GSC)
Evaluation Guide due: Thursday, March 11 at 11:59 PM Central Time (as HW7 Self Eval)
Partners: Yes; register on GSC before submission

Contents
1 Purpose 1

2 Getting it 1

3 Project requirements 1

4 Proposal 2
4.1 How to submit it 2
4.2 What should go in it 2

5 Specification 2
5.1 How to submit it 2
5.2 What should go in it 2

6 Implementation & delivery 3
6.1 How to submit it 3

7 Evaluation guide 3
7.1 How to submit it 3
7.2 What will go in it 3

1 Purpose
The goal of this assignment is to let you apply the
programming skills you’ve acquired in service of your
own creativity.

2 Getting it
While there isn’t significant starter code for the final
project, we’ve prepared a project ZIP file containing

all the dependencies and CMake configuration you
need to get started.

3 Project requirements
For the final project, you must implement a game (or
other interactive, graphical program) using C++ and
GE211. There are four steps to the project: proposal,
specification, delivery, and evaluation:

Proposal You will submit the name and a brief syn-
opsis of your game, with sufficient detail for us
to have an idea what you would like to do. We
may approve your idea, or we may ask you to
alter it and resubmit.

Specification You will write a list of functional re-
quirements (as discussed below) for your game.
This is the set of features that you’re planning
to implement. As with the proposal, we may ac-
cept this or ask you to revise. Once approved,
the functional requirements become the rubric
for grading your implementation.

Implementation Then you actually implement and
deliver the code of your program.

Evaluation Finally, you need to supply us with an
“evaluation guide,” as detailed below, that we
will use to evaluate your program.

The game is expected to be of moderate complex-
ity, perhaps 1.5 times as complex in terms of require-
ments as Homework 5’s Brick Out or Homework
6’s Reversi. We will be more precise about assess-
ing this aspect of your proposal below.

1

https://nu-cs211.github.io/cs211-files/hw/final_project.zip

4 Proposal

4 Proposal
For your proposal, we just want to know what game
you would like to make so that we can ensure that
the difficulty level is reasonable (in both directions)
before you get to work.

4.1 How to submit it
Please submit your proposal by filling out the pro-
posal survey. We will review proposal and respond on
a rolling basis, so the sooner you submit, the sooner
you will get feedback that enables you to move on to
the next step, specification.

4.2 What should go in it
If you are cloning an existing game (a good idea, since
game design itself is really difficult!), you just need
to tell us about that game. If it’s old and sufficiently
well known then the name could suffice. Here are
examples of two proposals in that form:

Ms. Pac Man

I want to make Galaga.

If you are cloning a game that is newer or more ob-
scure, it might help to include a link to a description,
or you can describe it yourself. For example:

I’d like to make a version of the game
“Underwater Basket Weaving 6.” For
a good description of the game, see
this Wikipedia article.

Finally, if you want to invent your own game, you
may need to write your own description to convey the
idea to us. For example:

I would like to make a game that I am call-
ing “Brick Out.” It will have three elements:
1) a stationary array of rectangular bricks at
the top of the screen, 2) a rectangular pad-
dle at the bottom that moves horizontally
and is controlled by the user, and 3) a circu-
lar ball that bounces in between, destroying
any bricks it collides with. The player’s goal
is to destroy the bricks without allowing the
ball to reach the bottom of the screen.

Images and diagrams are highly appreciated. Please
try not to write more than 100–200 words.

5 Specification
This is a list of 10–12 functional requirements—
specific, identifiable things that your program will do.
These features must be observable to a player, since
we will play your game and use these requirements
as a checklist for grading. (It’s okay if some require-
ments are difficult for a player to reach, but you will
have to justify those by reference to your code.)

5.1 How to submit it
Please submit your specification by filling out the
specification survey. We will review specifications
and respond on a rolling basis, so the sooner you sub-
mit, the sooner you will get feedback.

After receiving feedback, you may not change your
functional requirements without approval. They will
be used for grading as specified below.

5.2 What should go in it
It may be a bit tricky to figure out the best granular-
ity for describing functional requirements. It would
not be good, for example, to have two separate re-
quirements: “Pressing the left arrow key moves the
player to the left,” and “Pressing the right arrow key
moves the player to right right.” Instead, that should
be a single requirement, perhaps: “The player is con-
trolled by the arrow keys.” This is a matter of taste
and judgment, so see the example below for guidance,
and then consult with the course staff or ask on Cam-
puswire about how to specify your particulars.

As an example, here is a specification for Brick
Out with nine functional requirements:

1. The bricks are initially placed in a grid
at the top of the screen.

2. The paddle’s x coordinate follows the
mouse, while its y coordinate is fixed
near the bottom of the screen.

3. In the dead state (the ball’s initial
state) the ball sticks to the paddle.

4. The player can release the ball, transi-
tioning it from dead to live state, by
pressing the space bar or clicking the
mouse.

5. When the ball is released, it travels up-
ward from the paddle with some initial
velocity.

6. If the ball strikes the top or side of the
screen, it bounces off.

2

https://forms.gle/oBW3EQQiXPniVSLGA
https://forms.gle/oBW3EQQiXPniVSLGA
https://forms.gle/W6JrZ2LEhe3waajE8

6 Implementation & delivery

7. If the ball strikes a brick, it destroys
the brick and bounces off with a small,
random boost to its velocity (TBD).

8. If the ball strikes the paddle, it
bounces off like normal.

9. If the ball reaches the bottom of the
screen, it transitions back to the dead
state (and nothing else changes).

6 Implementation & delivery
Write your program. Have fun!

6.1 How to submit it
Your final code should be submitted as hw7 on GSC.
You need to upload all files required to run and build
your game and tests. This includes your CMake-
Lists.txt and all files in your src/, test/, and Resources/
directories.1 Please do not submit any files from the
.cs211/ directory, the .idea/ directory, nor any build
directory (such as cmake-build-debug/).

Note that you have a quota of 20 MB for your entire
submission, but you are unlikely to reach this limit
until you have a significant amount of audio among
your run-time resources.

7 Evaluation guide
Your proposal is worth 5% of your project grade, the
specification is worth 10%, and the final code delivery
is worth the other 85%. That 85% is further broken
down into three components:

style 10%
model tests 20%
functional requirements 70%

We will assess style on our own, but for the other
two points, we will need your help in the form of the
“evaluation guide” described here.

7.1 How to submit it
Evaluation guide questions will appear on GSC as the
self evaluation for HW7, so you should submit it by
performing self evaluation. However, you should read
this now so that you know what will be expected.

7.2 What will go in it
The evaluation guide will contain the following two
components.

Favorite model tests (20%). We would like to see
five significant model tests. Choose tests that you
think best characterize your design and demonstrate
how your model works. For each, provide a very short
description of what the test is about, along with a line
tag.

Functional requirement hints (70%). For the core
of the evaluation, we will attempt to verify that your
program meets the functional requirements from your
specification. (This is why you need our approval for
any changes to those requirements.) For each require-
ment, there are three ways that we will attempt this
verification:

1. By playing the game and observing the require-
ment, for full credit.

2. By reading a model test that demonstrates that
the game meets the requirement, for full credit.
(You are free to reuse a favorite test here.)

3. By looking at the code that implements the re-
quirement, for 80% credit.

You must provide a numbered list matching your
list of proposed and accepted functional requirements
from your specification. For each requirement, spec-
ify how we should attempt to check it:

1. For validation by playing, you need to provide
instructions for how to play the game to a state
where the requirement can be observed. If your
game has multiple levels, difficulties, or modes,
you may find it useful for your main() function
to take an optional command-line argument to
allow us to jump to a particular level. Also, if
you believe there’s a chance that we will have
trouble validating a particular requirement by
playing, you may also provide a test or code
reference (options 2 and 3) as backup.

2. For validation by test, you need to provide GSC
line numbers for the relevant test or tests, along
with sufficient explanation for us to understand
why the test you tagged is evidence that the
functional requirement in question is met.

1When reconstructing your project for grading, GSC puts source files whose names begin or end with “test” in the test/
directory, other source files in the src/ directory, and files with types it doesn’t recognize in the Resources/ directory. So
make sure you name any files that need to be in the test/ directory appropriately.

3

7 Evaluation guide

3. For validation by implementation—the least
preferred method—you need to provide GSC
line numbers for the relevant implementation
code, along with sufficient explanation for us
to understand why the code you tagged is evi-
dence that the functional requirement in ques-
tion is met.

4

	Purpose
	Getting it
	Project requirements
	Proposal
	How to submit it
	What should go in it

	Specification
	How to submit it
	What should go in it

	Implementation & delivery
	How to submit it

	Evaluation guide
	How to submit it
	What will go in it

