
Lecture 17
Wrapup

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov



Administrivia

• Projects spec feedback coming soon
• ~20 groups have already gotten feedback

• The rest should be today or tomorrow

• Submission on Gradescope is available
• If it doesn’t pass tests there, it won’t compile when we go to run it

• Get working on your project code!

2



Today’s Goals

• Review what you’ve learned and why it is useful

• Understand when to use or avoid C/C++ in future projects

• Brief overview of the Rust programming language

• Consider what’s next after CS211

3



4

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline



So, why CS211?

• It’s going to make you a much better programmer

• It’s going to teach you a bunch of new skills

• It’s going to enable you to succeed in future classes

5



Formal goals

CS211:

• Teaches software design skills at a small-to-medium scale
• Some smaller programs: Overlapped, Brickout

• Some larger programs: Rank-choice Voting, Reversi

6



Formal goals

CS211:

• Teaches software design skills at a small-to-medium scale
• Some smaller programs: Overlapped, Brickout

• Some larger programs: Rank-choice Voting, Reversi

• Bridges students from How to Design Programs languages to 
industry-standard languages and tools
• Unix shell: SSH, ls, cd,

• C and C++ programming languages

• CLion IDE

• Make and CMake

7



Upsides to C and C++

• You are in charge of everything
• You can do anything you want without constraints

• Capable of directly interacting with hardware (“systems language”)
• Grab exactly as much memory as you need and manage it yourself

• Makes it incredibly fast (~100x faster than Python)

• Makes it incredibly efficient (no memory is wasted)

• These lead to the languages being very widely used
• Top five programming languages for decades include C and C++

8



Downsides to C and C++

• You are in charge of everything
• And nothing is taken care of for you

• Things you “can’t” do are UNDEFINED BEHAVIOR

• To enable portability, the languages just straight-up don’t say what 
happens if you violate the rules

• The computer could do anything

• Backwards compatibility means features are only ever added
• You’ll see this especially in C++, C just has less features total
• C++ feels like a bunch of things stapled together

• And there’s an amazing programming language hiding in there

9



So why teach C and C++?

• You’ll learn a lot more about programming
• Syntax and ideas from C inspired a lot of other languages

• Feels very different from Racket or Python

• You’ll become a better programmer
• You’re going to run into a lot of errors and problems in this class

• Hopefully they teach you to better design and plan your code

• Prepare you to dig deeper into computer systems
• A “systems language” is needed to interact directly with hardware

• Major options: Pascal, C, C++, Ada, Rust

10



11

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline



When should you use C?

• You probably shouldn’t

12



When should you use C?

• You probably shouldn’t

• Stronger: Don’t use C.

13



When should you use C?

• You probably shouldn’t

• Stronger: Don’t use C.

• Stronger still (and what I actually believe):

Using C when you could use a safer language is engineering malpractice.

C and UNDEFINED BEHAVIOR are the root of many security vulnerabilities

14



What is C good for?

• Very particular things

• Need for extreme efficiency and speed
• Often efficient services for other programs

• Systems Programming

• Low-level memory or hardware manipulation
• Interact with raw memory

• Computer Systems

15



Slowly we are replacing the need for C

• C is used for extreme efficiency and speed
• Beware premature optimization

• Often algorithm and library choice are more important than language

• C++ (and others) are often good for this as well

• C is used for low-level memory or hardware manipulation
• New languages like Rust are starting to meet the needs here

16



The value of learning C

• The impact it has on every other language you might learn
• Java, Objective-C, C#, Go, Javascript, Swift, PHP, Perl, Python

• You’ll see lots of similar ideas

• Structs

• Curly braces and semicolons

• if, while, for

• Arrays and square bracket indexing

• You may use it for future systems courses: CS213, CS343, etc.

• Some experience helps you understand the danger

17



What about C++?

• More ambiguous than C

• Definitely don’t use old C++
• We learned modern C++14

• Includes many more standard libraries

• Includes safer memory management (smart pointers)

• C++ Core Guidelines is a good place to start

• There are other languages with many of the benefits without the 
confusing parts
• But really big, important software often eventually ends up in C++

18

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


Use the right programming language for the job

• Remember: there is no best programming language
• Every tool is situational

• C and C++ are not good for simple programs and demonstrations
• So use something simpler, like Python

• But if we wrote all of our video game engines in Python, games 
would be very limited in what they could do
• So use something more complex, like C++

19



Break +
example Go code

• I’m guessing that few 
of you have used Go

• But do you 
understand it?

• Where does code start?

• What is the type of d?

20



Break +
example Go code

• I’m guessing that few 
of you have used Go

• But do you 
understand it?

• Where does code start?
• main()

• What is the type of d?
• day which is a string

21



22

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline



Background on Rust

• Relatively new programming language (1.0 release in 2015)

• Supports low-level “systems programming”
• Like C, C++, Ada, Go, Pascal, and few others

• Selling points of Rust
• Modern language features

• Zero-cost abstractions, foreign-function interfaces
• Package management, built-in support for testing

• Compile-time memory safety
• No uninitialized variables, no use-after-free or double-free

• Lack of undefined runtime behavior
• Array access is bounds-checked

23



“Hello World” in Rust

fn main() {

println!("Hello 🌍!");

}

24



“Hello World” in Rust

fn main() {

println!("Hello 🌍!");

}

• main() is a function, and it’s the starting point for Rust programs
• Takes no arguments, returns no values

• Separate ways to get input arguments or return error codes

25



“Hello World” in Rust

fn main() {

println!("Hello 🌍!");

}

• main() is a function, and it’s the starting point for Rust programs
• Takes no arguments, returns no values

• Separate ways to get input arguments or return error codes

• Strings in Rust are Unicode

26



“Hello World” in Rust

fn main() {

println!("Hello 🌍!");

}

• main() is a function, and it’s the starting point for Rust programs
• Takes no arguments, returns no values

• Separate ways to get input arguments or return error codes

• Strings in Rust are Unicode

• A little weird: println!() is a macro function
• Handles most argument stuff at compile time to generate better errors

• Macro is code that generates code at compile-time

27



Types in Rust

• Types in Rust are explicit about their size
• Listed in number of bits, so i8 ≈ char and u32 ≈ unsigned int

28



Working with variables

fn main() {

let x: i32 = 10;

println!("x: {}", x);

}

29



Working with variables

fn main() {

let x: i32 = 10;

println!("x: {}", x);

}

• x is a variable of type i32 with initial value 10

30



Working with variables

fn main() {

let x: i32 = 10;

println!("x: {}", x);

}

• x is a variable of type i32 with initial value 10

• Curly brackets denote an expression you want to print

31



Rust playground - Variables

• Test out Rust code online in a browser
• https://play.rust-lang.org/

• Let’s try out that function and play around with some things
• Variable types and initialization

• Modify the variable value

• https://play.rust-
lang.org/?version=stable&mode=debug&edition=2021&gist=cd7cc
8a19bbf719cdbc6eb4b06edbb29

32

https://play.rust-lang.org/


Type inference in Rust

fn takes_u32(x: u32) {

println!("u32: {x}");

}

fn takes_i8(y: i8) {

println!("i8: {y}");

}

33

fn main() {

let x = 10;

let y = 20;

takes_u32(x);

takes_i8(y);

// below would fail

// takes_u32(y);

}

• Rust figures out what type you meant if you leave it out
• But everything does still have a type

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=aae8903ef418552d0a10b731e6a11390

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=aae8903ef418552d0a10b731e6a11390


Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

34



Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

35

Struct with two fields



Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

36

Tells compiler to create default code 
that will print the struct for debugging



Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

37

All member functions of the struct



Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

38

Creating a struct



Rust has structs which can have methods

#[derive(Debug)]
struct Person {
name: String,
age: u8,

}

impl Person {
fn say_hello(&self) {

println!("Hello, my name is {}", self.name);
}

}

fn main() {
let peter = Person {

name: String::from("Peter"),
age: 27,

};
peter.say_hello();

}

39

Calling a method



Rust Playground - Methods

• https://play.rust-
lang.org/?version=stable&mode=debug&edition=2021&gist=2925
da360685d3be97f2c5726499344a

• Things to try
• Print out the entire struct

• Create a constructor with “new”

• Look at some error messages

• Try using a string literal as a message

40

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=2925da360685d3be97f2c5726499344a
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=2925da360685d3be97f2c5726499344a
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=2925da360685d3be97f2c5726499344a


Rust solves memory ownership issues

• C++ example of an ownership issue
• Reference points to a value that no longer exists

int main() {

std::vector<std::string> v;

v.push_back(“Hello”);

string& x = v[0]; // gets reference to item

v.push_back(“world”); // may reallocate memory

std::cout << x << “\n”; // UNDEFINED BEHAVIOR

}

41



Rust prevents ownership issues at compile-time

• The following code errors
• https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e7bee1ca785182ce1c7e0c1ea3d21748

fn main() {

let mut v = vec![];

v.push("Hello");

let x = &v[0];

v.push("world");

println!("{}", x);

}

42

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e7bee1ca785182ce1c7e0c1ea3d21748


Way more to Rust

• Don’t have time for an extensive review of the language

• Course in Rust
• Most of these slides are borrowed directly from here

• https://google.github.io/comprehensive-rust/hello-world.html

• Rust for Systems Programmers
• Targets people who know C++ and care about “systems” topics

• Some of this is likely not understandable yet for CS211 students

• https://github.com/nrc/r4cppp

43

https://google.github.io/comprehensive-rust/hello-world.html
https://github.com/nrc/r4cppp


Break + Question

• What does this code print?

fn main() {
let v = vec![10, 20, 30];

for x in v {
println!("x: {x}");

}

for i in (0..10).step_by(2) {
println!("i: {i}");

}
}

44



Break + Question

• What does this code print?

fn main() {
let v = vec![10, 20, 30];

for x in v {
println!("x: {x}");

}

for i in (0..10).step_by(2) {
println!("i: {i}");

}
}

45

Output:
x: 10

x: 20

x: 30

i: 0

i: 2

i: 4

i: 6

i: 8



46

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline



What did we learn in CS211?

• In reverse order:
• Game Design

• C++ Programming

• C Programming

• Unix Shell

47



Game Design

• Model, View, Controller concept
• Model handles the program state

• View displays information based on the state

• Controller modifies the state based on user input

• Breaking a system up into these three parts enables more robust, 
testable code
• Applicable to any interactive program, not just games

48



C++ Programming

• Object Oriented Programming
• Using objects and methods

• Creating our own Classes

• Encapsulation
• Internal state should be private

• Only expose operations that maintain validity of our internal state

• Resource Acquisition Is Initialization (RAII)
• Wrap resources in an object

• Allocate when constructed and deallocate when automatically destructed

49



C Programming

• C syntax and structure
• If, while, for
• Functions and return values
• Headers and Source files

• Types and Variables
• Name, Object, Value
• Type determines the kind of value and size of object

• Memory management
• Stack, Data, and Heap segments
• When to malloc() and free() and possible errors

50

z: 5



Unix Shell (a.k.a. Linux terminal)

• SSH access to remote machines
• This will be a recurring need in future classes

• Interacting with files and programs
• cd, ls

• Relative and absolute paths

• Providing flags to programs and looking up documentation

51



More background on CS tools

• We don’t have a good class on this
• CS150 and CS211 try to give you some basics

• One good source of material: MIT course
• “The Missing Semester of Your CS Education”

• https://missing.csail.mit.edu/

• Another approach: use terminal
• The more you use it, the more you google

how to do things, and the better you’ll get
at it

52

https://missing.csail.mit.edu/


Recommendation: don’t forget about Unix

• Keep playing around with Unix shell
• Incredibly useful tool for software development and productivity

• Several options

• Native MacOS

• Windows Subsystem for Linux (WSL)

• Linux installed in a virtual machine (Virtualbox is a good choice)

• Installing Linux on a virtual machine yourself is a good experience

• Free and only takes an hour

• And then you can wreck it, with no consequences

53



54

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline



More CS classes!

• CS211 is a pre-requisite for CS213
• Obvious next step while you’re still fresh with C programming

• CS111, CS150, and CS211 are the “programming classes”
• Teach you how to program

• Teach you programming languages

• Future classes in CS are “computer science classes”
• Teach you how to understand computation and computers

• How do we use computers to understand and effect our world

• You’ll write programs along the way

55



New languages

• “Wait, but I only know like four programming languages?!!”
• Learning others will be up to you

• The same ideas you’ve already learned will apply
• Types and Imperative Programming

• Functional Programming

• Debugging and Testing

• Lots of great guides online for popular languages

56



Full-Stack Programming

• A benefit to being a “computer scientist” versus “knowing a 
programming language”
• Our curriculum teaches you multiple different parts of the software stack

• You can understand front-end (user-facing) software
• Probably something like Python or Javascript

• You can understand back-end (software-facing) software
• Probably something like C++

57



Plenty More Testing and Debugging

• If you’re going to do a lot of programming, debugging is the most 
useful skill
• You get better with lots of practice

• Learning to test your code will help you be more successful
• Especially on big projects

58



59

• Course Goals

• When should you use C and C++?

• Rust for C/C++ Programmers

• Review of Class Topics

• What’s next?

Outline


	Default Section
	Slide 1: Lecture 17 Wrapup

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Course Goals
	Slide 4: Outline
	Slide 5: So, why CS211?
	Slide 6: Formal goals
	Slide 7: Formal goals
	Slide 8: Upsides to C and C++
	Slide 9: Downsides to C and C++
	Slide 10: So why teach C and C++?

	When should you use C/C++?
	Slide 11: Outline
	Slide 12: When should you use C?
	Slide 13: When should you use C?
	Slide 14: When should you use C?
	Slide 15: What is C good for?
	Slide 16: Slowly we are replacing the need for C
	Slide 17: The value of learning C
	Slide 18: What about C++?
	Slide 19: Use the right programming language for the job
	Slide 20: Break + example Go code
	Slide 21: Break + example Go code

	Rust for C/C++ Programmers
	Slide 22: Outline
	Slide 23: Background on Rust
	Slide 24: “Hello World” in Rust
	Slide 25: “Hello World” in Rust
	Slide 26: “Hello World” in Rust
	Slide 27: “Hello World” in Rust
	Slide 28: Types in Rust
	Slide 29: Working with variables
	Slide 30: Working with variables
	Slide 31: Working with variables
	Slide 32: Rust playground - Variables
	Slide 33: Type inference in Rust
	Slide 34: Rust has structs which can have methods
	Slide 35: Rust has structs which can have methods
	Slide 36: Rust has structs which can have methods
	Slide 37: Rust has structs which can have methods
	Slide 38: Rust has structs which can have methods
	Slide 39: Rust has structs which can have methods
	Slide 40: Rust Playground - Methods
	Slide 41: Rust solves memory ownership issues
	Slide 42: Rust prevents ownership issues at compile-time
	Slide 43: Way more to Rust
	Slide 44: Break + Question
	Slide 45: Break + Question

	Class Review
	Slide 46: Outline
	Slide 47: What did we learn in CS211?
	Slide 48: Game Design
	Slide 49: C++ Programming
	Slide 50: C Programming
	Slide 51: Unix Shell (a.k.a. Linux terminal)
	Slide 52: More background on CS tools
	Slide 53: Recommendation: don’t forget about Unix

	What's Next?
	Slide 54: Outline
	Slide 55: More CS classes!
	Slide 56: New languages
	Slide 57: Full-Stack Programming
	Slide 58: Plenty More Testing and Debugging

	Wrapup
	Slide 59: Outline


