Lecture 15
C++ Inheritance

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Spring 2023

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)

Northwestern

Administrivia

« Homework 5 is due today
« We'll do the best we can, but office hours will be busy

« Remember that project proposals are due on Friday!
« We've gotten only a few proposals so far
« I'm going to start emailing approvals later today

Today’s Goals

» Introduce concept of inheritance for classes

 Describe inheritance process in C++
« Understand some benefits and possible challenges

 Explore how GE211 uses inheritance

Getting the code for today

« Download code in a zip files from here:
https://nu-cs211.qithub.io/cs211-files/lec/15 inheritance.zip

« Extract code wherever

* Open with CLion
« Make sure you open the folder with the CMakelLists.txt

https://nu-cs211.github.io/cs211-files/lec/15_inheritance.zip

Outline

- Concept of Inheritance

* Inheritance in C++
 Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

Duplicated behavior in separate classes

« Example: Minecraft
« World is made of destructible blocks of various types
 Blocks have different qualities
« Sounds when hit, number of hits to break, what it drops when broken

Sand Block Coal Ore Block Redstone Ore Block

Example Class for a Sand Block

class Sand block {

public:
Sand block (Posn<int>);

volid hit block();
vold fall();

private:
Posn<int> position ;

int hits remaining ;

These functions would probably take
arguments and maybe return things.
We’'ll ignore that for this example.

Example Class for a Coal Ore Block

class Coal ore block {

public:
Coal ore block (Posn<int>);

volid hit block();

void drop 1item() ;

private:

Posn<int> position ; These functions would probably take
— arguments and maybe return things.

int hits remaining ; We'll ignore that for this example.

Example Class for a Redstone Ore Block

class Redstone ore block {

public:
Redstone ore block (Posn<int>);

void hit block();
volid drop 1item();

volid emlt particles();

private:

Posn<int> position ; These functions would probably take
arguments and maybe return things.

int hits remalning ; We'll ignore that for this example.

Design without inheritance

 One class per block type:

Sand_block Coal_ore_block Redstone_ore_block

hit block () hit block () hit block ()
fall() drop item() drop item()
emit particles()

position position position
hits remaining hits remaining hits remaining

* Feels pretty redundant. Lots of repeated information

« Cannot use multiple blocks as the same thing
« Can't have a vector of blocks, for instance

Concept: share common traits

» Inheritance allows one class to copy all the qualities of another
* i.e. it inherits member functions and data members

* Allows us to form parent-child “is-a” relationship between classes
* A child (derived class) extends a parent (base class)

 Objects can be treated as anything they inherit from
 Object can be treated as the base class to access general functionality
 Or treated as the specific derived class to access specific functionality

11

Redesign of blocks with inheritance _
Coal_ore_ block

Ore_block hit block()

drop item()

hit block()
drop item() position
position
hit_block() hits remaining
L Redstone_ore_block
position
hits remaining hit block ()
drop item
Ssand_block p_Lten ()
emit particles()
hit block () f
£a11 () p981 1on_. |
hits remalning
position
hits remaining
_ 12

Derived classes can override inherited functionality

vold Ore block::hit block()
hits remaining--;

1f (hits remaining == 0) { drop 1tem(); }

volid Redstone ore block::hit block() {
hits remaining--;
emlt particles();

1f (hits remaining == 0) { drop 1tem(); }

Derived classes can be treated as the parent class

. V\]geblcankmake a vector of generic "Block” and fill it with specific types
O OCKS
 Although we have to do some extra work: using pointers in this example
* More on this later

std: :vector<Block*> blocks;

blocks.push back(&Coal ore block());
blocks.push back (&Redstone ore block());
blocks.push back(&Coal ore block());
blocks.push back(&Sand block());

blocks[1l]->hit block(); // calls Redstone hit block()

14

Benefits of inheritance

 Code reuse
 Children can automatically inherit code from parents

 Extensibility
 Children can add custom behavior by extending or overriding

* Polymorphism (biggest reason)
« Ability to redefine existing behavior but preserve the interface
 Children can override the behavior of the parent

 Other parts of the code can make calls on objects without knowing which
part of the inheritance tree they are from

15

Break + Quiz: Relationships between our blocks

 Determine if the following —— drop_iten()
. . . . drop_ item() position
is-a relationships exist e [
hit_block() hits_remgining_
-
position_
hits_remaining_ hit block()

. drop_item()
¢ True OI’ Fa|Se. Sand_block e;?i _;airzicleso

hit block()

« Redstone_ore_block is-a Ore_block? £a11() b re ronaining

position
hits remaining

e Coal_ore block is-a Ore_block?

e Coal ore block is-a Block?

« Coal_ore block is-a Redstone_ore_block?

* Ore_block is-a Redstone_ore_block?

16

Break + Quiz: Relationships between our blocks

» Determine if the following
is-a relationships exist

* True or False:
« Redstone_ore_block is-a Ore_block? TRUE

* Coa
* Coa
* Coa

ore
ore
ore

OC
OC
OC

K is-a Block? TRUE

hit block()

position
hits_remaining_

K is-a Ore_block? TRUE

K is-a Redstone_ore_block? FALSE

* Ore_block is-a Redstone_ore_block? FALSE

Ore_block

hit block()
drop_ item()

position
hits remaining

Sand_block

hit block()
fall()

position
hits remaining

Coal_ore_block

hit block()
drop item()

position
hits remaining

Redstone_ore_block

hit block()
drop item()
emit particles()

position
hits remaining

17

Outline

« Concept of Inheritance

« Inheritance in C++
 Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

Simpler class for demonstrating inheritance

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

vold print () const;

private:
int x ;
int y ;
b

positions.hxx
positions.cxx

19

positions.hxx

Create a new class that inherits from Position e

class Position3D: public Position {
public:
Position3D(int x, int vy, int z);
int distance to(Position3D const& other) const;

volid print () const;

private:
int z ;

}

positions.hxx

Needs its own unique constructor bositions.cxx

class Position3D: public Position {
public:
Position3D(int x, int vy, int z);
int distance to(Position3D const& other) const;

volid print () const;

private: Class derivation list

int z_; Position3D inherits from Position
} s

Class derivation list

class Name : public BaseClassl, public BaseClassZ

{ }s

« It is possible to inherit from any number of classes
« Can add some difficulties outside the scope of this class (Diamond problem)

e public iS an access specifier
« Always want to use public
* Private would make everything inherited private
« Which would mean other things wouldn’t know you had them
« Which really defeats the whole purpose

22

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

Derived class needs its own unique constructor

class Position3D: public Position {
public:

Position3D (int x, int y, int z);

int distance to(Position3D consté& other)
volid print () const;
private: Constructor

positions.hxx
positions.cxx

const;

int z_; Must be unique for each class

}

23

Extending base class functionality

class Position3D: public Position {

public:

Position3D(int x, int vy, int z);

positions.hxx
positions.cxx

int distance to(Position3D const& other) const;

volid print () const;
private: Extended functionality
int z_; Provides features that the

) original class does not

24

Overriding base class functionality

class Position3D: public Position {

public:

Position3D(int x, int vy, int z);

positions.hxx
positions.cxx

int distance to(Position3D const& other) const;
void print () const;

private: Overridden functionality
int z_; Redefines existing functionality

) to do something different

25

positions.hxx

Constructor for our derived class hositions. oxx

Position3D::Position3D(1int x, 1nt y, int z)

Position(x, V),

e Base class constructors are called first in the initializer list

« C++ will automatically call the default constructor if one exists and you
don't

Access is not allowed to the base class’s private members

int
Position3D::distance to(Position3D consté& other) const

{

int diffx = other.x - x ;
int diffy = other.y -y ;
int diffz = other.z - z ;

return std::sqgrt(diffx*diffx + diffy*diffy
+ diffz*xdiffz);

- ERROR! This won't work because x and y are private
« Need some way to make them accessible to things that inherit from the class
 Additional access specifier: protected

27

Classes meant to be inherited from use protected members

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

vold print () const;

protected:
int x ;
int y ;
b

28

Break + Open Question

« How do you decide whether a given member should be
private Or protected?

29

Break + Open Question

« How do you decide whether a given member should be
private Or protected?

« No always-correct answer here, but some thoughts:

« If your class will never be inherited from: make it private

« If your class will be inherited from: likely make it protected
 Unless it's special to this implementation and won't be reused
 Or further if inheriting classes should not modify it directly

30

Outline

« Concept of Inheritance

« Inheritance in C++
« Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

Compiler decides which version of an overridden function to call

Position pl {0, O};
Position3D p2 {0, 0O, 0O};
pl.print () ;

p2.print () ;

« How does the compiler know which version of print () to call?

 Decides at compile time based on which type it is
 This is known as "“static dispatch”

32

Problem with static dispatch

 But often we would prefer to call the extended version of the function
« Even if the object is treated as the base class

volid print position(Position consté& p)

p.print () ;

Position pl {0, O0};
Position3D p2 {0, 0, -=-5};

print position(pl);
print position(p2);// prints the 2D position version

33

Dynamic dispatch

« For some functions, have code use the overridden version if it
exists
« Need some way of specifying which functions should work this way

* This needs to be decided at runtime

 Function doesn’t know in advance which specific type it is going to be
called with

« Language has to support this feature (C++ does!)

34

Declare functions virtual if dynamic dispatch should occur

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

virtual void print () const;

protected:
int x ;
int y ;
bi

35

In derived class, mark function as override

class Position3D: public Position {
public:

Position3D(int x, int vy, int z);

int distance to(Position3D const& other) const;

volid print () const override;
private: Important for compile-time errors.
int z ;

Compiler will tell you if there isn't a
b7 virtual function you’re overriding.

36

Repeat example but with dynamic dispatch

* Now our example works because the program decides which version of
print () to call at run-time

volid print position(Position const& p) |

p.print () ;

Position pl {0, O0};
Position3D p2 {0, 0, -=5};

print position(pl);
print position(p2);// prints the 3D position version!

37

Creating a class that MUST be overridden

» Sometimes we want to include a function in a base class but only
implement it in derived classes

- Back to Minecraft example: _ _
hit block () might not have a default implementation

« We can make a function “pure virtual” in C++
« No implementation is written for the base class
* Any class that inherits is required to implement it

e The base class becomes an “abstract class”

« It cannot be instantiated as an object because all of its functions aren't
implemented

« It is only useful as a class to inherit from

38

Making a pure virtual function

class Printable {

public:

virtual wvoid print() const = 0;

class Position

public Printable {

volid print () const override;

39

Outline

« Concept of Inheritance

« Inheritance in C++
 Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

Storing a collection of inherited objects

. V\]geblcankmake a vector of generic "Block” and fill it with specific types
O OCKS
 Although we have to do some extra work: using pointers in this example
* More on this later

std: :vector<Block*> blocks;

blocks.push back(&Coal ore block());
blocks.push back (&Redstone ore block());
blocks.push back(&Coal ore block());
blocks.push back(&Sand block());

blocks[1l]->hit block(); // calls Redstone hit block()

41

The simple thing is broken

Position pl {1, 2};
Position3D p2 {-1, -2, -3};

std::vector<Printable> broken;
broken.push back(pl);
broken.push back(p2);

for (Printable consté& p: broken)

{

vector_of base.hxx
vector_of base.cxx

print position(p); // prints the wrong thing!

42

Object slicing

* std: :vector<Printable> only allocates enough space to hold
the “Printable” class, not the extra stuff for the other classes

SO, you put a child class in and it “'slices” off all the special parts
« Only holds whatever was in the base class

* In terms of memory:
 If each Printable needed 10 bytes
* And each Position needed 30 bytes
» The vector only hangs on to the first 10 bytes of each Position

43

Fixing object slicing

« To solve this problem, we just need to make sure there’s actually
memory available
e std: :vector<Position> has enough memory for each Position
* std: :vector<Position3D> has enough memory for each Position3D

 But we really want to mix objects of different inherited types
 So the solution is to hang on to pointers instead!

44

Storing pointers fixes object slicing vector_of_base.hxx

vector_of base.cxx

Position pl {1, 2};
Position3D p2 {-1, -2, -3};

std::vector<Printable*> fixed;
fixed.push back (&pl);
fixed.push back (&p2);

for (Printable* consté& p: fixed) {
print position(*p); // prints the right thing!

Warning: now we're worried about scoping and liftetimes!

* The new vector just hangs on to pointers, not to the objects
themselves!

» That means we need to make sure that the objects are actually stored
somewhere too

« Common solutions

« Keep each object as a member of a class
» We do this with sprites in GE211!

« Keep an array of each individual object type (likely still as a member)
« And a mixed array of pointers to all of them

« Dynamic memory (we'll talk about this next week)

46

S mart p0| nters exam p | e vector_of_base.hxx

vector_of base.cxx

std::vector<std::unique ptr<Printable>> heap;

heap.push back(std::make unique<Position> (1, 2));
heap.push back(std::make unique<Position3D>(-7, -6, -35);
for (std::unique ptr<Printable> const& p: heap) {

print position(*p); // prints the right thing!

* More on this next week

47

Break + Practice

class Shape {
public:
Shape (std: :string col)
color (col)

{}

protected:
std: :string color = '"purple";
}i
What does this print?
Rectangle rect(3, 4, "red");
rect.print color();

class Rectangle: public Shape {
public:
Rectangle (float x, float vy,
std: :string col)
Shape (col) , height (x), width (y)
{}

void print color() ({
std: :cout << color << "\n";

}

private:
float height ;
float width ;

};

48

- class Rectangle: public Shape {
Break + Practice public.
Rectangle (float x, float vy,
std: :string col)

1 Sh
class Shape { . Shape (col), height (x), width (y)
pUbliC: { } - -
Shape (std: :string col)
color (col) void print color() ({

std: :cout << color << "\n";

{}
}

protected: private:
std: :string color = "purple"; float height ;
}; float width ;

};

What does this print? :
It prints:

"red") ; “red”

Rectangle rect(3, 4,
rect.print color();

49

Outline

« Concept of Inheritance

* Inheritance in C++
 Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

Inheritance in GE211
« https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

 Abstract_game is an abstract base class
« draw(Sprite_set&) is a pure virtual function
« Any game MUST implement draw()

« Many other functions are marked virtual
» Our Controller overrides them with its own implementation
« on_key, on_mouse_move, etc.

« Some functions are implemented and we inherit directly
 run() is a good example of this

51

https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

Break + Open Question

* Do you need to use inheritance in your Final Project?
 Technically yes: Controller inherits from Abstract_game
« Otherwise no, you could make everything as a part of the model

» Situations where inheritance cou/d help

« Multiple pieces that have some shared behaviors and some unique
behaviors

 Could still manage this manually, or could use classes/inheritance

52

Outline

« Concept of Inheritance

* Inheritance in C++
 Overriding Functions
« Storing Inherited Classes

« GE211 Inheritance

	Default Section
	Slide 1: Lecture 15 C++ Inheritance

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Concept of Inheritance
	Slide 5: Outline
	Slide 6: Duplicated behavior in separate classes
	Slide 7: Example Class for a Sand Block
	Slide 8: Example Class for a Coal Ore Block
	Slide 9: Example Class for a Redstone Ore Block
	Slide 10: Design without inheritance
	Slide 11: Concept: share common traits
	Slide 12: Redesign of blocks with inheritance
	Slide 13: Derived classes can override inherited functionality
	Slide 14: Derived classes can be treated as the parent class
	Slide 15: Benefits of inheritance
	Slide 16: Break + Quiz: Relationships between our blocks
	Slide 17: Break + Quiz: Relationships between our blocks

	Inheritance in C++
	Slide 18: Outline
	Slide 19: Simpler class for demonstrating inheritance
	Slide 20: Create a new class that inherits from Position
	Slide 21: Needs its own unique constructor
	Slide 22: Class derivation list
	Slide 23: Derived class needs its own unique constructor
	Slide 24: Extending base class functionality
	Slide 25: Overriding base class functionality
	Slide 26: Constructor for our derived class
	Slide 27: Access is not allowed to the base class’s private members
	Slide 28: Classes meant to be inherited from use protected members
	Slide 29: Break + Open Question
	Slide 30: Break + Open Question

	Overriding Functions
	Slide 31: Outline
	Slide 32: Compiler decides which version of an overridden function to call
	Slide 33: Problem with static dispatch
	Slide 34: Dynamic dispatch
	Slide 35: Declare functions virtual if dynamic dispatch should occur
	Slide 36: In derived class, mark function as override
	Slide 37: Repeat example but with dynamic dispatch
	Slide 38: Creating a class that MUST be overridden
	Slide 39: Making a pure virtual function

	Storing Inherited Classes
	Slide 40: Outline
	Slide 41: Storing a collection of inherited objects
	Slide 42: The simple thing is broken
	Slide 43: Object slicing
	Slide 44: Fixing object slicing
	Slide 45: Storing pointers fixes object slicing
	Slide 46: Warning: now we’re worried about scoping and liftetimes!
	Slide 47: Smart pointers example
	Slide 48: Break + Practice
	Slide 49: Break + Practice

	GE211 Inheritance
	Slide 50: Outline
	Slide 51: Inheritance in GE211
	Slide 52: Break + Open Question

	Wrapup
	Slide 53: Outline

