
Lecture 15
C++ Inheritance

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)



Administrivia

• Homework 5 is due today
• We’ll do the best we can, but office hours will be busy

• Remember that project proposals are due on Friday!
• We’ve gotten only a few proposals so far

• I’m going to start emailing approvals later today

2



Today’s Goals

• Introduce concept of inheritance for classes

• Describe inheritance process in C++
• Understand some benefits and possible challenges

• Explore how GE211 uses inheritance

3



Getting the code for today

• Download code in a zip files from here:
https://nu-cs211.github.io/cs211-files/lec/15_inheritance.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

4

https://nu-cs211.github.io/cs211-files/lec/15_inheritance.zip


5

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline



Duplicated behavior in separate classes

• Example: Minecraft
• World is made of destructible blocks of various types

• Blocks have different qualities

• Sounds when hit, number of hits to break, what it drops when broken

6

Sand Block Coal Ore Block Redstone Ore Block



Example Class for a Sand Block

class Sand_block {

public:
Sand_block(Posn<int>);

void hit_block();

void fall();

private:

Posn<int> position_;

int hits_remaining_;

}

7

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Example Class for a Coal Ore Block

class Coal_ore_block {

public:
Coal_ore_block(Posn<int>);

void hit_block();

void drop_item();

private:

Posn<int> position_;

int hits_remaining_;

}

8

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Example Class for a Redstone Ore Block

class Redstone_ore_block {

public:
Redstone_ore_block(Posn<int>);

void hit_block();

void drop_item();

void emit_particles();

private:

Posn<int> position_;

int hits_remaining_;

}

9

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Design without inheritance

• One class per block type:

• Feels pretty redundant. Lots of repeated information

• Cannot use multiple blocks as the same thing
• Can’t have a vector of blocks, for instance

10

Sand_block

hit_block()

fall()

position_

hits_remaining_

Coal_ore_block

hit_block()

drop_item()

position_

hits_remaining_

Redstone_ore_block

hit_block()

drop_item()

emit_particles()

position_

hits_remaining_



Concept: share common traits

• Inheritance allows one class to copy all the qualities of another
• i.e. it inherits member functions and data members

• Allows us to form parent-child “is-a” relationship between classes
• A child (derived class) extends a parent (base class)

• Objects can be treated as anything they inherit from
• Object can be treated as the base class to access general functionality

• Or treated as the specific derived class to access specific functionality

11



Redesign of blocks with inheritance

12

Sand_block

hit_block()

fall()

position_

hits_remaining_

Coal_ore_block

hit_block()

drop_item()

position_

hits_remaining_

Redstone_ore_block

hit_block()

drop_item()

emit_particles()

position_

hits_remaining_

Block

hit_block()

position_

hits_remaining_

Ore_block

hit_block()

drop_item()

position_

hits_remaining_



Derived classes can override inherited functionality

void Ore_block::hit_block() {

hits_remaining--;

if (hits_remaining == 0) { drop_item(); }

}

void Redstone_ore_block::hit_block() {

hits_remaining--;

emit_particles();

if (hits_remaining == 0) { drop_item(); }

}

13



Derived classes can be treated as the parent class

• We can make a vector of generic “Block” and fill it with specific types 
of blocks
• Although we have to do some extra work: using pointers in this example
• More on this later

std::vector<Block*> blocks;

blocks.push_back(&Coal_ore_block());

blocks.push_back(&Redstone_ore_block());

blocks.push_back(&Coal_ore_block());

blocks.push_back(&Sand_block());

blocks[1]->hit_block(); // calls Redstone hit_block()

14



Benefits of inheritance

• Code reuse
• Children can automatically inherit code from parents

• Extensibility
• Children can add custom behavior by extending or overriding

• Polymorphism (biggest reason)

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Other parts of the code can make calls on objects without knowing which 
part of the inheritance tree they are from

15



Break + Quiz: Relationships between our blocks

• Determine if the following
is-a relationships exist

• True or False:
• Redstone_ore_block is-a Ore_block?

• Coal_ore_block is-a Ore_block?

• Coal_ore_block is-a Block?

• Coal_ore_block is-a Redstone_ore_block?

• Ore_block is-a Redstone_ore_block?

16



Break + Quiz: Relationships between our blocks

• Determine if the following
is-a relationships exist

• True or False:
• Redstone_ore_block is-a Ore_block? TRUE

• Coal_ore_block is-a Ore_block? TRUE

• Coal_ore_block is-a Block? TRUE

• Coal_ore_block is-a Redstone_ore_block? FALSE

• Ore_block is-a Redstone_ore_block? FALSE

17



18

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline



Simpler class for demonstrating inheritance

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

void print() const;

private:

int x_;

int y_;

};

19

positions.hxx
positions.cxx



Create a new class that inherits from Position

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

20

positions.hxx
positions.cxx



Needs its own unique constructor

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

21

Class derivation list

Position3D inherits from Position

positions.hxx
positions.cxx



Class derivation list

class Name : public BaseClass1, public BaseClass2

{ };

• It is possible to inherit from any number of classes
• Can add some difficulties outside the scope of this class (Diamond problem)

• public is an access specifier
• Always want to use public
• Private would make everything inherited private

• Which would mean other things wouldn’t know you had them
• Which really defeats the whole purpose

22

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem


Derived class needs its own unique constructor

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

23

Constructor

Must be unique for each class

positions.hxx
positions.cxx



Extending base class functionality

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

24

Extended functionality

Provides features that the 
original class does not

positions.hxx
positions.cxx



Overriding base class functionality

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

25

Overridden functionality

Redefines existing functionality 
to do something different

positions.hxx
positions.cxx



Constructor for our derived class

Position3D::Position3D(int x, int y, int z)

: Position(x, y),

z_(z)

{ }

• Base class constructors are called first in the initializer list
• C++ will automatically call the default constructor if one exists and you 

don’t

26

positions.hxx
positions.cxx



Access is not allowed to the base class’s private members

int
Position3D::distance_to(Position3D const& other) const
{

int diffx = other.x_ - x_;

int diffy = other.y_ - y_;

int diffz = other.z_ - z_;

return std::sqrt(diffx*diffx + diffy*diffy
+ diffz*diffz);

}

• ERROR! This won’t work because x_ and y_ are private
• Need some way to make them accessible to things that inherit from the class
• Additional access specifier: protected

27



Classes meant to be inherited from use protected members

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

void print() const;

protected:

int x_;

int y_;

};

28



Break + Open Question

• How do you decide whether a given member should be
private or protected?

29



Break + Open Question

• How do you decide whether a given member should be
private or protected?

• No always-correct answer here, but some thoughts:

• If your class will never be inherited from: make it private

• If your class will be inherited from: likely make it protected

• Unless it’s special to this implementation and won’t be reused

• Or further if inheriting classes should not modify it directly

30



31

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline



Compiler decides which version of an overridden function to call

Position p1 {0, 0};

Position3D p2 {0, 0, 0};

p1.print();

p2.print();

• How does the compiler know which version of print() to call?
• Decides at compile time based on which type it is

• This is known as “static dispatch”

32



Problem with static dispatch

• But often we would prefer to call the extended version of the function
• Even if the object is treated as the base class

void print_position(Position const& p) {

p.print();

}

Position p1 {0, 0};

Position3D p2 {0, 0, -5};

print_position(p1);

print_position(p2);// prints the 2D position version

33



Dynamic dispatch

• For some functions, have code use the overridden version if it 
exists
• Need some way of specifying which functions should work this way

• This needs to be decided at runtime
• Function doesn’t know in advance which specific type it is going to be 

called with

• Language has to support this feature (C++ does!)

34



Declare functions virtual if dynamic dispatch should occur

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

virtual void print() const;

protected:

int x_;

int y_;

};

35



In derived class, mark function as override

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const override;

private:

int z_;

};

36

Important for compile-time errors.

Compiler will tell you if there isn’t a 
virtual function you’re overriding.



Repeat example but with dynamic dispatch

• Now our example works because the program decides which version of 
print() to call at run-time

void print_position(Position const& p) {

p.print();

}

Position p1 {0, 0};

Position3D p2 {0, 0, -5};

print_position(p1);

print_position(p2);// prints the 3D position version!

37



Creating a class that MUST be overridden

• Sometimes we want to include a function in a base class but only 
implement it in derived classes
• Back to Minecraft example:
hit_block() might not have a default implementation

• We can make a function “pure virtual” in C++
• No implementation is written for the base class
• Any class that inherits is required to implement it

• The base class becomes an “abstract class”
• It cannot be instantiated as an object because all of its functions aren’t 

implemented
• It is only useful as a class to inherit from

38



Making a pure virtual function

class Printable {

public:

virtual void print() const = 0;

}

class Position : public Printable {

void print() const override;

}

39



40

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline



Storing a collection of inherited objects

• We can make a vector of generic “Block” and fill it with specific types 
of blocks
• Although we have to do some extra work: using pointers in this example
• More on this later

std::vector<Block*> blocks;

blocks.push_back(&Coal_ore_block());

blocks.push_back(&Redstone_ore_block());

blocks.push_back(&Coal_ore_block());

blocks.push_back(&Sand_block());

blocks[1]->hit_block(); // calls Redstone hit_block()

41



The simple thing is broken

Position p1 {1, 2};

Position3D p2 {-1, -2, -3};

std::vector<Printable> broken;

broken.push_back(p1);

broken.push_back(p2);

for (Printable const& p: broken) {

print_position(p); // prints the wrong thing!

}

42

vector_of_base.hxx
vector_of_base.cxx



Object slicing

• std::vector<Printable> only allocates enough space to hold 
the “Printable” class, not the extra stuff for the other classes

• So, you put a child class in and it “slices” off all the special parts
• Only holds whatever was in the base class

• In terms of memory:
• If each Printable needed 10 bytes

• And each Position needed 30 bytes

• The vector only hangs on to the first 10 bytes of each Position

43



Fixing object slicing

• To solve this problem, we just need to make sure there’s actually 
memory available
• std::vector<Position> has enough memory for each Position

• std::vector<Position3D> has enough memory for each Position3D

• But we really want to mix objects of different inherited types
• So the solution is to hang on to pointers instead!

44



Storing pointers fixes object slicing

Position p1 {1, 2};

Position3D p2 {-1, -2, -3};

std::vector<Printable*> fixed;

fixed.push_back(&p1);

fixed.push_back(&p2);

for (Printable* const& p: fixed) {

print_position(*p); // prints the right thing!

}

45

vector_of_base.hxx
vector_of_base.cxx



Warning: now we’re worried about scoping and liftetimes!

• The new vector just hangs on to pointers, not to the objects 
themselves!
• That means we need to make sure that the objects are actually stored 

somewhere too

• Common solutions
• Keep each object as a member of a class

• We do this with sprites in GE211!

• Keep an array of each individual object type (likely still as a member)
• And a mixed array of pointers to all of them

• Dynamic memory (we’ll talk about this next week)

46



Smart pointers example

std::vector<std::unique_ptr<Printable>> heap;

heap.push_back(std::make_unique<Position>(1, 2));

heap.push_back(std::make_unique<Position3D>(-7, -6, -5);

for (std::unique_ptr<Printable> const& p: heap) {

print_position(*p); // prints the right thing!

}

• More on this next week

47

vector_of_base.hxx
vector_of_base.cxx



Break + Practice

class Shape {

public:

Shape(std::string col)

: color_(col)

{}

protected:

std::string color_ = "purple";

};

48

class Rectangle: public Shape {

public:

Rectangle(float x, float y,

std::string col)

: Shape(col), height_(x), width_(y)

{ }

void print_color() {

std::cout << color_ << "\n";

}

private:

float height_;

float width_;

};

What does this print?

Rectangle rect(3, 4, "red");

rect.print_color();



Break + Practice

class Shape {

public:

Shape(std::string col)

: color_(col)

{}

protected:

std::string color_ = "purple";

};

49

class Rectangle: public Shape {

public:

Rectangle(float x, float y,

std::string col)

: Shape(col), height_(x), width_(y)

{ }

void print_color() {

std::cout << color_ << "\n";

}

private:

float height_;

float width_;

};

What does this print?

Rectangle rect(3, 4, "red");

rect.print_color();

It prints:
“red”



50

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline



Inheritance in GE211

• https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

• Abstract_game is an abstract base class
• draw(Sprite_set&) is a pure virtual function
• Any game MUST implement draw()

• Many other functions are marked virtual
• Our Controller overrides them with its own implementation

• on_key, on_mouse_move, etc.

• Some functions are implemented and we inherit directly
• run() is a good example of this

51

https://github.com/tov/ge211/blob/main/include/ge211/base.hxx


Break + Open Question

• Do you need to use inheritance in your Final Project?

• Technically yes: Controller inherits from Abstract_game

• Otherwise no, you could make everything as a part of the model

• Situations where inheritance could help

• Multiple pieces that have some shared behaviors and some unique 
behaviors

• Could still manage this manually, or could use classes/inheritance

52



53

• Concept of Inheritance

• Inheritance in C++
• Overriding Functions

• Storing Inherited Classes

• GE211 Inheritance

Outline


	Default Section
	Slide 1: Lecture 15 C++ Inheritance

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Concept of Inheritance
	Slide 5: Outline
	Slide 6: Duplicated behavior in separate classes
	Slide 7: Example Class for a Sand Block
	Slide 8: Example Class for a Coal Ore Block
	Slide 9: Example Class for a Redstone Ore Block
	Slide 10: Design without inheritance
	Slide 11: Concept: share common traits
	Slide 12: Redesign of blocks with inheritance
	Slide 13: Derived classes can override inherited functionality
	Slide 14: Derived classes can be treated as the parent class
	Slide 15: Benefits of inheritance
	Slide 16: Break + Quiz: Relationships between our blocks
	Slide 17: Break + Quiz: Relationships between our blocks

	Inheritance in C++
	Slide 18: Outline
	Slide 19: Simpler class for demonstrating inheritance
	Slide 20: Create a new class that inherits from Position
	Slide 21: Needs its own unique constructor
	Slide 22: Class derivation list
	Slide 23: Derived class needs its own unique constructor
	Slide 24: Extending base class functionality
	Slide 25: Overriding base class functionality
	Slide 26: Constructor for our derived class
	Slide 27: Access is not allowed to the base class’s private members
	Slide 28: Classes meant to be inherited from use protected members
	Slide 29: Break + Open Question
	Slide 30: Break + Open Question

	Overriding Functions
	Slide 31: Outline
	Slide 32: Compiler decides which version of an overridden function to call
	Slide 33: Problem with static dispatch
	Slide 34: Dynamic dispatch
	Slide 35: Declare functions virtual if dynamic dispatch should occur
	Slide 36: In derived class, mark function as override
	Slide 37: Repeat example but with dynamic dispatch
	Slide 38: Creating a class that MUST be overridden
	Slide 39: Making a pure virtual function

	Storing Inherited Classes
	Slide 40: Outline
	Slide 41: Storing a collection of inherited objects
	Slide 42: The simple thing is broken
	Slide 43: Object slicing
	Slide 44: Fixing object slicing
	Slide 45: Storing pointers fixes object slicing
	Slide 46: Warning: now we’re worried about scoping and liftetimes!
	Slide 47: Smart pointers example
	Slide 48: Break + Practice
	Slide 49: Break + Practice

	GE211 Inheritance
	Slide 50: Outline
	Slide 51: Inheritance in GE211
	Slide 52: Break + Open Question

	Wrapup
	Slide 53: Outline


