
Lecture 14
Final Project Overview

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov



Administrivia

• EX6 due today
• Last one, hopefully shouldn’t take too long

• Intentionally picked stuff that’s good prep for Homework 5

• Homework 5 due Thursday
• This is the last homework too!

• Definitely the hardest. Be careful here!

• View might be more work than you expect

• Reminder: no slip days on the final project

2



Administrivia

• Quiz today! (we’ll stop at 3pm to take it)

• Final project starting!
• Proposals are due Friday

• More details right now!

• Reminder: project partners
• You’re allowed to work with a partner if you want

• If you don’t know anyone, fill out the form and we’ll match you
(closes tomorrow)

3



Today’s Goals

• Explain the what, why, and how of final projects

• Explore GE211 functionality not used in the homeworks

• Demonstrate some additional games you’ll get as sample code

• Practice the creation of a GE211 game

4



Getting the code for today

• Download code in a zip files from here:
https://nu-cs211.github.io/cs211-files/hw/project_demos.zip
https://nu-cs211.github.io/cs211-files/hw/ge211_examples.zip
https://nu-cs211.github.io/cs211-files/hw/final_project.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

5

https://nu-cs211.github.io/cs211-files/hw/project_demos.zip
https://nu-cs211.github.io/cs211-files/hw/ge211_examples.zip
https://nu-cs211.github.io/cs211-files/hw/final_project.zip


6

• Final Project Overview

• Demo Games

• Additional GE211 Functionality

• Example: “snake game”

Outline



Goals of the Final Project

• Focus on something that interests you
• Pick anything you like (that’s the right difficulty)

• Chance to apply creativity and make something fun

• Program without safety rails or constraints
• Starter code is very minimal

• No specification with required functions to implement

• You get to design how the code works

• You can base your design off examples though!

7



Timeline

• https://nu-cs211.github.io/cs211-files/hw/final_project.pdf

• Friday, May 19 - Proposal
• This week! (but only requires a one-sentence proposal)

• Tuesday, May 23 - Specifications
• Next week

• Friday, June 02 - Code due
• Last Friday of classes
• Two full weeks to work on it

• Sunday, June 04 - Evaluation guide
• We’ll grade them during exam week, and you can focus on other stuff

8

https://nu-cs211.github.io/cs211-files/hw/final_project.pdf


Making proposals

• Something that interests you
• Games are most common
• I’ll let you know if it’s too easy or too complicated

• Good sources of inspiration
• Classic arcade games
• 2D mobile games
• Board games

• Common problematic submissions
• Pong, Snake game, Space Invaders, Flappy Bird
• Any of the demo games: Keyracer, Bejewled, Asteroids

9



Making specifications

• List of 10-12 functionalities that your project will have
• This is where difficulty is really decided

• Grade is determined by whether you meet the specifications you create

• This is an iterative process
• Submit spec items

• Hear back from shepherd about what’s good and bad

• Make updates and repeat

• Goal:

• Difficult enough to help you learn

• Easy enough to complete

10



How to get started

1. Start with the model
• Make the simplest version of the game that can do _anything_

2. Then implement a View and Controller so you can play it
• Again, focus on the simple parts first

3. Then go back to model and add features

4. Finally, go back to View and Controller and add features
• Sound, Better Graphics, etc.

11



Remember that simpler is often better

• If you’re making a board game, you could take all of board.cxx 
and board.hxx and reuse it in your project
• But it’s complicated and you’ll have to adjust some things for your game 

which will require understanding the code

• Likely not the simplest path

• Alternative options
• std::vector<Posn> track board locations for each player

• std::unordered_map<Posn, Player> mark player for each location

12



13

• Final Project Overview

• Demo Games

• Additional GE211 Functionality

• Example: “snake game”

Outline



A note on these demos

• All kinds of complicated C++ stuff going on here
• Some of it is good

• Some of it is just messy

• Purpose of the demo code is to inspire you about what’s possible

• Not recommended to use one of these as a starting point
• Too much stuff going on that wouldn’t be relevant

14



Getting demo code

• https://nu-cs211.github.io/cs211-files/hw/project_demos.zip

• Includes three separate projects
• Keyracer

• Bejeweled

• Asteroids

15

https://nu-cs211.github.io/cs211-files/hw/project_demos.zip


Keyracer

• Practice typing words under time pressure

• Loads information from a Resource file containing all English words
• load_dictionary() in controller.cxx

• As you’ll see, this dictionary is a bit dubious…

• Timer bar counts down until you’ve “missed” the letter
• Also miss if you hit the wrong key

• Counts down time in on_frame()

• Uses a Transform to scale the timer bar

16



Bejeweled

• Align groups of colored circles in a grid to score them
• Makes the group disappear, scoring points

• More colored circles fall down from the top

• Uses background music (optionally) and sound effects
• Sound effects play when scoring or when an invalid move is made

• “Animates” steps when scoring
• Circles disappear from the screen over several frames

• Then circles fall down from top over several frames

17



Asteroids

• Avoid or shoot asteroids in a spaceship that has momentum
• Asteroids that are shot break into multiple smaller pieces
• Ship gains or loses velocity as you hold arrow keys

• Uses image sprites for objects in the game

• Objects rotate in addition to moving
• on_frame() updates position, velocity, rotation, and angular velocity
• draw() applies Transforms to objects

• Place at position, Rotate to rotation, Scale based on mass

• Tracks key down/up to start and stop actions

18



Break + Sharing

• Come up with two possible project ideas that you think would 
work for CS211
• You don’t have to actually do these!

• Share your ideas with someone nearby

19



20

• Final Project Overview

• Demo Games

• Additional GE211 Functionality

• Example: “snake game”

Outline



GE211 you’ve already used

• Abstract game class
• draw(), on_frame()

• Events
• Mouse and keys

• Includes keyboard keys such as shift, ctrl, alt, and arrow keys

• Geometry
• Posn, Rect, Dim

• Basic sprites
• Rectangles and Circles of multiple colors

21



Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer

22



Resources files

• Add a Resources/ directory to the project root
• next to src/ and test/

• Put files into it that you want your game to access while running
• Configurations

• Level layouts

• Images

• Audio files

23



Accessing Resource files

• ge211::open_resource_file(std::string const& filename)
• https://tov.github.io/ge211/namespacege211.html#a2dadd7cd96f1642d432e9d63de63f00c

• Finds the filename specified and opens it for you
• Don’t specify Resources/, just the filename

• Returns an std::ifstream

• Access the data within the std::ifstream with >>
• Just like stdin

• Submitting Resources files:
• Autograder puts everything that’s not *.cxx or *.hxx into Resources/
• Note: test*.cxx and *test.cxx go into test/

24

https://tov.github.io/ge211/namespacege211.html#a2dadd7cd96f1642d432e9d63de63f00c


Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer

25



Audio in GE211

• One Mixer controls all sounds for the game
• https://tov.github.io/ge211/classge211_1_1audio_1_1_mixer.html

• Can continuously play one Music_track (background music)
• https://tov.github.io/ge211/classge211_1_1audio_1_1_music__track.html

• play, pause, resume, rewind, set_volume

• Can play short Sound_effects
• https://tov.github.io/ge211/classge211_1_1audio_1_1_sound__effect.html

• play, pause_all, resume_all

• Can support several sound effects at once
• Hardware dependent

26

https://tov.github.io/ge211/classge211_1_1audio_1_1_mixer.html
https://tov.github.io/ge211/classge211_1_1audio_1_1_music__track.html
https://tov.github.io/ge211/classge211_1_1audio_1_1_sound__effect.html


Using audio

• How to get access to the mixer
• Call mixer() inside the Controller

• (Actually inside whatever inherits from Abstract_game)

• How to get a Music_track or Sound_effect
• Call constructor with a filename string

• Name of a file in Resources/

• WAV, MP3, FLAC, MID, ABC, OGG, etc.

• Various sound effects and music can be found online

27



Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites
• Text Sprites
• Image Sprites

• Sprite Manipulations

• Timer

28



Text Sprites

• Creates a sprite out of a string of text
• Text, Color, and Font are configurable through a Builder

• Placed on screen in draw() just like any other sprite

• A little bit of work to manipulate though

• Text sprite can be reconfigured as needed
• https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite.html

• First use a Builder to create the text
• https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite_1_1_builder.html

• Then call reconfigure() with the Builder as the argument

29

https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite.html
https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite_1_1_builder.html


Text sprite example

• Keep sprites and fonts as private members of View
unsigned int score;

ge211::Posn<int> score_position;

ge211::Font sans18{“sans.ttf”, 18};

ge211::Text_sprite score_sprite;

• In draw(), reconfigure the string as needed
ge211::Text_sprite::Builder current_score(sans18);

current_score << score;

score_sprite.reconfigure(current_score);

set.add_sprite(score_sprite, score_position);

30



Image Sprite

• Image_sprite(std::string const& filename)

• Creates a sprite out of a given image

• Uses the image’s dimensions in pixels
Transparency in images works!

• Filename comes from Resources/

31



Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer

32



Applying Transforms to sprites

• What if your image sprite is larger than you want?

• Or if you want to rotate a sprite

• Transforms!
• https://tov.github.io/ge211/classge211_1_1geometry_1_1_transform.html

• Enable rotation, scaling, and flipping sprites

• Passed in as an alternative final argument to draw()
• https://tov.github.io/ge211/classge211_1_1_sprite__set.html#ad20a59df594c869b26e222da98c6161d

33

https://tov.github.io/ge211/classge211_1_1geometry_1_1_transform.html
https://tov.github.io/ge211/classge211_1_1_sprite__set.html#ad20a59df594c869b26e222da98c6161d


Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer

34



Timers allow durations to be tracked

• Create a Timer() and start it
• Later check it and you can see how long it was running

• Allows you to determine how long some player action took

• Probably NOT the right choice for most games (see next slide)

• Timer class
• https://tov.github.io/ge211/classge211_1_1time_1_1_timer.html

• Returns a Duration

• https://tov.github.io/ge211/classge211_1_1time_1_1_duration.html

• Which you can request time from in seconds or milliseconds

35

https://tov.github.io/ge211/classge211_1_1time_1_1_timer.html
https://tov.github.io/ge211/classge211_1_1time_1_1_duration.html


Easier way to track timing

• There’s an easier way to track time and perform actions after a 
certain amount of time has passed

• How would we use on_frame(double dt) to do so?

• dt is in units of seconds

• Usually 1/60th of a second

• Keep a local variable that you add dt to each time on_frame() is called

• Reset the variable to zero whenever you need to start counting

• If variable is greater than some amount, trigger action

36



GE211 Examples

• Similar idea to the demo projects, but much simpler and cleaner

• Small snippets that only focus on a few ideas
• Provides good reference code for how to use stuff

• Again, likely not useful as “starter code”, but you can use whatever 
code you want from these

37



GE211 example code

• https://nu-cs211.github.io/cs211-files/hw/ge211_examples.zip

• Includes three separate projects
• sound

• random_text

• animation

38

https://nu-cs211.github.io/cs211-files/hw/ge211_examples.zip


Example: sound

• Plays a sound when the up arrow key is pressed
• Also plays background music continuously

• Concepts
• Resources/ audio files

• Background music

• Sound effects

39



Example: random_text

• Displays random words on screen in random colors at a random 
location

• Concepts
• Resources/ text files

• Text sprites

• Transforms

• Randomness

40



Example: animation

• Animates a character moving to wherever the mouse clicks
• Keeps track of multiple mouse click locations

• Spacebar pauses the game

• Concepts
• Game states (init, running, paused)

• Resources/ image files

• Animation

• Motion planning

41



Break + Request

• Think of other things you might want to do with your project
• But aren’t sure how to accomplish with GE211

• Share ideas with neighbors and talk about it

• If you come up with anything useful, share on Piazza!
• I’m happy to give guidance and I could make more examples

42



43

• Final Project Overview

• Demo Games

• Additional GE211 Functionality

• Example: “snake game”

Outline



Multi-lecture project example

• Starting from
https://nu-cs211.github.io/cs211-files/hw/final_project.zip

• We’ll add features as we go
• Probably not going to finish today

• Plan to hop back into it in future lectures though

• Idea: Snake Game
• Too simple for a final project

• Simple enough to do in class?

44

https://nu-cs211.github.io/cs211-files/hw/final_project.zip


Plan for game

• List<Posn<int>> for each “segment” of the snake
• Consider the playing field as a 2D grid of locations
• Posn<int> is one location on the grid

• Snake should “move” in current direction
• Segment at end disappears
• Segment at front gets added
• Check for collisions
• Occurs every N seconds?

• Draw each segment in the list to see the snake

• Key presses change direction of snake

45



Simplest initial design

• One segment only in the list

• Implement
• Constructors

• Model::on_frame() (most basic version)

• View::draw()

• Controller::on_key()

46



Start adding features

• Check for collisions
• With body of snake

• With edge of screen

• Resize draw based on screen dimensions and grid dimensions

• Goal object that increases snake length

• Obstacles to avoid

47



48

• Final Project Overview

• Demo Games

• Additional GE211 Functionality

• Example: “snake game”

Outline


	Default Section
	Slide 1: Lecture 14 Final Project Overview

	Goals
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Today’s Goals
	Slide 5: Getting the code for today

	Final Project Overview
	Slide 6: Outline
	Slide 7: Goals of the Final Project
	Slide 8: Timeline
	Slide 9: Making proposals
	Slide 10: Making specifications
	Slide 11: How to get started
	Slide 12: Remember that simpler is often better

	Demo Games
	Slide 13: Outline
	Slide 14: A note on these demos
	Slide 15: Getting demo code
	Slide 16: Keyracer
	Slide 17: Bejeweled
	Slide 18: Asteroids
	Slide 19: Break + Sharing

	Additional GE211 Functionality
	Slide 20: Outline
	Slide 21: GE211 you’ve already used
	Slide 22: Additional GE211 Features
	Slide 23: Resources files
	Slide 24: Accessing Resource files
	Slide 25: Additional GE211 Features
	Slide 26: Audio in GE211
	Slide 27: Using audio
	Slide 28: Additional GE211 Features
	Slide 29: Text Sprites
	Slide 30: Text sprite example
	Slide 31: Image Sprite
	Slide 32: Additional GE211 Features
	Slide 33: Applying Transforms to sprites
	Slide 34: Additional GE211 Features
	Slide 35: Timers allow durations to be tracked
	Slide 36: Easier way to track timing
	Slide 37: GE211 Examples
	Slide 38: GE211 example code
	Slide 39: Example: sound
	Slide 40: Example: random_text
	Slide 41: Example: animation
	Slide 42: Break + Request

	Game Motion Planning
	Slide 43: Outline
	Slide 44: Multi-lecture project example
	Slide 45: Plan for game
	Slide 46: Simplest initial design
	Slide 47: Start adding features

	Wrapup
	Slide 48: Outline


