
Lecture 13
Generics and STL

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington)

Administrivia

• Homework 4 due tonight
• Remember you need to write tests for you code AND play your game
• Both parts are important

• Exercise 6 is available
• Last one. Not too long

• Homework 5 should be released tonight

• Project details will be released in next few days
• First part will be proposing a project idea

2

Today’s Goals

• Explore an Access Control example

• Introduce concept of generic functions/classes
• How they are made

• How we used them

• Discuss major use case for generics
• C++ Standard Template Library

• Understand how iterators allow generic traversal of a container

3

Getting the code for today

• Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/13_generics_stl.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

• Details on CLion in Lab05

4

https://nu-cs211.github.io/cs211-files/lec/13_generics_stl.zip

5

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

Encapsulation

• Goal: protect the rules of your data so it remains consistent

• Policy:
1. Make the data private

2. Add public member functions to let clients do useful things

3. Don’t add public member functions that let clients do bad things
(like break the rules of the data)

6

Live coding: update String_Holder access control

• Data members should be private
• Convention: private members end with “_”

• Functions should be public
• And functions should never allow the rules to be broken

7

string_holder.cxx
string_holder-access.cxx

Encapsulation cuts off direct access to data members

• Problem: functions outside of the class can never access data
members, even to just read from them

• Options:
1. Include the function as a member function instead

2. Add “getters” for data variables, example: String_Holder::size()

3. Declare function as a friend

8

Allowing specific things access to private members

• friend keyword declares another thing that can access private
members from this class

• Example overloaded operator! operator<<()
• Needs to access the private members of String_Holder

• Inside the String_Holder class definition, add:

friend std::ostream& operator<<(std::ostream&, const String_Holder&);

9

Welcome to Encapsulation

• Software engineering principle:
1. Bundle your data and operations together
2. Don’t let non-bundled operations mess with your bundled data

• Benefits
• Correctness

• Data will never become inconsistent

• Flexibility
• Implementation details can change without modifying the API

• Warning: does NOT improve security
• Data can still be accessed, just not by accident

10

11

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

Overloading functions to support multiple types

• Suppose you want a function that can compare any two things
• Implement for int and implement for float

12

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const int& value1, const int& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const float& value1, const float& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

We want to avoid duplicated code

• The two implementations of compare() are nearly identical
• Seems wasteful

• What if we want to extend compare() for other things?
• char, short, long, string, Position, String_Holder, etc.

• Impossible to get everything…

13

“Generic” version of the function

• What we would prefer is one “generic” version of the function
• Code will be independent of what the real type is

• One implementation works for everything!

• Condition here: must implement operator<()

14

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const ???& value1, const ???& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

C++ Generics

• C++ implements generics through a concept called “templates”

• A template is a function or class that accepts a type as a parameter
• You write the function code once in a type-agnostic way
• When you invoke the function or instantiate the class, you specify the type

as an argument to it

• At compile time, the compiler will generate the “specialized” code
from your template that uses the type provided
• The template definition is NOT runnable code
• The compiler creates runnable code given a concrete type

• A little like macro substitution

15

Generic functions

• Template to compare() any two things

16

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• Declares the following function a template
• The “generic” type is called T

17

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• Declares the following function a template
• The “generic” type is called T

• Code inside the template can use T like a type
18

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• We didn’t have to name the type T
• Could name it anything we want

• Named in all capital letters by convention

19

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename COMPARE_TYPE>

int compare(const COMPARE_TYPE& value1, const COMPARE_TYPE& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Using generic functions

• Actual type being used goes in angle brackets after function name
• compare<COMPARE_TYPE>

20

int main() {

std::cout << compare<int>(10, 20) << “\n”;

std::cout << compare<double>(50.5, 50.6) << “\n”;

std::cout << compare<std::string>(“hello”, “world”) << “\n”;

return 0;

}

generic_compare.cxx

Using generic functions

• The compiler can sometimes guess the correct type for you based
on the arguments provided
• This is known as “type inference”

• Can occasionally lead to unexpected results though…

21

int main() {

std::cout << compare(10, 20) << “\n”; // OK

std::cout << compare(50.5, 50.6) << “\n”; // OK

std::cout << compare(“hello”, “world”) << “\n”; // FAILS!

return 0;

}

Using generic functions

• The compiler can sometimes guess the correct type for you based
on the arguments provided
• This is known as “type inference”

• Can occasionally lead to unexpected results though…
• Third example below ends up calling compare<char*>()

22

int main() {

std::cout << compare(10, 20) << “\n”; // OK

std::cout << compare(50.5, 50.6) << “\n”; // OK

std::cout << compare(“hello”, “world”) << “\n”; // FAILS!

return 0;

}

Generic classes

• Templates are most commonly used for classes (similarly structs)

• Entire class definition is templated
• Template type can be used for any data member or member functions

23

Example of generic classes

• Let’s create a class called Pair that holds two “things”
• The things do NOT have to be the same type
• Like a tuple in python, but limited to two

• Operations
• Set the value of the first thing
• Set the value of the second thing
• Get the value of the first thing
• Get the value of the second thing
• Print the pair of things

• Useful for the ability to return two things at once from a function!

24

Live coding: implement pair

• Operations
• Set the value of the first thing

• Set the value of the second thing

• Get the value of the first thing

• Get the value of the second thing

• Print the pair of things

• Real Pair implementation available in the C++ <utility> library
• https://www.cplusplus.com/reference/utility/pair/pair/

25

generic_pair-starter.cxx
generic_pair-complete.cxx

https://www.cplusplus.com/reference/utility/pair/pair/

Dangers of templates

• Doing tricky things with compilers results in tricky errors

• Compiler error when you misuse a generic function (usually
unintentionally!) can get really bad
• Example: try calling compare() with something invalid

• Working with templates in general gets complicated and messy

• Need to implement all template code inside headers
• Needs to be imported into each C++ file that uses it so the generated

definitions are available

26

generic_pair_compare.cxx

Generics in GE211

• You’ve already been using them!
• Posn<int>, Posn<float>, Dims<int>, etc.

• You know enough to understand the entire implementation of Posn
• Take a look at it when you get a chance

• https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c
2013d3c/include/ge211/geometry.hxx#L264

27

https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c2013d3c/include/ge211/geometry.hxx#L264
https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c2013d3c/include/ge211/geometry.hxx#L264

Break + Question

• What syntax would you use to create a Pair where both the values
are a Posn object with coordinates of type int?

Pair<???> pair({0, 0}, {3, 3});

28

Break + Question

• What syntax would you use to create a Pair where both the values
are a Posn object with coordinates of type int?

Pair<Posn<int>, Posn<int>> pair({0, 0}, {3, 3});

29

30

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

C++ Standard Library

• Four major pieces

1. The entire C standard library

2. C++ input/output stream library
• std::cin, std::cout, etc.

3. C++ Standard Template Library (STL)
• Containers, iterators, algorithms, etc.

4. Miscellaneous other stuff
• Strings, exceptions, memory allocation, localization

31

STL Containers

• Standard Template Library
• Contains various useful functionality created as templates!

• Apply for any type you want

• A container is an object that stores a collection of other objects
• Like arrays or linked lists

• We already covered one of these: std::vector

32

STL std::list

• http://www.cplusplus.com/reference/list/list/

• A generic doubly-linked list
• Next pointers and previous pointers allow movement in either direction

• Can be more or less efficient than std::vector

• See CS214

33

http://www.cplusplus.com/reference/list/list/

STL std::unordered_map

• https://www.cplusplus.com/reference/unordered_map/unordered_
map/

• Generic map from key to value
• For any type of key and type of value

• Can store a value by its key

• Can retrieve a value by its key

• Works just like a python dict

34

https://www.cplusplus.com/reference/unordered_map/unordered_map/
https://www.cplusplus.com/reference/unordered_map/unordered_map/

Live coding: unordered_map example

int main() {

std::unordered_map<std::string, int> map;

map[“CS211”] = 176;

map[“CE346”] = 0;

std::cout << “map at CS211 = “

<< map[“CS211”]

<< “\n”;

return 0;

}

35

unordered_map_example.cxx

Other STL containers

• Map
• Key->Value in sorted order by key

• Set
• Ordered list of unique elements

• Unordered_set
• Unique elements in no particular order

• Array
• Fixed size list of elements (like vector, but not resizable)

• And various others
• Stack, Queue, etc.

36

https://www.cplusplus.com/reference/stl/

https://www.cplusplus.com/reference/stl/

37

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

Reversi

• Also known as Othello

• Light player and dark player take turns
placing pieces

• A valid placed piece must be in a line with any number of opposing
pieces followed by one piece of the current player
• All opposing pieces in that bounded line are flipped to belong to the

current player

38

Example move in reversi

• First, must place pieces in the
central four squares
• These don’t follow the normal rules

39

Example move in reversi

• It is the dark player’s turn

• They may play in any of the four
locations indicated
• Must form a line with a light piece

in the middle

40

Example move in reversi

• Once the dark player places a
piece, all opposing pieces in that
line are flipped

41

Game demo

• https://www.mathsisfun.com/games/reversi.html

• Warning: the game setup rules are slightly different from ours
• We let players play out the first two moves, which must be in the center

42

https://www.mathsisfun.com/games/reversi.html

Project layout

• Model, View, Controller
• Same as with prior homework

• View is responsible for drawing things

• Controller gets inputs from the user

• Model contains the game logic

• Model interacts with several other components
• Board

• Player

• Move

• Position_set

• Move_map

43

Player

• Represents a Player
• Either in terms who owns a piece

• Or whose turn it currently is

enum class Player {

dark,

light,

neither

};

44

Enums

• Define a new type with a fixed list of possible values

enum class Player {

dark,

light,

neither

};

• New type: Player

• Possible values: Player::dark, Player::light, Player::neither

• Enums are in C as well as many other languages!

45

Board

• Stores state for the game
• The board at each Posn<int> contains a Player

• Player::light, Player::dark, or Player::neither

• Valid positions are the rows/columns on the board

• An 8x8 board goes from {0,0} to {7,7}

• We might change the size of the board in tests though

• Can ask the board which piece is in a certain position

• Can tell the board to set a piece in a certain position

46

Move

• A std::pair of:
• A position on the board

• All pieces that would flip if the current player played in that position

• Stored as a Position_set

• Move_map
• An std::unordered_map

• Holds Moves

• Key is a position on the board

• Value is the corresponding position set for the Move

47

What do you have to do?

• Interact with a big program with lots of library files you didn’t write
• Board, Move, Player, Position_set
• You don’t need to understand all of the code, but you do need to

understand how to use them
• Look through the .hxx files for them

• Fill the Move_map next_moves

• Contents are each valid Move that the current player could make
• Need to analyze the board to make that determination

• Eventually, you’ll fill in the controller/view too
• Including hints to the current player about possible places they could play

48

Break + Reversi

• It is Dark’s turn. Where may they play?

49

Break + Reversi

• It is Dark’s turn. Where may they play?

50

51

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

How do we make algorithms work on generic containers?

• C++ provides various algorithms in its <algorithm> library
• find(), count(), sort()

• How does it make those work on any container?
• Algorithm needs to traverse the container. But each container is different

• Vector:
for(i=0; i<vector.size(); i++) {

vector[i];
}

• List:
for(node* curr=head; curr!=NULL; curr=curr->next){

curr.value;
}

52

Iterators allow generic traversing of containers

• Concept:
• Create an object that allows you to move through the container

• Holds a reference to the original object

• Understands how to move through that specific implementation

• Operations an iterator must support:
• Construction

• Getting the value at the current location (* dereference)

• Moving to the next location in the container (++)

• Comparison with another iterator (== or !=)

• Usually get two iterators, start and end, and traverse start until at end

53

General iterator pattern

start_iterator = object.begin();

end_iterator = object.end();

while (start_iterator != end_iterator) {

value = *start_iterator; // get value

// do something useful with value

start_iterator++; // move to next location

}

54

Iterators are modeled after pointers!

int array[5] = {1, 2, 3, 4, 5};

int* start_iterator = &(array[0]);

int* end_iterator = &(array[5]);

while (start_iterator != end_iterator) {

int value = *start_iterator;

std::cout << “Value: “ << value << “\n”;

start_iterator++;

}

55

iterator_example.cxx

Same code but for std::vector

std::vector<int> vec{1, 2, 3, 4, 5};

auto start_iterator = vec.begin();

auto end_iterator = vec.end();

while (start_iterator != end_iterator) {

int value = *start_iterator;

std::cout << “Value: “ << value << “\n”;

start_iterator++;

}

56

This part
didn’t
have to
change
at all!

auto asks the compiler to

figure out the type for you

iterator_example.cxx

More complicated iterators can support more operations

• Depending on the container, iterators could support many
operations

• Forward:
• construction, equality, increment, get value

• Bidirectional:
• Everything Forward does, decrement

• Random Access:
• Everything Bidirectional does, arithmetic, comparison, get value at index

57

Live coding: use the count algorithm

• int count(InputIterator first,

InputIterator second,

constT& value)

• Counts occurrences of a value in a container

• Actually returns an iterator::difference_type, but we’ll ignore that

• It’s just a signed integer in practice

• We can count the number of times a certain value occurs inside a
vector or array

58

iterator_example.cxx

Break + Question

• How would we implement the following code?

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num_twos = count(???, ???, 2);

59

Break + Question

• How would we implement the following code?
• Pointers!

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num_twos = count(&(array[0]), &(array[5]), 2);

60

61

• Encapsulation Example

• Generics

• Standard Template Library

• Homework 5 Overview

• Iterators

Outline

	Default Section
	Slide 1: Lecture 13 Generics and STL

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Encapsulation Policy
	Slide 5: Outline
	Slide 6: Encapsulation
	Slide 7: Live coding: update String_Holder access control
	Slide 8: Encapsulation cuts off direct access to data members
	Slide 9: Allowing specific things access to private members
	Slide 10: Welcome to Encapsulation

	Generics
	Slide 11: Outline
	Slide 12: Overloading functions to support multiple types
	Slide 13: We want to avoid duplicated code
	Slide 14: “Generic” version of the function
	Slide 15: C++ Generics
	Slide 16: Generic functions
	Slide 17: Generic functions
	Slide 18: Generic functions
	Slide 19: Generic functions
	Slide 20: Using generic functions
	Slide 21: Using generic functions
	Slide 22: Using generic functions
	Slide 23: Generic classes
	Slide 24: Example of generic classes
	Slide 25: Live coding: implement pair
	Slide 26: Dangers of templates
	Slide 27: Generics in GE211
	Slide 28: Break + Question
	Slide 29: Break + Question

	Standard Template Library
	Slide 30: Outline
	Slide 31: C++ Standard Library
	Slide 32: STL Containers
	Slide 33: STL std::list
	Slide 34: STL std::unordered_map
	Slide 35: Live coding: unordered_map example
	Slide 36: Other STL containers

	Homework 5 Intro
	Slide 37: Outline
	Slide 38: Reversi
	Slide 39: Example move in reversi
	Slide 40: Example move in reversi
	Slide 41: Example move in reversi
	Slide 42: Game demo
	Slide 43: Project layout
	Slide 44: Player
	Slide 45: Enums
	Slide 46: Board
	Slide 47: Move
	Slide 48: What do you have to do?
	Slide 49: Break + Reversi
	Slide 50: Break + Reversi

	Iterators
	Slide 51: Outline
	Slide 52: How do we make algorithms work on generic containers?
	Slide 53: Iterators allow generic traversing of containers
	Slide 54: General iterator pattern
	Slide 55: Iterators are modeled after pointers!
	Slide 56: Same code but for std::vector
	Slide 57: More complicated iterators can support more operations
	Slide 58: Live coding: use the count algorithm
	Slide 59: Break + Question
	Slide 60: Break + Question

	Wrapup
	Slide 61: Outline

