Lecture 11
Object Oriented Programming

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Spring 2023

Slides adapted from:
Jesse Tov, Clayton Price (Missouri S&T), Hal Perkins (University of Washington)

Northwestern



Administrivia

« Homework 3 Part 2 due tonight

 Lab2 is also due tonight (70% of class is done)

« The point is to get a working C++ setup before homework starts
« Reach out if you're having problems with it
« See debugging post on Piazza first though!

« Homework 4 will be released tonight
 Breakout game!



Today’s Goals

* Introduce Classes and Objects in C++

« Why are they an important concept?
« How do we use them?

« Understand special functions useful for objects
 Constructors
« Overloaded operators

« Walk through GE211 to discuss how it works



Getting the code for today

« Download code in a zip file from here:
https://nu-cs211.qithub.io/cs211-files/lec/11 objects.zip

« Extract code wherever

* Open with CLion
« Make sure you open the folder with the CMakeLists.txt

 Details on CLion in Lab05


https://nu-cs211.github.io/cs211-files/lec/11_objects.zip

Outline

- Object Oriented Programming
» Writing code with objects
 Constructors
« Example Object: Vectors

e Tour of GE211




Object Oriented Programming

» Basic idea
« Combine data and code that modifies the data together

* In code this takes the form of structs (or classes)
« Which contain various fields (data)
« And have various methods (functions)

« When you create one of these, you're create an “object”
« Unit of data and interaction
* Big chunk of memory that holds all the fields
 But also with functions that you can run on it



How we handled this idea in C

« Created a file for dealing with a single “object”
* l.e.aballot t

 Functions inside the file operate on that object
» Each function takes a ballot t as the first argument

 Functions are named ballot_<action>()
* ballot create,ballot destroy, ballot count, etcC.

* All access to the data must go through the functions

» Other files couldn’t access the ballot fields directly
 Otherwise they could screw up the rules of the ballot t



What would a ballot_t look like in C++7

» Create a ballot struct
« With length and entries fields just like the C version

» Add functions to the struct
 (Couldn’t do this in C)

« Each function will modify the struct it's called on



Why do this?

« Keep concepts located together
« One object for VC, one for ballot, one for ballot_box

« Could have written it all as one big thing
 But it would be easy to get lost in the complexity
 Separating things into smaller parts meant each was easier to write

e Access control

« Later, we'll see that there are ways to control which data/functions can be
publicly accessed versus privately accessed

« Often there are public functions but private data



Outline

- Object Oriented Programming
- Writing code with objects
 Constructors
« Example Object: Vectors

e Tour of GE211




Code organization

« Header files (.hxx)
« struct definitions, including member functions
 You can inline simple one-liner functions in the definition

* Source files (.cxx)
« Implementations of member functions

« Usually a set of cxx/hxx files for each struct/class you make
 Classes are nearly the same as structs, we'll talk about them next week

11



Implementing member functions src/position.hxx

src/position.cxx

struct Position {
double x; // fields, now called data members
double vy;

void print(); // member functions, also called methods

by

void Position::print() { // method implementation

StdZZCOU_t << \\{\\ << X << \\ , \\ << y << \\ }\n//;

12



Accessing data members in member functions

« Within member functions, you can just use the name of any data
member

 Make sure not to make local variables with the same name as data
members!!

* The this pointer can also be used inside member functions

« It's a pointer to the object itself
* this->member can access the data member directly

« Means the same thing as just member generally

* You will almost never need to use this in C++

13



Live coding example: positions

 Data
« Doubles for x and y coordinate

* Methods

e print()
» set_location()
« distance_to()

src/position.hxx
src/position.cxx

14



const is used everywhere in C++

* const keyword means that the thing cannot be modified

Used significantly more in C++ than it was in C
Signals intent to the compiler to keep you from making mistakes!

const 1nt x = 0;
 Integer x cannot be modified

const 1nt& x = vy;

int const& x = y;
» Reference to an int now named x. You cannot modify x
* These two are identical! Either way is fine

print () const;
« There will be a print () member function doesn’t modify its object

15



Defining operators for our objects

 One strength of C++ is that we can define how normal operators
work on our objects
* +, -, +=, ==, <<, etc.

« Most of these are not defined for you
« How would the compiler know what they mean for a Position?

« An exception is assignment (=), which is defined as a copy of all fields

« We can implement the operators ourselves though!
« Can be implemented as standalone functions or member functions

16



Example overloaded operator src/position.hxx

src/position.cxx

* Define == as a standalone function that takes two Position
arguments

Note: lhs - left-hand side, rhs - right-hand side
bool operator==(Position consté& lhs, Position consté& rhs) {

return (lhs.x == rhs.x) && (lhs.y == rhs.vy);

 Future code can now use == on positions!
« Don't have to (and shouldnt) type out the full function name
« More on operator overloading next lecture



Break + Open Question

- How would you have written libvc using C++ objects:

18



Break + Open Question

« How would you have written libvc using C++ objects?

« Add the vc_ functions to the struct vote_count
« Maybe make a few operators to make your life easier

19



Outline

- Object Oriented Programming
» Writing code with objects
« Constructors
« Example Object: Vectors

e Tour of GE211




Contructors initialize newly-created objects

« Written with the class name as the method name, no return value!

Position(double x, double y);

» Allow us to define how data is initialized
« Might use inputs as values for some data members
 Might give default values to some data members
« Might do some computation to decide what data members should be

« Any and all of the above

21



Default constructor

« If you do not create a constructor, C++ will attempt a default

 Leave all basic types uninitialized
« Call the default constructor on all data members that are objects

* This is how we've been using Position so far

« C++ notation
 Basic data types: plain old data (POD)
 Object data types: non-POD

22



Writing our own constructor

struct Position {
double x;
double vy;

Position (double 1in x, double 1in vy);

} Note: doesn’t return void

/ Has no return at all!

Position::Position(double 1n x, double 1in y)

X = 1n X;

y = 1n y;

src/position.hxx
src/position.cxx

{




Initialization lists

« C++ lets you optionally declare an initialization list as part of your
constructor definition
« Lists fields and initializes them, one-by-one
« MUST be in same order as the data members are in the struct

Position::Position (double 1n x, double 1in y)

x(1n x),
y(1in y)

{ } // must have function body, even if empty

24



Initialization lists

 Always write initializer lists for constructors
» Nearly identical to doing it manually
« But the word nearly hides a lot of pain there

» Examples:

« Data members that don’t have a default constructor need to be created in
the initializer list

« Data members that are references can never be NULL, so they don't have
a default! But the initializer list can still set them

25



Must use exclusively default constructors or defined ones

» Once you create a single constructor, C++ will no longer allow
default ones
 So if you want more options, you'll need to make them!

« Remember: C++ allows multiple functions with the same name, as
long as their input arguments are different
» We can create multiple constructors!

26



Multiple constructors make objects easier to use

« Default constructor
Position: :Position ()
x(0),
y (0)

 Constructor with arguments

src/position.hxx
src/position.cxx

Position::Position(double 1n x, double 1in y)

x(1in Xx),
y(in y)




Copy constructor src/position.hxx

src/position.cxx

« Makes a copy of an existing object

Position::Position (const Position& oriqg)
X (0orig.x),
y(orig.y)

 Can be called automatically or used via assignment

Position x;
Position v (Xx);

Position z = X;



When do copies happen?

« The copy constructor is invoked if:

T . Position x; // default constructor
1. You /n/t/a//z_e an object from Position y(x); // copy constructor
another Ob.]eCt of the same type Position z = y;// copy constructor
2. You pass a non-reference object as [void foo(Position x) { ... )
a value parameter to a function Position y; // default constructor
| foo (y) ; // copy constructor
_ (Position foo() f{
3. You return a non-reference Ob]eCt Position y; // default constructor

value from a function return y; // copy constructor
}

\.

29



Destructors src/position.hxx

src/position.cxx

« Same concept as constructors: used to clean up an object
« Automatically called when the object goes out of scope
« Note: you never call the destructor yourself!

« Handles any cleanup, including freeing necessary resources

Position::~Position () {
// nothing to clean here since we don’t use
// dynamic memory

30



Break + Question

« Why make a constructor instead of having users set individual
fields?

31



Break + Question

« Why make a constructor instead of having users set individual
fields?

 Constructor can ensure that everything is initialized

* Constructor knows what the rules are!
« Can check that the inputs are valid

» Generally: harder to make mistakes when using someone else’s code

32



Outline

- Object Oriented Programming
» Writing code with objects
 Constructors
- Example Object: Vectors

e Tour of GE211




C++ libraries provide various useful structures for you

» C libraries had some functions that would let you interact with
things like files or the user

« C++ has those, but also has libraries with data structures and with
various algorithms (such as sorting)
« C++ data structures (containers): https://cplusplus.com/reference/stl/
« C++ algorithms: https://cplusplus.com/reference/algorithm/

34


https://cplusplus.com/reference/stl/
https://cplusplus.com/reference/algorithm/

C++ Vectors

« One example C++ library: Vector

« An automatically expanding “array” capable of holding any type
* std::vector<TYPE> to choose what type it should hold

* std::vector<int>, std::vector<double>, etc.
 This idea is known as “generics”. We'll discuss in a later lecture

« Example vector types
e std::vector<int> - holds ints
« std::vector<char> - holds chars
« std::vector<Position> - holds Positions

35



Creating C++ Vectors

* Creating a vector (there are many ways)
std: :vector<TYPE> myvector (); //empty vector of with no size

std: :vector<TYPE> myvector (len); //vector of size 1en with uninitialized values

std: :vector<TYPE> myvector (len, val); //vector of size 1en with values set to val

std::vector<TYPE> myvector{vall, val2, val3, ...};
/ /vector with initial values, set to the correct size to hold them all

36



Other useful Vector operations

* vec [n] is used to get the value at index n

« Works just like a C array
« Still UNDEFINED BEHAVIOR if n is out of bounds for the Vector

e vec.at (n) accesses value at index n

« Just like square brackets, but throws an exception if out-of-bounds
 Exceptions: new way of signaling errors. Will talk about in later lecture

* vec.size () returns the length of the Vector

* vec.push back () and vec.pop back () add/remove items
* And resize the Vector automatically as needed

37



Example vector code

* Play around with vectors

test/vector_examples.cxx

38




C++ allows for simpler iteration (like Python)

double sum vec (std::vector<double> consté& vec) {
double result = 0;

for (double wval : vec) { Iterates over elements in

)
result += val: the vector, not indices!

}

return result;

39



Modifying elements inside the vector
« Warning: make sure you're modifying the actual vector element

vold dec vec wrong(std::vector<int>& vec) {

(int val : wvec){ Each val is a copy of the
--val; value in the vector

40



Modifying elements inside the vector

« Warning: make sure you're modifying the actual vector element

vold dec vec wrong(std::vector<int>& vec) {

for (int val : vec) ({ Each val is a copy of the
--val; value in the vector

J

vold dec vec right (std::vector<int>& vec) {

for (int& val : wvec) { :
Each val is a reference to

-—-val; ]
the value in the vector.

} So modifying it works!

41



Break + Practice

« What does the following code print?

std: :vector<double> wvalues{l.5, 2.0,
values.push back(5.79);

3.0} ;

<< n\nn;

values.at(l) = -37.8;

std: :cout << “Wector values<double>\n";
std::cout << "size=" << wvalues.size ()
for (double wval : wvalues) {

std: :cout << "\t" << val << "\n";
}

42



Break + Practice

* Printed results

Vector values<double>
size=4

1.5

-37.8

3

5.75

43



Outline

* Object Oriented Programming
» Writing code with objects
 Constructors
« Example Object: Vectors

- Tour of GE211




GE211

* A simple game engine designed by Jesse Tov at Northwestern!
« Game Engine for CS211

 Source:
« https://github.com/tov/ge211

* Docs:
» https://tov.github.io/ge211/

45


https://github.com/tov/ge211
https://tov.github.io/ge211/

High-level overview

« GE211 has a big while loop that runs 60 times per second

 Each time through the loop:
« Checks for user inputs (mouse and keyboard)
« Calls functions in your code providing you those details

« Draws everything on screen
 Calls the draw () function in your code to get the sprites to draw

 Starts from scratch each time

« All of this works through C++ objects
« Some details rely on inheritance, which we’ll discuss later

46



Game application code structure

* Model

 Keeps track of "game” state
« Might have multiple helper files for various objects it needs

 Controller
« Reads inputs from user and changes the model

* View
« Reads from model and sets the drawing

« Lab2 combined Controller and View into a single UI
« Homeworks will not

47



GE211 data structures

« GE211 also provides a bunch of data structures that you can
(and will have to) use in your games

 Controls or keeps track of:
* Time
 Audio
* Sprites
* Geometry

48



ge2ll::geometry::Posn

* Docs: https://tov.github.io/ge211/structge211 1 1geometry 1 1 posn.html

 Keeps track of a 2D position!
« X and Y coordinates
« Defines various constructors
« Methods that shift the coordinate
« Operators for comparison and modification

» Generic over a type ge211: :Posn<TYPE>

49


https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

ge2ll::geometry::Dims

* DocCS: https://tov.github.io/ge211/structge211 1 1geometry 1 1 dims.html

 Keeps track of the dimensions of an object
- Width and height
« Returned as the difference between two Posn
 Defines constructors and operators

* Generic over a type ge211: :Dims<TYPE>

50


https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

ge2ll::geometry::Rect

* DOCS: https://tov.github.io/ge211/structge211 1 1geometry 1 1 rect.html

« Rectangular area
 Posn and Dims
« Defines constructors and operators

« Generic over a type ge211::Rect<TYPE>

51


https://tov.github.io/ge211/structge211_1_1geometry_1_1_rect.html

Live coding: open up Lab2

» https://nu-cs211.github.io/cs211-files/lab/lab02.pdf

* https://nu-cs211.qithub.io/cs211-files/lab/lab02.zip

52


https://nu-cs211.github.io/cs211-files/lab/lab02.pdf
https://nu-cs211.github.io/cs211-files/lab/lab02.zip

Outline

* Object Oriented Programming
» Writing code with objects
 Constructors
« Example Object: Vectors

e Tour of GE211




	Default Section
	Slide 1: Lecture 11 Object Oriented Programming

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Object Oriented Programming
	Slide 5: Outline
	Slide 6: Object Oriented Programming
	Slide 7: How we handled this idea in C
	Slide 8: What would a ballot_t look like in C++?
	Slide 9: Why do this?

	Writing Object Code
	Slide 10: Outline
	Slide 11: Code organization
	Slide 12: Implementing member functions
	Slide 13: Accessing data members in member functions
	Slide 14: Live coding example: positions
	Slide 15: const is used everywhere in C++
	Slide 16: Defining operators for our objects
	Slide 17: Example overloaded operator
	Slide 18: Break + Open Question
	Slide 19: Break + Open Question

	Constructors
	Slide 20: Outline
	Slide 21: Contructors initialize newly-created objects
	Slide 22: Default constructor
	Slide 23: Writing our own constructor
	Slide 24: Initialization lists
	Slide 25: Initialization lists
	Slide 26: Must use exclusively default constructors or defined ones
	Slide 27: Multiple constructors make objects easier to use
	Slide 28: Copy constructor
	Slide 29: When do copies happen?
	Slide 30: Destructors
	Slide 31: Break + Question
	Slide 32: Break + Question

	Vectors
	Slide 33: Outline
	Slide 34: C++ libraries provide various useful structures for you
	Slide 35: C++ Vectors
	Slide 36: Creating C++ Vectors
	Slide 37: Other useful Vector operations
	Slide 38: Example vector code
	Slide 39: C++ allows for simpler iteration (like Python)
	Slide 40: Modifying elements inside the vector
	Slide 41: Modifying elements inside the vector
	Slide 42: Break + Practice
	Slide 43: Break + Practice

	Tour of GE211
	Slide 44: Outline
	Slide 45: GE211
	Slide 46: High-level overview
	Slide 47: Game application code structure
	Slide 48: GE211 data structures
	Slide 49: ge211::geometry::Posn
	Slide 50: ge211::geometry::Dims
	Slide 51: ge211::geometry::Rect
	Slide 52: Live coding: open up Lab2

	Wrapup
	Slide 53: Outline


