
Lecture 09
Memory and Binary

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov



Administrivia

• Homework 3 part 1 due today
• Only need to submit code in ballot.c and test_ballot.c

• (Unless you made any Resources/ files. Submit those!)

• Homework 3 part 2 due next week Thursday
• Can start submitting to Gradescope later today

• Continuation of Part 1, so it shouldn’t be too hard to get started

2



End of C!!

• Today is the last lecture on C

• Next week we’ll be starting C++!

• That means it’s time for another Lab
• Will release sometime on Friday

• Setup for CLion IDE and the SDL2 game engine

• Reach out to me for help with this!

3



Today’s Goals

• Discuss concept of pointers to pointers

• Practice dynamic memory allocation with arrays
• How do we make an array the dynamically changes size?

• Go below the level of C and understand how the computer thinks 
about data with bits and bytes
• Understand how this leads to the boundaries of common C types

4



Getting the code for today

Same files as last lecture!

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/08_linked_lists.tgz

cd 08_linked_lists/

5



6

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline



An alternative: linked allocations

7

3 4 2 3 NULL

array_pointer:

linked_list_pointer:

3 4 2 3



C code for a linked list structure

• Array version:
int myarray[];

• Linked List version:
struct node {

int value;

struct node* next;

};

typedef struct node node_t;

node_t* head;

8



Items can be added at any point in the list

• We can add/remove the middle item of the list
• Just make sure you get the next pointer right

• Arrays can’t support that kind of thing
• You would have to copy over all the later elements in the array

• Let’s write list_append_front() and 
list_remove_front() functions

9

linked_list-starter.c
linked_list-complete.c



10

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline



Reminder: Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

11

z: 5

z_pointer:



We can make a pointer to another pointer

• Pointers are values stored in an object
• That object has a memory address

• We could make a pointer to a pointer

12

z: 5

z_pointer:

z_pointer_pointer:



Double pointers in C

• To make a pointer to something, add a * to the type

13

z: 5

z_pointer:

z_pointer_pointer:
int z = 5;

int* z_pointer = &z;

int** z_pointer_pointer = &z_pointer;



When is this useful?

• Various functions in the linked list code need to return the
new head of the linked list
• Instead, they could update the linked list variable

struct node* list_append_front(struct node* list, int value);

could become

void list_append_front(struct node** list, int value);

14

linked_list.c
(from last lecture)



Also occurs in arguments to main

• argv is an array of strings
• Strings are char*

• So argv is char**

• char* argv[] is equivalent to char** argv

15



16

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline



Dealing with dynamic input

• What if you want to read in data, but you don’t know how much 
data there might be?

• Arrays in C are a fixed size

• But you can malloc() as many times as needed
• Request some memory

• Use until you run out

• Request more memory and copy existing values over

• realloc() makes this simple, but it’s still slow

17



Example of dynamic memory: read_line()

char* read_line(void)

• Reads an entire line at a time from stdin
• Can’t know in advance how many bytes there will be to read

• Keeps reading in bytes until ‘\n’ character or end-of-file

• Needs to request more memory until it holds the entire line

• Note: part of the 211 library, not standard C

18



Live coding: implement read_line()

char* read_line(void)

• Requirements
• Read from stdin until ‘\n’ or end-of-file (EOF)

• Allocate an array to hold the read characters

• Make sure to end it with a ‘\0’

• Returns

• NULL pointer if EOF was reached immediately

• Pointer to string otherwise (not including the newline character)

19

readline-starter.c
readline-complete.c



Realloc versus malloc

• We could just malloc() and copy ourselves, what does 
realloc() add?

• realloc() can be far more efficient
• Doesn’t have to copy data at all if there is room in the heap to expand

• Also simpler for programmers
• Can’t forget to free the old memory if realloc() does it for you

20



Default string size will change efficiency

• Memory efficiency
• Pointer returned could have way more memory than characters

• User might hold on to memory for a while before freeing

• The less wasted memory, the less memory the program needs

• Runtime speed
• malloc() and realloc() are slow

• The fewer times we call them, the faster the program will run

• Need to pick a sweet spot to balance the two of these
• Real program: starts at 80 characters, doubles size when reallocating

21



Does efficiency really matter though?

• If you’re writing a CS211 homework: no

• If you’re writing a Javascript interpreter for Firefox,
• Which has millions of users

• times hundreds of websites per day for each user

• times hundreds of lines of code per website

• and each line of code is read with read_line()

• YES

22



Break + relevant xkcd

23https://xkcd.com/2347/



24

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline



Learning binary

• To understand how a computer really works we need to 
understand that data it operates on

• Computers hold data in memory as individual ones and zeros
• These ones and zeros make up binary values

• So, we’re going to need to understand binary
• Binary will definitely come up again in this and other classes

25



Positional Numbering Systems

• The position of a numeral (e.g., digit) determines its contribution 
to the overall number
• Makes arithmetic simple (compared to, say, roman numerals)

• Any number has one canonical representation

• Example: base 10
• 1045610 = 1*104 +   0*103 +   4*102  +   5*101  +   6*100

• Usually, we leave out the zeros:

• 1*104 +  4*102  +   5*101  +   6*100

26



Other bases are also possible

• Base 60, used by the Babylonians
• The source of 60 seconds in a minute, 60 minutes in an hour

• And 360 degrees in a circle

• Base 20, used by the Maya and Gauls
• Parts of this remain in French today

• Base 2, used by computers
• Example: 100100102

• Same idea as before: 1*27 + 1*24 + 1*21 = 12810 + 1610 + 210 = 14610

27



Base 2 Example

• Computer Scientists use base 2 a LOT (especially in computer systems)

• Let’s convert 13810 to base 2

• We need to decompose 13810 into a sum of powers of 2
• Start with the largest power of 2 that is smaller or equal to 13810

• Subtract it, then repeat the process

13810 – 12810 = 1010

1010 – 810 = 210

210 – 210 = 010

13810 = 1×128 + 0×64 + 0×32 + 0×16 + 1×8 + 0×4 + 1×2 + 0×1

13810 = 100010102

13810 = 1×27 + 0×26 + 0×25 + 0×24 + 1×23 + 0×22 + 1×21 + 0×20

28



Binary practice

• Convert 1012 to decimal

• = 1×22 + 0×21 + 1×20

• =     4  +    0   +   1

• =     510

• Convert 410 to binary:1002 (one less than 5)

• Convert 610 to binary: 1102 (one more than 5)

29



Why computers use Base 2

• Simple electronic implementation
• Easy to store with bi-stable elements
• Reliably transmitted on noisy and inaccurate wires 

• Straightforward implementation of arithmetic functions

• (Pretty much) all computers use base 2

0.0V

0.5V

2.8V

3.3V

0 1 0

30

V
o
lt
a
g
e

Time



Why don’t computers use Base 10?

• Because implementing it electronically is a pain
• Hard to store

• ENIAC (first general-purpose electronic computer) 
used 10 vacuum tubes / digit

• Hard to transmit
• Need high precision to encode

10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

• (See CE203 for details)

31



Base 16: Hexadecimal

• Writing long sequences of 0s and 1s is tedious and 
error-prone
• And takes up a lot of space on a page!

• So we’ll often use base 16 (also called hexadecimal)

•

• Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
• Use letters A-F once we run out of decimal digits

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

32



Base 16: Hexadecimal

• 16 = 24, so every group of 4 bits becomes a 
hexadecimal digit (or hexit)
• If we have a number of bits not divisible by 4, add 0s on 

the left (always ok, just like base 10)

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1 0 1 0 0 1 0 1 1 1 1 0 1 1 0x297B0 0

“0x” prefix = it’s in hex

33



Bytes

• A single bit doesn’t hold much information
• Only two possible values: 0 and 1

• So we’ll typically work with larger groups of bits

• For convenience, we’ll refer to groups of 8 bits as bytes
• And usually work with multiples of 8 bits at a time

• Conveniently, 8 bits = 2 hexits

• Some examples
• 1 byte: 0b01100111 = 0x67

• 2 bytes: 11000100  001011112 = 0xC42F

34

“0b” prefix = it’s in binary



Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• Convert binary to decimal:

35

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111



Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

36



Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

• 1*26 + 1*21 = 64 + 2 = 66

37



38

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline



These two lines of code are equivalent

char mychar = 97;

char mychar = ‘a’;

• Per the ASCII table, the character ‘a’ has a decimal value 97
• The character value and decimal value are equivalent

• These two are also equivalent
char diff = ‘c’ - ‘a’;

char diff = 99 - 97;

39



Big idea: bits can be used to represent anything

• Depending on the context, the bits 11000011 could mean
• The number 195

• The number -61

• The number -1.1875

• The value True

• The character ‘├’

• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• People and software they write determine what the bits actually mean

40



Integer types in C

• C type provides both size and encoding rules

• Integer types in C come in two flavors
• Signed: short, signed short, int, long, …

• Unsigned: unsigned char, unsigned short, unsigned int, ...

• And in multiple different sizes
• 1 byte: signed char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int

• Etc.

41



Sizes of C types are system dependent

C Data Type Intel IA32 x86-64
C Standard* 

(C99)

char 1 1 ≥1

short 2 2 ≥2

int 4 4 ≥2

long 4 8 ≥4

long long 8 8 ≥8

float 4 4

double 8 8

pointer 4 8
Widths for data, 

code pointers may 

differ!

42



Expressing C types in bits

• Two families of encodings to express integers using bits
• Unsigned encoding for unsigned integers

• Two’s complement encoding for signed integers

• Each encoding will use a fixed size (# of bits)
• For a given machine

• Size + encoding family determine which C type we’re representing

• Fixed size is because computers are finite!

43



Unsigned integer encoding

• Just write out the number in binary
• Works for 0 and all positive integers

• Example: encode 10410 as an unsigned 8-bit integer
• 10410 = 0×27 + 1×26 + 1×25 + 0×24 + 1×23 + 0×22 + 0×21 + 0×20

44

⇒ 01101000

⇒ 0x68

B2U(X ) = xi 2
i

i=0

w−1


(Binary To Unsigned)



Bounds of unsigned integers

• For a fixed width w, a limited range of integers can be expressed

• Smallest value (we will call UMin):

• all 0s bit pattern: 000…0, value of 0

• Largest value (we will call UMax):

• all 1s bit pattern: 111...1, value of 2w – 1

• 2w – 1 = 1×2w-1 + 1×2w-2 + ... + 1×21 + 1×20 = 11111...

• Maximum 8-bit number = 28-1 = 256-1 = 255

45



Encoding signed integers

• What’s different about representing a signed number?
• It can be negative!

• So, we’re going to have to somehow represent values that are 
negative and positive

• There are actually many different encodings capable of doing this
• This is when that “nice encoding” versus “annoying encoding” matters

46



Two’s complement encoding

• Plan:
• Start with unsigned encoding, but make ONLY the largest power negative

• Example: for 8 bits, most significant bit is worth -27 not +27 (other bits are still positive)

• To encode a negative integer
• First, set the most significant bit to 1 to start with a big negative number

• Then, add positive powers of 2 (the other bits) to “get back” to number we want

• Example: encode -6 as a 4-bit two’s complement integer

• -610 =

47

1 × -23 + 0 × 22 + 1 × 21 + 0 × 21 ⇒ 0b1010 ⇒ 0xa



Two’s complement examples

• Encode -100 as an 8-bit two’s complement number

• -10010 = 

48

Problem becomes: 
encode +28 as a 7-bit unsigned number

1 × -27

-128

+ 0 × 26

+ 0

+ 0 × 25

+ 0

+ 1 × 24

+ 16

+ 1 × 23

+ 8

+ 1 × 22 + 0 × 21  + 0 × 20

+4           +0          +0

• -10010 = 0b10011100 = 0x9C



Interpreting binary signed values

• Converting binary to signed:

• Note: most significant bit still tells us sign!! 1-> negative
• Checking if a number is negative is just checking that top bit

• Zero problem is always all zeros
• 0b00000000 = 0 0b10000000 = -128

• -1: 0b111…1 = -1 (regardless of number of bits!)

49

B2T (X ) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2



Sign bit



Bounds of two’s complement integers

• For a fixed width w, a limited range of integers can be expressed

• Smallest value, most negative (we will call TMin):

• 1 followed by all 0s bit pattern: 100…0 = -2w-1

• Largest value, most positive (we will call TMax):

• 0 followed by all 1s bit pattern: 01...1, value of 2w-1 – 1

• Beware the asymmetry! Bigger negative number than positive

50



Ranges for different bit amounts

• Observations
• |TMin | = TMax + 1

• Asymmetric range

• UMax = 2 * TMax + 1 

 W 

 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 
 
 

• C Programming
• #include <limits.h>

• Declares constants, e.g.,

• ULONG_MAX

• LONG_MAX

• LONG_MIN

• Values are platform specific

51



Overflow

• What happens if you exceed the bound of a variable type?

52



Overflow

• What happens if you exceed the bound of a variable type?

• Unsigned Variables
• They wrap!

char a = 255;

a++;

// a now equals 0

char b = 2;

b = b-5;

// b now equals 253

53



Modulo behavior in binary numbers

54

1000

0000

01001100

0011

0010

0001

0111

0110

01011011

1010

1001

1111

1110

1101

+1-1

10000



Overflow

• What happens if you exceed the bound of a variable type?

• Signed Variables
• UNDEFINED BEHAVIOR

• Usually they wrap (that’s what the hardware does)

• But also the compiler can do anything it wants

55



Remember that overflow/underflow can occur in C

• Warning: programmers often fail to account for wrapping!
• Sometimes it leads to unexpected behavior

56



Overflow example in the real world

• Dream Devourer
• Special boss in the Nintendo DS edition

• Wanted to make it even more challenging
• 32000 hit points

• Takes forever  to defeat

• Hit points stored as a 16-bit signed integer
• Range: -32768 to +32767

57



Chrono Trigger signed overflow bug

• Solution: heal it

• Hit points go negative 
and it dies

58



59

• Linked Lists

• Pointers to Pointers

• Dynamic Arrays

• Bits and Bytes

• Integer Encodings

Outline


	Default Section
	Slide 1: Lecture 09 Memory and Binary

	Goals
	Slide 2: Administrivia
	Slide 3: End of C!!
	Slide 4: Today’s Goals
	Slide 5: Getting the code for today

	Linked Lists
	Slide 6: Outline
	Slide 7: An alternative: linked allocations
	Slide 8: C code for a linked list structure
	Slide 9: Items can be added at any point in the list

	Pointers to Pointers
	Slide 10: Outline
	Slide 11: Reminder: Pointers are another type of value
	Slide 12: We can make a pointer to another pointer
	Slide 13: Double pointers in C
	Slide 14: When is this useful?
	Slide 15: Also occurs in arguments to main

	Dynamic Arrays
	Slide 16: Outline
	Slide 17: Dealing with dynamic input
	Slide 18: Example of dynamic memory: read_line()
	Slide 19: Live coding: implement read_line()
	Slide 20: Realloc versus malloc
	Slide 21: Default string size will change efficiency
	Slide 22: Does efficiency really matter though?
	Slide 23: Break + relevant xkcd

	Bits and Bytes
	Slide 24: Outline
	Slide 25: Learning binary
	Slide 26: Positional Numbering Systems
	Slide 27: Other bases are also possible
	Slide 28: Base 2 Example
	Slide 29: Binary practice
	Slide 30: Why computers use Base 2
	Slide 31: Why don’t computers use Base 10?
	Slide 32: Base 16: Hexadecimal
	Slide 33: Base 16: Hexadecimal
	Slide 34: Bytes
	Slide 35: Practice problem
	Slide 36: Practice problem
	Slide 37: Practice problem

	Integer Encodings
	Slide 38: Outline
	Slide 39: These two lines of code are equivalent
	Slide 40: Big idea: bits can be used to represent anything
	Slide 41: Integer types in C
	Slide 42: Sizes of C types are system dependent
	Slide 43: Expressing C types in bits
	Slide 44: Unsigned integer encoding
	Slide 45: Bounds of unsigned integers
	Slide 46: Encoding signed integers
	Slide 47: Two’s complement encoding
	Slide 48: Two’s complement examples
	Slide 49: Interpreting binary signed values
	Slide 50: Bounds of two’s complement integers
	Slide 51: Ranges for different bit amounts
	Slide 52: Overflow
	Slide 53: Overflow
	Slide 54: Modulo behavior in binary numbers
	Slide 55: Overflow
	Slide 56: Remember that overflow/underflow can occur in C
	Slide 57: Overflow example in the real world
	Slide 58: Chrono Trigger signed overflow bug

	Wrapup
	Slide 59: Outline


