Lecture 09
Memory and Binary

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Spring 2023

Slides adapted from:
Jesse Tov

Northwestern

Administrivia

« Homework 3 part 1 due today
* Only need to submit code in ballot.c and test ballot.c
 (Unless you made any Resources/ files. Submit those!)

« Homework 3 part 2 due next week Thursday
 Can start submitting to Gradescope later today
 Continuation of Part 1, so it shouldn’t be too hard to get started

End of C!!

 Today is the last lecture on C

« Next week we’ll be starting C++!

« That means it's time for another Lab
« Will release sometime on Friday
« Setup for CLion IDE and the SDL2 game engine
« Reach out to me for help with this!

Today’s Goals

* Discuss concept of pointers to pointers

* Practice dynamic memory allocation with arrays
« How do we make an array the dynamically changes size?

* Go below the level of C and understand how the computer thinks
about data with bits and bytes

« Understand how this leads to the boundaries of common C types

Getting the code for today

Same files as last lecture!

cd ~/cs21l/lec/ (or wherever you put stuff)
tar -xkvf ~cs211/lec/08 linked lists.tgz
cd 08 linked lists/

Outline
* Linked Lists

* Pointers to Pointers

* Dynamic Arrays

» Bits and Bytes

» Integer Encodings

An alternative: linked allocations

array_pointer: \

linked_list_pointer:

NULL

C code for a linked list structure

* Array version:
int myarrayl[];

» Linked List version:
struct node {
int value;
struct node* next;
¥
typedef struct node node t;

node t* head;

Items can be added at any point in the list inked list-starter.c

linked_list-complete.c

« We can add/remove the middle item of the list
» Just make sure you get the next pointer right

 Arrays can't support that kind of thing
* You would have to copy over all the later elements in the array

» Let’'s write 1ist append front () and
list remove front () functions

Outline
* Linked Lists

* Pointers to Pointers

* Dynamic Arrays

» Bits and Bytes

 Integer Encodings

Reminder: Pointers are another type of value

 Values could be a number, like 5 or 6.27

 Or they could be a “pointer” to an object
 Points at the object, not the variable or value
« It points at the “chunk of memory”
 Technically, in C it holds the address of that memory

Z_pointer:

11

We can make a pointer to another pointer

* Pointers are values stored in an object
» That object has a memory address
« We could make a pointer to a pointer

Z: 5

|

Z_pointer:

Z_pointer_pointer:

Double pointers in C

« To make a pointer to something, add a * to the type Z: 5

Z_pointer:

int z = 5; _ ‘

Z_pointer_pointer:

int* z pointer = &z;

int** z polnter pointer = &z pointer;

13

linked_list.c

When |S thIS userI? (from last lecture)

 Various functions in the linked list code need to return the
new head of the linked list

» Instead, they could update the linked list variable

struct node* list append front(struct node* list, 1int value);

could become

vold list append front (struct node** list, int value);

14

Also occurs in arguments to main

 argv is an array of strings
 Strings are char*
SO argv Is char**

 char* argv[] is equivalent to char** argv

15

Outline
* Linked Lists

* Pointers to Pointers

 Dynamic Arrays

» Bits and Bytes

» Integer Encodings

Dealing with dynamic input

« What if you want to read in data, but you don’t know how much
data there might be?

* Arrays in C are a fixed size

* But you can malloc () as many times as needed

« Request some memory
 Use until you run out
« Request more memory and copy existing values over

* realloc () makes this simple, but it's still slow

17

Example of dynamic memory: read_line()

char* read line (void)

« Reads an entire line at a time from stdin
« Can’t know in advance how many bytes there will be to read

« Keeps reading in bytes until ‘\n’ character or end-of-file
» Needs to request more memory until it holds the entire line

 Note: part of the 211 library, not standard C

18

Live coding: implement read_line() readline-starter.c

readline-complete.c

char* read line (void)

* Requirements
« Read from stdin until ‘\n’ or end-of-file (EOF)

* Allocate an array to hold the read characters
« Make sure to end it with a "\0’

« Returns
« NULL pointer if EOF was reached immediately
* Pointer to string otherwise (not including the newline character)

19

Realloc versus malloc

» We could just malloc () and copy ourselves, what does
realloc () add?

* realloc () can be far more efficient
« Doesn’t have to copy data at all if there is room in the heap to expand

* Also simpler for programmers
« Can't forget to free the old memory if realloc () does it for you

20

Default string size will change efficiency

« Memory efficiency
 Pointer returned could have way more memory than characters
« User might hold on to memory for a while before freeing
« The less wasted memory, the less memory the program needs

« Runtime speed
emalloc () and realloc () are slow

« The fewer times we call them, the faster the program will run

* Need to pick a sweet spot to balance the two of these
« Real program: starts at 80 characters, doubles size when reallocating

21

Does efficiency really matter though?

« If you're writing a CS211 homework: no

« If you're writing a Javascript interpreter for Firefox,

« Which has mil
 times hundred

 times hundred

ions of users
s of websites per day for each user
s of lines of code per website

- and each line of code is read with read line ()

* YES

22

Break + relevant xkcd

https://xkcd.com/2347/

ALL MODERN DIGITAL
INFRASTRUCTURE

"y A

ﬁ A PROJECT SOME
RANDOM PERSON

IN NEBRASKA HAS
J BEEN THANKLESSLY

23

Outline
* Linked Lists

* Pointers to Pointers

* Dynamic Arrays

 Bits and Bytes

» Integer Encodings

Learning binary

 To understand how a computer really works we need to
understand that data it operates on

« Computers hold data in memory as individual ones and zeros
« These ones and zeros make up binary values

* SO0, we're going to need to understand binary
 Binary will definitely come up again in this and other classes

25

Positional Numbering Systems

* The position of a numeral (e.g., digit) determines its contribution
to the overall number
» Makes arithmetic simple (compared to, say, roman numerals)
« Any number has one canonical representation

« Example: base 10
« 10456,, = 1*10* + 0*10° + 4*10°% + 5*10! + 6*10°

 Usually, we leave out the zeros:
« 1¥10* + 4*102 + 5*10! + 6*100°

26

Other bases are also possible

 Base 60, used by the Babylonians
« The source of 60 seconds in a minute, 60 minutes in an hour
« And 360 degrees in a circle

 Base 20, used by the Maya and Gauls
« Parts of this remain in French today

» Base 2, used by computers
- Example: 10010010,
« Same idea as before: 1*27 + 1*24 + 1*¥2! = 128,, + 16, + 2,, = 1464,

27

Base 2 Example

« Computer Scientists use base 2 a LOT (especially in computer systems)
» Let’s convert 138, to base 2

« We need to decompose 138,,into a sum of powers of 2
« Start with the largest power of 2 that is smaller or equal to 138,,
 Subtract it, then repeat the proce

138, =10,
1040 =219
210 =049

138,5 = 1x128 + 0x64 + 0x32 + 0x16 + 1x8 + 0x4 + 1x2 + Ox1
138, = 1x27 + 0x2° + 0x2> + 0x2% + 1x23 + 0x22 + 1x21 + 0x2°
138,,=10001010, .

Binary practice

» Convert 101, to decimal

« = 1x22 + Ox2! + 1x20
= 4+ 0 + 1

"= Oy

« Convert 4,, to binary: 100, (one less than 5)
* Convert 6,,to binary: 110, (one more than 5)

29

Why computers use Base 2

» Simple electronic implementation
 Easy to store with bi-stable elements

 Reliably transmitted on noisy and inaccurate wires

— 0
3.3V —
© 2.8V — /
e
S 0.5V T
00V ™ Time—

1

— (0 —

-

« Straightforward implementation of arithmetic functions

* (Pretty much) all computers use base 2

Why don’t computers use Base 107?

« Because implementing it electronically is a pain

* Hard to store

« ENIAC (first general-purpose electronic computer)
used 10 vacuum tubes / digit

« Hard to transmit

* Need high precision to encode
10 signal levels on single wire

« Messy to implement digital logic functions
 Addition, multiplication, etc.
« (See CE203 for details)

31

Base 16: Hexadecimal Hex | Decimal | Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 Writing long sequences of 0s and 1s is tedious and
error-prone
« And takes up a lot of space on a page!

« So we'll often use base 16 (also called hexadecimal)

© 0O N O U1 A W N = O

=
= O

* Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
 Use letters A-F once we run out of decimal digits

= m U O W > O 0N OO U1 A W N = O
= b
2 W N

[
0

32

Base 16: Hexadecimal Hex | Decimal | Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

« 16 = 2%, so every group of 4 bits becomes a
hexadecimal digit (or Aexit)

« If we have a number of bits not divisible by 4, add 0s on
the left (always ok, just like base 10)

© 0O N O U1 A W N = O

e
= O

101001{0111{1011 — 0x297B

-
W N

[
=

“Ox” prefix = it’s in hex

= m U O W > O 0N OO U1 A W N = O

[y
0

33

Bytes

« A single bit doesn’t hold much information
* Only two possible values: 0 and 1
« So we'll typically work with larger groups of bits

 For convenience, we'll refer to groups of 8 bits as bytes
« And usually work with multiples of 8 bits at a time
« Conveniently, 8 bits = 2 hexits

* Some examples “Ob” prefix = it’s in binary

« 1 byte: 0b01100111 = 0x67
2 bytes: 11000100 00101111, = OxC42F

34

Practice problem Hex | Decimal | Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 Convert 0x42 to decimal

» Steps
» Convert 0x42 to binary:

© 0O N O U1 A W N = O

e
= O

« Convert binary to decimal:

= m U O W > O 0N OO U1 A W N = O
= b
2 W N

[y
0

35

Practice problem

 Convert 0x42 to decimal

» Steps
» Convert 0x42 to binary:
« Ox4 -> 0b0100 0Ox2 -> 0b0010

« Convert binary to decimal:

0x42 -> 0b 0100 0010

36

Practice problem

 Convert 0x42 to decimal
» Steps

» Convert 0x42 to binary:
« Ox4 -> 0b0100 0Ox2 -> 0b0010

« Convert binary to decimal:
¢ 1¥26 4+ 1*%21=64 + 2 = 66

0x42 -> 0b 0100 0010

37

Outline
* Linked Lists

* Pointers to Pointers

* Dynamic Arrays

» Bits and Bytes

- Integer Encodings

These two lines of code are equivalent

char mychar = 97;

char mychar ‘a’;

 Per the ASCII table, the character 'a’ has a decimal value 97
« The character value and decimal value are equivalent

» These two are also equivalent
char diff = ‘¢’ - 1‘a’;

char diff = 99 - 97;

Big idea:

bits can be used to represent anything

» Depending on the context, the bits 11000011 could mean

e The num
e The num
e The num

per 195
er -61

her -1.1875

* The value True
- The character * }

e The ret

X86 instruction

 You have to know the context to make sense of any bits you have!
« People and software they write determine what the bits actually mean

40

Integer types in C

» C type provides both size and encoding rules

* Integer types in C come in two flavors
* Signed: short, signed short, int, long, ...
e Unsigned: unsigned char, unsigned short, unsigned int, ...

« And in multiple different sizes
« 1 byte: signed char, unsigned char
e 2 bytes: short, unsigned short
* 4 pytes: int, unsigned int
* Etc.

41

Sizes of C types are system dependent

C Standard*
C Data Type Intel IA32 x86-64 (ng)

char
short

int

long
long long
float
double

pointer

co B~ o0 B~ B~ DN -

o B~ OO 0 B~ N —

Widths for data,
code pointers may
differ!

42

Expressing C types in bits

« Two families of encodings to express integers using bits
« Unsigned encoding for unsigned integers
« Two’s complement encoding for signed integers

« Each encoding will use a fixed size (# of bits)
» For a given machine
* Size + encoding family determine which C type we're representing
» Fixed size is because computers are finite!

43

Unsigned integer encoding

* Just write out the number in binary
« Works for 0 and all positive integers

- Example: encode 104,, as an unsigned 8-bit integer
¢ 104, = 0x27 + 1x25 + 1x2°> + 0x2% + 1x23 + 0x22 + 0x2! + 0x20

= 01101000
= 0x68

w—1 _

BRUX) = Y x -2

l

(Binary To Unsigned) i=0

44

Bounds of unsigned integers

* For a fixed width w, a limited range of integers can be expressed

» Smallest value (we will call UMin):
« all Os bit pattern: 000...0, value of 0

 Largest value (we will call UMax):
« all 1s bit pattern: 111...1, value of 2% -1

e W —1 = Ix2W1l 4 Ix2W2 4 .+ I1x21 + 1x20=11111...

« Maximum 8-bit number = 28-1 = 256-1 = 255

45

Encoding signed integers

« What's different about representing a signed number?
« It can be negative!

» S0, we're going to have to somehow represent values that are
negative and positive

« There are actually many different encodings capable of doing this
 This is when that “nice encoding” versus “annoying encoding” matters

46

Two’s complement encoding

 Plan:

« Start with unsigned encoding, but make ONLY the largest power negative
« Example: for 8 bits, most significant bit is worth -27 not +27 (other bits are still positive)

* To encode a negative integer

* First, set the most significant bit to 1 to start with a big negative number
« Then, add positive powers of 2 (the other bits) to “get back” to number we want

« Example: encode -6 as a 4-bit two’s complement integer
¢ -6, = 1%x-22+0x22+1x21+0x2! =0b1010 = 0xa

47

Two's complement examples
* Encode -100 as an 8-bit two’s complement number

¢ -100;p= 1x-27 +0x26+0%x25+1x244+41x23+1x22+0x21 +0x20

-128 +0 +0 +16 +8 +4 +0 +0

Problem becomes:
encode +28 as a 7-bit unsigned number

* -100,,=0b10011100 = 0x9C

48

Interpreting binary signed values

w—2

- Converting binary to signed: B2T(X) = -x,-2"" +> x,-2'
\ i=0
Sign bit

« Note: most significant bit still tells us sign!! 1-> negative
« Checking if a number is negative is just checking that top bit

 Zero problem is always all zeros
- 0b00000000 =0 0b10000000 = -128

«-1: Ob111...1 = -1 (regardless of humber of bits!)

49

Bounds of two's complement integers

* For a fixed width w, a limited range of integers can be expressed

« Smallest value, most negative (we will call TMin).
« 1 followed by all Os bit pattern: 100...0 = -2w-1

 Largest value, most positive (we will call TMax):
« 0 followed by all 1s bit pattern: 01...1, value of 2¥1 -1

« Beware the asymmetry! Bigger negative number than positive

50

Ranges for different bit amounts

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

e Observations

o | TMin |

= Max + 1

« Asymmetric range

e UMax =

2% TMax + 1

« C Programming
« #include <limits.h>
 Declares constants, e.q.,
« ULONG_MAX
« LONG_MAX
« LONG_MIN
« Values are platform specific

51

Overflow

« What happens if you exceed the bound of a variable type?

52

Overflow

« What happens if you exceed the bound of a variable type?

 Unsigned Variables
* They wrap!
char a = 255;
at+,;
// a now equals O

char b = 2;
b = b-5;
// b now equals 253

Modulo behavior in binary humbers

o~
1111 0001
1110 0010
1101 0011
1100 0100
1011 0101
1010 0110
1001 0111

54

Overflow

« What happens if you exceed the bound of a variable type?

» Signed Variables
- UNDEFINED BEHAVIOR

« Usually they wrap (that’s what the hardware does)
 But also the compiler can do anything it wants

55

Remember that overflow/underflow can occur in C

« Warning: programmers often fail to account for wrapping!
« Sometimes it leads to unexpected behavior

56

Overflow example in the real world

* Dream Devourer
 Special boss in the Nintendo DS edition

NINTEND%DS..

» Wanted to make it even more challenging
« 32000 hit points
 Takes forever to defeat

» Hit points stored as a 16-bit signed integer
« Range: -32768 to +32767

57

Chrono Trigger signed overflow bug

e Solution: heal it

« Hit points go negative
and it dies

Outline
* Linked Lists

* Pointers to Pointers

* Dynamic Arrays

» Bits and Bytes

» Integer Encodings

	Default Section
	Slide 1: Lecture 09 Memory and Binary

	Goals
	Slide 2: Administrivia
	Slide 3: End of C!!
	Slide 4: Today’s Goals
	Slide 5: Getting the code for today

	Linked Lists
	Slide 6: Outline
	Slide 7: An alternative: linked allocations
	Slide 8: C code for a linked list structure
	Slide 9: Items can be added at any point in the list

	Pointers to Pointers
	Slide 10: Outline
	Slide 11: Reminder: Pointers are another type of value
	Slide 12: We can make a pointer to another pointer
	Slide 13: Double pointers in C
	Slide 14: When is this useful?
	Slide 15: Also occurs in arguments to main

	Dynamic Arrays
	Slide 16: Outline
	Slide 17: Dealing with dynamic input
	Slide 18: Example of dynamic memory: read_line()
	Slide 19: Live coding: implement read_line()
	Slide 20: Realloc versus malloc
	Slide 21: Default string size will change efficiency
	Slide 22: Does efficiency really matter though?
	Slide 23: Break + relevant xkcd

	Bits and Bytes
	Slide 24: Outline
	Slide 25: Learning binary
	Slide 26: Positional Numbering Systems
	Slide 27: Other bases are also possible
	Slide 28: Base 2 Example
	Slide 29: Binary practice
	Slide 30: Why computers use Base 2
	Slide 31: Why don’t computers use Base 10?
	Slide 32: Base 16: Hexadecimal
	Slide 33: Base 16: Hexadecimal
	Slide 34: Bytes
	Slide 35: Practice problem
	Slide 36: Practice problem
	Slide 37: Practice problem

	Integer Encodings
	Slide 38: Outline
	Slide 39: These two lines of code are equivalent
	Slide 40: Big idea: bits can be used to represent anything
	Slide 41: Integer types in C
	Slide 42: Sizes of C types are system dependent
	Slide 43: Expressing C types in bits
	Slide 44: Unsigned integer encoding
	Slide 45: Bounds of unsigned integers
	Slide 46: Encoding signed integers
	Slide 47: Two’s complement encoding
	Slide 48: Two’s complement examples
	Slide 49: Interpreting binary signed values
	Slide 50: Bounds of two’s complement integers
	Slide 51: Ranges for different bit amounts
	Slide 52: Overflow
	Slide 53: Overflow
	Slide 54: Modulo behavior in binary numbers
	Slide 55: Overflow
	Slide 56: Remember that overflow/underflow can occur in C
	Slide 57: Overflow example in the real world
	Slide 58: Chrono Trigger signed overflow bug

	Wrapup
	Slide 59: Outline

