
Lecture 07
File Input & Output

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2023

Slides adapted from:
Jesse Tov

Administrivia

• Homework 2 due tonight
• Remember that slip days exist

• Beware: office hours are overloaded
• Prepare for long delays until you can get help, and only high-level help
• Feel free to ask questions on Piazza too

• I’ll be checking it frequently

• No more exercises for two weeks!
• Get started on Homework 3 early instead

• Homework 3 has two parts
• Part 1 due next week
• Part 2 due in two weeks

2

Homework 2 hint: comparing strings

char* a = “abc”

char b[4] = {‘a’, ‘b’, ‘c’, ‘\0’}

if (a == b) {

print(“They match!\n”);

} else {

print(“They do not match\n”);

}

This code prints: “They do not match\n”. Why?

What does a == b compare?

Two pointers!

3

Strings must be compared with strcmp()

• https://www.cplusplus.com/reference/cstring/strcmp/

• int strcmp(const char* str1, const char* str2)

• Compares two strings character-by-character until reaching a ‘\0’

• Returns an integer value of the following:

• <0 str1 comes before str2 alphabetically

• 0 str1 is equal to str2

• >0 str1 comes after str2 alphabetically

4

https://www.cplusplus.com/reference/cstring/strcmp/

SEGV is a null pointer dereference

• This AddressSanitizer error is due to dereferencing a NULL pointer
• Often in Homework 3, it’s because you tried to read a NULL candidate name

• Possibly with `strcmp()`

5

Today’s Goals

• Practice dynamic memory allocation with arrays
• How do we make an array the dynamically changes size?

• Introduce and explore concept of linked lists
• What are they and what are their advantages?

• How do we write code that uses them?

• Discuss concept of pointers to pointers

6

Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/07_fileio.tgz

cd 07_fileio/

7

8

• Ownership Review

• File Input & Output (I/O)

• Standard I/O

• Dynamic Arrays

Outline

Review: ownership idea

• malloc() creates memory objects (chunks of heap memory)
• MUST later be freed

• The “owner” of a memory object is responsible for it
• Must either free() it

• Or transfer ownership to something else

• Pass into another function

• Store it in some data structure for later

9

The full ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it
• No one else may do so

• Borrowers of an object may access or modify it
• But they may not hold on to a reference to it or deallocate it

• Passing or returning a pointer may or may not transfer ownership
• Transfer: caller must have owned it previously and now give up ownership

• No transfer: caller could also be borrowing. New function is borrowing

10

Borrowing example

11

Function A
- borrows memory object

Can use and modify memory
Cannot free() memory
Cannot store memory for later

Calls Function B and passes the memory

After return
Can still use and modify memory

Function B
- MUST also be borrowing

Can use and modify memory
Cannot free() or store memory

Ownership example, return transferring ownership

12

Function A
- has no memory object

Calls Function B

After return
Can use and modify memory
Must free(), store, or transfer memory

Function B
- creates memory object (malloc)

Can use and modify memory
Must free(), store, or transfer memory

Returns object, transferring ownership

Ownership example, calling a borrowing function

13

Function A
- owns memory object

Can use and modify memory
Must free(), store, or transfer memory

Calls Function B and passes the memory

After return
Can still use and modify memory
Must free(), store, or transfer memory

Function B
- borrows memory object

Can use and modify memory
Cannot free() or store memory

Ownership example, transferring ownership

14

Function A
- owns memory object

Can use and modify memory
Must free(), store, or transfer memory

Calls Function B and passes the memory

After return
Cannot access memory

Function B
- takes ownership of memory object

Can use and modify memory
Must free(), store, or transfer memory

Break + Practice

• Example from Homework 3
• void ballot_insert(ballot_t ballot, char* name)

• Borrows ballot transiently

• Takes ownership of name

• What is ballot_insert() allowed to do to ballot?

• What is ballot_insert() allowed to do to name?

15

Break + Practice

• Example from Homework 3
• void ballot_insert(ballot_t ballot, char* name)

• Borrows ballot transiently

• Takes ownership of name

• What is ballot_insert() allowed to do to ballot?
• Can modify and use. Cannot free() or store.

• What is ballot_insert() allowed to do to name?
• Can modify and use. MUST free() or store.

16

17

• Ownership Review

• File Input & Output (I/O)

• Standard I/O

• Dynamic Arrays

Outline

Files

• Collections of data
• Usually in permanent storage on your computer

• Types of files
• Regular files

• Arbitrary data
• Think of each file as a big array of bytes (just like memory)

• Directories
• Collections of regular files

• Special files
• Links, pipes, devices (see CS343)

18

How do we interact with files?

• Analogy: think of a file as a book
• Big array of characters (bytes)

1. Open the book, starting at the first page

2. Read from the book

3. Write to the book

4. Change pages (without reading everything in between)

5. Close the book when finished

19

System calls for interacting with files

1. Open the book, starting at the first page
• fopen()

2. Read from the book
• fread()

3. Write to the book
• fwrite()

4. Change pages (without reading everything in between)
• fseek()

5. Close the book when finished
• fclose()

20

References

• https://www.cplusplus.com/reference/cstdio/
• Explanation of and links for everything in <stdio.h>

21

https://www.cplusplus.com/reference/cstdio/

Opening files

FILE* fopen(const char* filename, const char* mode);

• filename is the string path for the file
• “/home/branden/cs211/s23/hw/hw1/src/tr.c”

• “./arguments.c”

• “arguments.c”

• mode specifies what you intend to do with the file
• “r” - read only (must exist)

• “w” - write (overwrites if exists)

• “a” - append (starts writing at end of file if exists)

22

Open returns a FILE object

FILE* fopen(const char* filename, const char* mode);

• Pointer type for an object used to interact with the file
• A “handle” to the file

• Other file interaction functions will take in a FILE* as an
argument
• Don’t need to remember the file path and look it up every time

• NULL instead specifies an error attempting to open the file

23

Reading files

size_t fread(void* ptr, size_t size, size_t count, FILE* stream);

• ptr is a pointer to an array to read into
• At least size×count bytes in length

• size is the number of bytes for each element in the array

• count is the number of elements to read

• stream is the file pointer returned from a previous call to fopen()

• Note: nowhere do we specify where to start reading
• Library keeps track of a file offset with the file
• Updated on each read

• First read of 100 bytes starts at zero, next starts 100 bytes in

24

How do we know when we finished the file?

size_t fread(void* ptr, size_t size, size_t count, FILE* stream);

• Return from read is the count of elements actually read
• Less than count means there was either an error or end-of-file was

reached

• feof() lets you check if end-of-file was reached

• ferror() lets you check for particular errors

25

Writing files looks a lot like reading

size_t fwrite(const void* ptr, size_t size, size_t count,

FILE* stream);

• Array to write from, size of elements in the array, number of
elements to write, and a file pointer

• Returns number of elements actually written

• Write occurs at the current file offset

26

Moving the file offset

int fseek(FILE* stream, long int offset, int origin);

• Moves to offset for this file descriptor based on origin:
• SEEK_SET – set to offset (essentially start of file plus offset)
• SEEK_CUR – current location plus the offset
• SEEK_END – end of file plus the offset (which should be negative)

• Returns zero if successful
• Anything else means an error occurred

• ftell() gets the current location in a file
• So you can seek back there later

27

Closing a file

int fclose(FILE* stream);

• Closes the file

• Returns zero on success

• It is an error to keep using the file descriptor after it is closed
• Just like with dynamic memory management

28

Buffered I/O

• C standard library buffers your interactions to make them more
efficient
• One big write to a file is MUCH faster than many small writes

• Sometimes you want to write to output right now
• fflush() guarantees that the buffer is written now

• Otherwise no write is guaranteed until fclose() is called

• Example: printf() buffers until a newline is reached
• So a print right before a fault might not appear unless it includes a ‘\n’ 😱

29

Example: kitten tool

• Command line tool: cat – prints out the contents of files
• Does so very efficiently

• Our program: kitten – prints out the contents of one file
• No efficiency promises

• Implementing kitten only requires file I/O calls we’ve discussed!

30

Live coding: implement kitten

• Requirements
• Parse argv[] to find file to open

• Open the file

• Read in lines from the file repeatedly

• If end-of-file is reached, break (feof())

• Print contents of file

• Handle errors

31

kitten-starter.c
kitten-complete.c

32

• Ownership Review

• File Input & Output (I/O)

• Standard I/O

• Dynamic Arrays

Outline

How do programs talk to users?

• We glossed over this before
• printf()
• scanf()

• Work through the same file mechanism
• Three special files created for each program

• stdin – standard input
• stdout – standard output
• stderr – standard error

• printf() -> fprintf(stdout) -> handle arguments & fwrite(stdout)

33

Standard I/O is a process thing, not a C thing

• You can access them in Python, for instance
• https://docs.python.org/3/library/sys.html#sys.stdin

34

https://docs.python.org/3/library/sys.html#sys.stdin

Standard I/O is configured by the shell

• When you run a program in command line, the shell attaches a
standard input, standard output, and standard error to it

• Defaults
• stdin - read from terminal

• stdout - write to terminal

• stderr - write to terminal

35

Live coding: kitten upgrades

• Errors should be written to stderr

• Output can be written to stdout directly using fwrite()
• Instead of using printf() in a loop to do it for us

36

kitten-starter.c
kitten-complete.c

Redirecting standard I/O

• Shells by default setup standard I/O to connect to the keyboard
and the screen
• But any file will also work

• Shell I/O redirection commands
• COMMAND < filename

• Connect standard input to filename

• COMMAND > filename
• Connect standard output to filename (overwrite)

• COMMAND >> filename
• Connect standard output to filename (append)

37

Piping commands

• A command shell desire is to run multiple commands where the
output of the first feeds into the second

• COMMAND1 | COMMAND2
• Connects stdout of COMMAND1 to stdin of COMMAND2

• Example: print out files and sort by size
• ls –lah | sort –h

38

Sidebar: super useful command for testing

• tee [OPTION]... [FILE]...

• Reads from stdin and write to both stdout and file

• Example: prints out a list of files and saves results
• ls –lah | tee results.txt

• I run this with various programs I’m testing, so I can record the
results, but also seem them in real-time.

39

Example: redirection with kitten

• Standard I/O redirection is handled when the process is created
• So it does not need to be aware of it at all

• Our kitten tool works with redirection automatically!
• ./kitten arguments.c > OUTPUT_FILE

40

Break + Thinking Excercise

• Take a look at the cat command to see the other flags it supports

41

How hard would these be
to implement in kitten?

42

• Ownership Review

• File Input & Output (I/O)

• Standard I/O

• Dynamic Arrays

Outline

Dealing with dynamic input

• What if you want to read in data, but you don’t know how much
data there might be?

• Arrays in C are a fixed size

• But you can malloc() as many times as needed
• Request some memory

• Use until you run out

• Request more memory and copy existing values over

• realloc() makes this simple

43

Example of dynamic memory: read_line()

char* read_line(void)

• Reads an entire line at a time from stdin
• Can’t know in advance how many bytes there will be to read

• Keeps reading in bytes until ‘\n’ character or end-of-file

• Needs to request more memory until it holds the entire line

• Note: part of the 211 library, not standard C

44

Live coding: implement read_line()

char* read_line(void)

• Requirements
• Read from stdin until ‘\n’ or end-of-file (EOF)

• Allocate an array to hold the read characters

• Make sure to end it with a ‘\0’

• Returns

• NULL pointer if EOF was reached immediately

• Pointer to string otherwise (not including the newline character)

45

readline-starter.c
readline-complete.c

Realloc versus malloc

• We could just malloc() and copy ourselves, what does
realloc() add?

• realloc() can be far more efficient
• Doesn’t have to copy data at all if there is room in the heap to expand

• Also simpler for programmers
• Can’t forget to free the old memory if realloc() does it for you

46

Default string size will change efficiency

• Memory efficiency
• Pointer returned could have way more memory than characters

• User might hold on to memory for a while before freeing

• The less wasted memory, the less memory the program needs

• Runtime speed
• malloc() and realloc() are slow

• The fewer times we call them, the faster the program will run

• Need to pick a sweet spot to balance the two of these
• Real program: starts at 80 characters, doubles size when reallocating

47

Does efficiency really matter though?

• If you’re writing a CS211 homework: no

• If you’re writing a Javascript interpreter for Firefox,
• Which has millions of users

• times hundreds of websites per day for each user

• times hundreds of lines of code per website

• and each line of code is read with read_line()

• YES

48

Break + relevant xkcd

49https://xkcd.com/2347/

50

• Ownership Review

• File Input & Output (I/O)

• Standard I/O

• Dynamic Arrays

Outline

	Default Section
	Slide 1: Lecture 07 File Input & Output

	Goals
	Slide 2: Administrivia
	Slide 3: Homework 2 hint: comparing strings
	Slide 4: Strings must be compared with strcmp()
	Slide 5: SEGV is a null pointer dereference
	Slide 6: Today’s Goals
	Slide 7: Getting the code for today

	More Ownership Examples
	Slide 8: Outline
	Slide 9: Review: ownership idea
	Slide 10: The full ownership protocol
	Slide 11: Borrowing example
	Slide 12: Ownership example, return transferring ownership
	Slide 13: Ownership example, calling a borrowing function
	Slide 14: Ownership example, transferring ownership
	Slide 15: Break + Practice
	Slide 16: Break + Practice

	File I/O in C
	Slide 17: Outline
	Slide 18: Files
	Slide 19: How do we interact with files?
	Slide 20: System calls for interacting with files
	Slide 21: References
	Slide 22: Opening files
	Slide 23: Open returns a FILE object
	Slide 24: Reading files
	Slide 25: How do we know when we finished the file?
	Slide 26: Writing files looks a lot like reading
	Slide 27: Moving the file offset
	Slide 28: Closing a file
	Slide 29: Buffered I/O
	Slide 30: Example: kitten tool
	Slide 31: Live coding: implement kitten

	Standard I/O
	Slide 32: Outline
	Slide 33: How do programs talk to users?
	Slide 34: Standard I/O is a process thing, not a C thing
	Slide 35: Standard I/O is configured by the shell
	Slide 36: Live coding: kitten upgrades
	Slide 37: Redirecting standard I/O
	Slide 38: Piping commands
	Slide 39: Sidebar: super useful command for testing
	Slide 40: Example: redirection with kitten
	Slide 41: Break + Thinking Excercise

	Dynamic Arrays
	Slide 42: Outline
	Slide 43: Dealing with dynamic input
	Slide 44: Example of dynamic memory: read_line()
	Slide 45: Live coding: implement read_line()
	Slide 46: Realloc versus malloc
	Slide 47: Default string size will change efficiency
	Slide 48: Does efficiency really matter though?
	Slide 49: Break + relevant xkcd

	Wrapup
	Slide 50: Outline

