
Lecture 05
Lifetimes and Memory

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov, Vincent St-Amour

Administrivia

• Homework 1 due tonight
• Homework 2 will also release tonight, with a one-week deadline

• Lots of office hours today to help with questions

• Slip days allow you to submit late without penalty

• Use them when you need them

2

Today’s Goals

• Continue examples of Strings, Arrays, and Pointers
• Explain AddressSanitizer errors you’ll get when working with them

• Discuss variable lifetimes: when is a variable no longer valid

• Understand memory and C memory layout
• The basis for pointers and variable lifetimes

3

Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/05_lifetimes_memory.tgz

cd 05_lifetimes_memory/

4

5

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

6

z: 5

z_pointer:

Pointer examples

double alpha = 72;

double* beta = α

double* gamma = beta;

• Pointers have a “value” that is some memory address
• Contains the “location” of some object in memory

• Conceptually an arrow pointing at that object

• Operator & gets the memory address of an object

7

alpha: 72

beta:

gamma:

Dereference a pointer to get the value it points at

void add_two(int* n) {

*n = *n + 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

8

• Operator * follows the

pointer to interact with the
value
• Can be used to read or

write

• End result: functions have
the ability to directly modify
variables through pointers

Possible pointer values

• Uninitialized
unsigned long* zeta;

• Pointing at an existing object
char* letter_ptr = &my_char;

• Null (explicitly pointing at nothing)
int* p = NULL;

bool* b = NULL;

double* d = NULL;

• NULL works for any pointer type
• NULL is NOT the same as uninitialized (🐝)
• Dereferencing a null pointer is an error (segfault)

9

A note on writing meaningful code

• Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
• false is implemented as zero as well

• So, technically, you could use any to mean any

• But humans will be the ones reading your code
• NULL ‘\0’, 0, and false all have different meanings

• NULL means pointers

• ‘\0’ means the end of strings

• false means a Boolean value

• 0 means a number

10

Use the one that is
appropriate to the situation!

Arrays passed into functions are just pointers

• When you pass an array into a function, you don’t pass a copy of the
values
• Instead you pass a pointer to the start of the array
• Be sure to pass a length as well! (no way to determine that in C)

void print_array(int* values, int count) {

. . .

}

int main(void) {

int array[10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};

print_array(array, 10);

return 0;

}

11

array_print.c

12

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

DANGER! Nothing stops you from going past the end of an array

• C does not check whether your array accesses are valid
• It just tries to grab the value in the memory you asked for

• Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR
• Could result in anything happening

• If you’re lucky, the code will crash
• But you will not always get lucky

• Be sure to always check if you’re going past the end of the array

13

array_print.c

Address Sanitizer

• Automatically compiled in as part of your homework code

• Checks various accesses to memory for validity
• Produces long error messages that can be scary at first! But are really helpful!

• Error locations: (more on these “locations” on Thursday)
• Stack – local variable
• Global – global variable (usually a string)
• Heap – variable created with malloc()

• Error types:
• buffer-overflow – past the end of an array of memory
• buffer-underflow – before the beginning of an array of memory (rare)
• various others

14

Example address sanitizer error

15

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Example address sanitizer error

16

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Error is coming from AddressSanitizer

Example address sanitizer error

17

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Heap-buffer-overflow means past the end of an array created with malloc()

Example address sanitizer error

18

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

The error happened in expand_charseq() in src/translate.c line 74

Example address sanitizer error

19

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Full “stack trace” of functions that were called to get to where the error happened

Example address sanitizer error

20

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Where the array was created in the first place (expand_charseq() in translate.c line 62)

Live demos of AddressSanitizer

• With pointers, arrays, and strings

• Things to try
• Intentionally go past end of array

• Go before beginning of array

• Use a pointer as an array

• NULL pointer

• Malformed string with printf

22

array_print.c
string_print.c

Where the error happened may not but where the bug is

• AddressSanitizer usually points to a line where the array is being
accessed

• But the bug is often because an index is out of bounds

• Or because the pointer passed in was invalid to begin with

• This is a new class of problem you’ll all have to deal with
• Errors that occur because of bugs elsewhere

23

Other AddressSanitizer errors

• Dereferencing a NULL pointer

src/string_print.c:4:28: runtime error: load of null pointer of type 'const char'

AddressSanitizer:DEADLYSIGNAL

===

==2838978==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x000000400912 bp

0x000000000000 sp 0x7ffe1379cec0 T0)

==2838978==The signal is caused by a READ memory access.

==2838978==Hint: address points to the zero page.

SCARINESS: 10 (null-deref)

#0 0x400911 in print_string_chars src/string_print.c:4

#1 0x400a33 in main src/string_print.c:12

#2 0x7fefdbf5a492 in __libc_start_main ../csu/libc-start.c:314

#3 0x40082d in _start (/home/branden/cs211/f21/lec/04_arrays_strings/string_print+0x40082d)

AddressSanitizer can not provide additional info.

SUMMARY: AddressSanitizer: SEGV src/string_print.c:4 in print_string_chars

==2838978==ABORTING
24

string_print.c

Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following

• Favorite Candy

• Favorite Pokemon

• Favorite Emoji

25

Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following

• Favorite Candy - Twix

• Favorite Pokemon - Eevee

• Favorite Emoji -🍢

26

27

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

Passing arguments to main

• We’ve been using “int main(void);” as main()’s signature

• Actually, main() can receive arguments, which are what the user
called the program with

% ./programname arg1 arg2 arg3

28

Real signature for main

• The real signature for main() is:

int main(int argc, char* argv[]);

• argc – the number of strings in argv (length of argv)

• argv – an array of strings (array of char*)
• The first string is the name of the program itself

• The remaining strings are the arguments to the function

• By using main(void), we’ve just been ignoring these
• Which is fine, because they aren’t always useful

29

Pointer to a pointer

Run program as: ./hello arg1 arg2

char* argv[] – array of pointers

30

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘a’ ‘r’ ‘g’ ‘1’ ‘\0’

‘a’ ‘r’ ‘g’ ‘2’ ‘\0’

argv:

Working with argv

• Let’s print out all the arguments to the function

int main(int argc, char* argv[]) {

for (int i=0; i<argc; i++) {

printf(“Argument %d: \”%s\”\n”, i, argv[i]);

}

return 0;

}

31

argv_print.c

32

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

When is a pointer “valid”?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
• Variables “live” until the end of the scope they were created in

• Scopes are defined by { }

• Example:

void some_function(void) {

int a = 5;

}

33

a goes “out of scope” here

The variable stops being “alive”

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

34

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

35

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

36

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

• Variable a is no longer “alive” at this point
• It “poofs” out of existence

• The variable is no longer valid

37

a: 💥

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

38

n: 17

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

39

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

40

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

41

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

42

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

43

n: 17

a: 5

b: 💥

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

44

n: 17

a: 5

Referring to variable b

at this point would be
a compilation error

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

45

n: 💥

a: 💥

Variable lifetimes are what makes loops work

• Variables created inside of loops only exist until the end of that
iteration of the loop
• i.e. they only exist until the next end curly brace }

while (n < 5) {

int i = 1;

n += i;

}

46

A new variable i is created

each time the loop repeats

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

47

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

48

n goes out of scope at the end of this function

So what does the pointer point to???

dangling_pointer.c

Dangling pointers are especially dangerous

• Accessing a dangling pointer is UNDEFINED BEHAVIOR

• Anything could happen!

• If you are lucky: segmentation fault (a.k.a. SIGSEGV)
• The OS kills your program because it accesses invalid memory

• If you are unlucky: anything at all
• Including returning the correct result the first time you run it and an

incorrect result the second time

• AddressSanitizer checks for this and will gift you a crash

49

String literals are an exception to scoping rules

• String literals always exist
• This is why they cannot be modified. They might be reused later

const char* get_pointer_to_string(void) {

return “oh, hello!”; // this is okay for string literals

}

int main(void) {

const char* string = get_pointer_to_string();

printf(“%s on broadway\n”, string);

return 0;

}

50

string_lifetime.c

Break + Question

int* get_array_pointer(int* array, int length) {

if (length > 2) {

return &(array[2]);

}

return array;

}

int main(void) {

int array[] = {1, 2, 3, 4, 5};

int* x = get_array_pointer(array, 5);

printf(“%d\n”, *x);

return 0;

}

51

Is it valid to return a pointer here?

Will this access fault?

Break + Question

int* get_array_pointer(int* array, int length) {

if (length > 2) {

return &(array[2]);

}

return array;

}

int main(void) {

int array[] = {1, 2, 3, 4, 5};

int* x = get_array_pointer(array, 5);

printf(“%d\n”, *x);

return 0;

}

52

Is it valid to return a pointer here? Yes

Will this access fault? No

This code works because the lifetime of
the array is longer than the lifetime of
the get_array_pointer() function.

53

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

Memory

• Computers have memory
• RAM sticks

• Also some dedicated memory
inside of the processor

• The operating system of the computer hands out chunks of
memory to running processes
• Like our compiled C programs

• While they are running, they have a certain amount of memory reserved
for their use

• You can see this in Task Manager on Windows (or Top on Linux)

54

What is memory conceptually?

• A nearly infinite series of slots that can be used to hold data
• Units of memory are known as bytes

• So 4 GB of RAM is memory with 4294967296 bytes

• Typical variables take 1-8 bytes

• Each slot in the memory has an index: a memory address
• Pointers are the memory address of a variable

55

• • •

C memory layout

• Stack Section
• Local variables
• Function arguments

• Heap Section
• Memory granted through malloc()

• Static Section (a.k.a. Data Section)
• Global variables
• Static function variables
• Subsection with read-only data

• Like string literals

• Text Section (a.k.a Code Section)
• Program code

56

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

• Conceptually, the sections are laid
out next to each other

• Realistically, there are huge gaps
between them
• Because most programs don’t use all

that much memory

• The stack/heap sections can grow
in size if necessary

57

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

58

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

59

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

60

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

61

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

62

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

63

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

64

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

65

Stack

Heap

Static

Text
Address 0

Address 4294967295
(or something like that)

C memory layout

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello CS211\n”);

}

66

Stack

Heap

Static

Text
Program code goes in the Text
section (machine instructions)

Address 0

Address 4294967295
(or something like that)

Relating memory sections back to lifetimes

• Stack memory has the lifetime of the “scope”
• From open curly brace to close curly brace

• Local variables are here

• Static memory has the lifetime of the process
• From the start of main() until it returns

• Strings are here

• What if you want memory that outlives a function, but doesn’t live
for the entire duration of the program
• Heap memory! Claim with malloc()

67

68

• Pointers

• Address Sanitizer

• Arguments to main()

• Variable Lifetimes

• Memory Layout

Outline

69

• Review: strings

Bonus

Iterating through a string

void print_string_chars(char* string) {

for (size_t i=0; string[i] != ‘\0’; i++) {

printf(“String[%d] = ‘%c’\n”, i, string[i]);

}

}

• Note that we didn’t need a length this time!
• Just iterate until you find the null terminator

70

string_print.c

String literals cannot be modified

• const in C marks a variable as constant (a.k.a. immutable)
• Example:

const int x = 5;

x++; // Compilation error!

• String literals in C are of type const char*

const char* mystr = “Hello!\n”;

mystr[1] = ‘B’; // Compilation error!

• Just removing the “const” will result in a runtime crash instead…

71

const_strings.c

Making modifiable strings

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
• Need to be sure to copy over the ‘\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, ‘b’, ‘c’, and ‘\0’)

72

mutable_strings.c

	Default Section
	Slide 1: Lecture 05 Lifetimes and Memory

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Pointers Review
	Slide 5: Outline
	Slide 6: Pointers are another type of value
	Slide 7: Pointer examples
	Slide 8: Dereference a pointer to get the value it points at
	Slide 9: Possible pointer values
	Slide 10: A note on writing meaningful code
	Slide 11: Arrays passed into functions are just pointers

	Address Sanitizer
	Slide 12: Outline
	Slide 13: DANGER! Nothing stops you from going past the end of an array
	Slide 14: Address Sanitizer
	Slide 15: Example address sanitizer error
	Slide 16: Example address sanitizer error
	Slide 17: Example address sanitizer error
	Slide 18: Example address sanitizer error
	Slide 19: Example address sanitizer error
	Slide 20: Example address sanitizer error
	Slide 22: Live demos of AddressSanitizer
	Slide 23: Where the error happened may not but where the bug is
	Slide 24: Other AddressSanitizer errors
	Slide 25: Break + Say hi to your neighbors
	Slide 26: Break + Say hi to your neighbors

	Arguments to main
	Slide 27: Outline
	Slide 28: Passing arguments to main
	Slide 29: Real signature for main
	Slide 30: Pointer to a pointer
	Slide 31: Working with argv

	Variable Lifetimes
	Slide 32: Outline
	Slide 33: When is a pointer “valid”?
	Slide 34: Examples of variable lifetimes
	Slide 35: Examples of variable lifetimes
	Slide 36: Examples of variable lifetimes
	Slide 37: Examples of variable lifetimes
	Slide 38: Lifetimes go from creation to end brace }
	Slide 39: Lifetimes go from creation to end brace }
	Slide 40: Lifetimes go from creation to end brace }
	Slide 41: Lifetimes go from creation to end brace }
	Slide 42: Lifetimes go from creation to end brace }
	Slide 43: Lifetimes go from creation to end brace }
	Slide 44: Lifetimes go from creation to end brace }
	Slide 45: Lifetimes go from creation to end brace }
	Slide 46: Variable lifetimes are what makes loops work
	Slide 47: Dangling pointers reference invalid objects
	Slide 48: Dangling pointers reference invalid objects
	Slide 49: Dangling pointers are especially dangerous
	Slide 50: String literals are an exception to scoping rules
	Slide 51: Break + Question
	Slide 52: Break + Question

	Memory
	Slide 53: Outline
	Slide 54: Memory
	Slide 55: What is memory conceptually?
	Slide 56: C memory layout
	Slide 57: C memory layout
	Slide 58: C memory layout
	Slide 59: C memory layout
	Slide 60: C memory layout
	Slide 61: C memory layout
	Slide 62: C memory layout
	Slide 63: C memory layout
	Slide 64: C memory layout
	Slide 65: C memory layout
	Slide 66: C memory layout
	Slide 67: Relating memory sections back to lifetimes

	Wrapup
	Slide 68: Outline

	Bonus: string review
	Slide 69: Bonus
	Slide 70: Iterating through a string
	Slide 71: String literals cannot be modified
	Slide 72: Making modifiable strings

