Lecture 05
Lifetimes and Memory

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Spring 2023

Slides adapted from:
Jesse Tov, Vincent St-Amour

Northwestern

Administrivia

« Homework 1 due tonight
« Homework 2 will also release tonight, with a one-week deadline

« Lots of office hours today to help with questions

« Slip days allow you to submit late without penalty
« Use them when you need them

Today’s Goals

 Continue examples of Strings, Arrays, and Pointers
» Explain AddressSanitizer errors you'll get when working with them

* Discuss variable lifetimes: when is a variable no longer valid

» Understand memory and C memory layout
» The basis for pointers and variable lifetimes

Getting the code for today

cd ~/cs21l/lec/ (or wherever you put stuff)
tar -xkvf ~cs211/lec/05 lifetimes memory.tgz

cd 05 lifetimes memory/

Outline

* Pointers

» Address Sanitizer

» Arguments to main()

 Variable Lifetimes

 Memory Layout

Pointers are another type of value

 Values could be a number, like 5 or 6.27

 Or they could be a “pointer” to an object
 Points at the object, not the variable or value
« It points at the “chunk of memory”
 Technically, in C it holds the address of that memory

Z_pointer:

Pointer examples

double alpha = 72; alpha: |72
double* beta = α beta:
gamma:

double* gamma = beta;

* Pointers have a “value” that is some memory address
 Contains the “location” of some object in memory
 Conceptually an arrow pointing at that object

« Operator & gets the memory address of an object

Dereference a pointer to get the value it points at

void add two (int* n) { Operator * follows the

*n = *n + 2; pointer to interact with the
} value

« (Can be used to read or

int main (void) { write

int x = 15;

add_two (&x) ; « End result: functions have

printf (“sd\n”, x); the ability to directly modify

return 0; variables through pointers

Possible pointer values

» Uninitialized
unsigned long* zeta;

* Pointing at an existing object
char* letter ptr = &my char;

 Null (explicitly pointing at nothing)
int* p = NULL;
bool* b = NULL;
double* d = NULL;

« NULL works for any pointer type
« NULL is NOT the same as uninitialized (%3)
« Dereferencing a null pointer is an error (segfault)

A note on writing meaningful code

» Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
« false is implemented as zero as well

 So, technically, you could use any to mean any

« But humans will be the ones reading your code
« NULL "\0’, 0, and f£alse all have different meanings

* NULL means pointers
» '\0O" means the end of strings
« false means a Boolean value

0 means a number

Use the one that is
appropriate to the situation!

10

array_print.c

Arrays passed into functions are just pointers

. W?en you pass an array into a function, you don’t pass a copy of the
values

 Instead you pass a pointer to the start of the array
» Be sure to pass a length as well! (no way to determine that in C)

vold print array(int* values, int count) {

}

int main (void) {
int array(10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};
print array(array, 10);
return O;

}

11

Outline

* Pointers

 Address Sanitizer

» Arguments to main()

 Variable Lifetimes

 Memory Layout

DANGER! Nothing stops you from going past the end of an array

array_print.c

 C does not check whether your array accesses are valid
« It just tries to grab the value in the memory you asked for

« Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR

 Could result in anything happening

« If you're lucky, the code will crash
 But you will not always get lucky
 Be sure to always check if you're going past the end of the array

13

Address Sanitizer

« Automatically compiled in as part of your homework code

 Checks various accesses to memory for validity
* Produces long error messages that can be scary at first! But are really helpful!

 Error locations: (more on these “locations” on Thursday)
 Stack — local variable
 Global — global variable (usually a string)
« Heap — variable created with malloc ()

 Error types:
 buffer-overflow — past the end of an array of memory
« buffer-underflow — before the beginning of an array of memory (rare)
* various others

14

Example address sanitizer error

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7f££d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

15

Example address sanitizer error

:=238==ERROR:|AddressSanitizerI heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Error is coming from AddressSanitizer

16

Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Heap-buffer-overflow means past the end of an array created with malloc ()

17

Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inlexpand_charseq src/translate.c:74|
#1 0x55a44c0d6c23 in gr expand charseq harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

The error happened in expand charseqg () in src/translate.c line 74

18

Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Full “stack trace” of functions that were called to get to where the error happened

19

Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in| interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 injexpand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£f££f7£c0: 00 00 00 00 00 00 0O 0O OO OO OO OO OO OO OO0 OO

(more here that wouldn’t fit on the slide)

Where the array was created in the first place (expand charseq () in translate.c line 62)

20

Live demos of AddressSanitizer

« With pointers, arrays, and strings

 Things to try
* Intentionally go past end of array
» Go before beginning of array
« Use a pointer as an array
* NULL pointer

 Malformed string with printf

array_print.c
string_print.c

22

Where the error happened may not but where the bug is

 AddressSanitizer usually points to a line where the array is being
accessed

 But the bug is often because an index is out of bounds
 Or because the pointer passed in was invalid to begin with

* This is a new class of problem you’ll all have to deal with
* Errors that occur because of bugs elsewhere

23

Other AddressSanitizer errors

string_print.c

 Dereferencing a NULL pointer

src/string print.c:4:28: runtime error: load of null pointer of type 'const char'

AddressSanitizer:DEADLYSIGNAL

==2838978==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x000000400912 bp
0x000000000000 sp 0x7ffel379cecO TO)

==2838978==The signal 1s caused by a READ memory access.
==2838978==Hint: address points to the zero page.
SCARINESS: 10 (null-deref)
#0 0x400911 in print string chars src/string print.c:4
#1 0x400a33 in main src/string print.c:12
#2 Ox7fefdbf5a492 in libc start main ../csu/libc-start.c:314
#3 0x40082d in start (/home/branden/cs211/f21/lec/04 arrays strings/string print+0x40082d)

AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV src/string print.c:4 in print string chars

——2838978==ABORTING 24

Break + Say hi to your neighbors

* Things to share
 Name

« Major

« One of the following
 Favorite Candy
 Favorite Pokemon
 Favorite Emoji

25

Break + Say hi to your neighbors

* Things to share
« Name -Branden

« Major -Electrical and Computer Engineering, and Computer Science

« One of the following
« Favorite Candy - Twix
« Favorite Pokemon - Eevee
- Favorite Emoji -

26

Outline

* Pointers

» Address Sanitizer

* Arguments to main()

 Variable Lifetimes

 Memory Layout

Passing arguments to main

« We've been using "int main (void);” aSmain ()’s signature

 Actually, main () can receive arguments, which are what the user
called the program with

o\°

./programname argl arg2 arg3

28

Real signature for main

 The real signature for main () is:

int main(int argc, char* argvl[]);

« argc — the number of strings in argv (length of argv)

* argv — an array of strings (array of char*)

 The first string is the name of the program itself
« The remaining strings are the arguments to the function

* By using main (void), we've just been ignoring these
« Which is fine, because they aren’t always useful

29

Pointer to a pointer

Run program as: ./hello argl arg2

argv: m

char* argv[] — array of pointers

\hl

\II

\Il

\\OI

\1[

\\OI

\2[

\\OI

30

Working with argv argv_print.c

» Let’s print out all the arguments to the function

int mailn(int argc, char* argvl[]) {
for (int 1=0; 1<argc; 1++) {
printf (“Argument %d: \”%s\”\n”, i, argv[i]);

return 0;

Outline

* Pointers

» Address Sanitizer

» Arguments to main()

* Variable Lifetimes

 Memory Layout

When is a pointer “valid™?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
« Variables “live” until the end of the scope they were created in
« Scopes are defined by { }

« Example:

volid some function (void) {
int a = 5;
} G— o gOeS out of scope” here
The variable stops being “alive”

33

Examples of variable lifetimes

return 0O;

34

Examples of variable lifetimes

return 0O;

35

Examples of variable lifetimes

=» return 0O;

36

Examples of variable lifetimes

int main(void) {
int a = 5;
printf (“$d\n”, a);
return O;
*}

» Variable a is no longer “alive” at this point

« It “poofs” out of existence
 The variable is no longer valid

37

Lifetimes go from creation to end brace }

test (17);

=» vold test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;
printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
- int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
- 1f (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);
volid test (int n) { a.
int a = 5; b:
if (n >= a) | '
= int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
}

17

5

16

Lifetimes go from creation to end brace }

test (17);

volid test (int n) { a.

int a = 5;
1if (n >= a) {
int b = 16;
—>> printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17

5

16

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

-> }

printf (“$d\n”, n);
}

Q)

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

—=» printf (“%d\n”, n);
}

17

Referring to variable b

at this point would be
a compilation error

44

Lifetimes go from creation to end brace }

test (17);
A X
void test (int n) { 3 Z}:
int a = 5;

1if (n >= a) {

int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
=> }

45

Variable lifetimes are what makes loops work

« Variables created inside of loops only exist until the end of that
iteration of the loop
* i.e. they only exist until the next end curly brace }

while (n < 5) {

int 1 = 1; A new variable i is created

} n += 1i; each time the loop repeats

46

Dangling pointers reference invalid objects

int* get pointer to value(void) {
int n = 5;

return &n;

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

47

Dangling pointers reference invalid objec

int* get pointer to value(void) {
int n = 5;
return &n;j;

} e

(S

dangling_pointer.c

n goes out of scope at the end of this function

So what does the pointer point to???

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

48

Dangling pointers are especially dangerous

 Accessing a dangling pointer iS UNDEFINED BEHAVIOR
 Anything could happen!

« If you are lucky: segmentation fault (a.k.a. SIGSEGV)
» The OS kills your program because it accesses invalid memory

o If you are unlucky: anything at all

» Including returning the correct result the first time you run it and an
incorrect result the second time

 AddressSanitizer checks for this and will gift you a crash

49

String literals are an exception to scoping rules [stinglfetime

» String literals always exist
 This is why they cannot be modified. They might be reused later

const char* get poilnter to string(void) {

return “oh, hello!”; // this is okay for string literals

int main (void) {
const char* string = get pointer to string();
printf (“$s on broadway\n”, string);

return 0O;

50

Break + Question

int* get array poilnter (int* array, int length) {

1f (length > 2) {

‘

return & (arrayl[2]);

} . | Is it valid to return a pointer here?
return array;
} —
int main (void) {
int array([] = {1, 2, 3, 4, 5};
int* x = get array poilnter(array, 5);

printf ("sd\n”, *x); g=———— | \Vill this access fault?

return 0O;

51

Break + Question

int* get array poilnter (int* array, int length) {

if (length > 2) {

‘

return & (arrayl[2]); - : :
\ _ | Is it valid to return a pointer here? Yes

return array;

) — This code works because the lifetime of

the array is longer than the lifetime of
the get array pointer () function.

int main (void) {

int array([] = {1, 2, 3, 4, 5};

int* x = get array pointer (array, 95);

printf ("sd\n”, *x); g \\i|| this access fault? No

return 0O;

52

Outline

* Pointers

» Address Sanitizer

» Arguments to main()

 Variable Lifetimes

« Memory Layout

Memory

« Computers have memory
« RAM sticks

 Also some dedicated memory
inside of the processor

« The operating system of the computer hands out chunks of
memory to running processes
« Like our compiled C programs

« While they are running, they have a certain amount of memory reserved
for their use

* You can see this in Task Manager on Windows (or Top on Linux)

54

What is memory conceptually?

* A nearly infinite series of slots that can
 Units of memory are known as bytes

DE USeC

* S0 4 GB of RAM is memory with 4294967296 bytes

- Typical variables take 1-8 bytes

to hold data

 Each slot in the memory has an index: a memory address
 Pointers are the memory address of a variable

55

C memory layout

« Stack Section
 Local variables
« Function arguments

» Heap Section
« Memory granted through malloc ()

» Static Section (a.k.a. Data Section)
 Global variables
« Static function variables
« Subsection with read-only data
* Like string literals

» Text Section (a.k.a Code Section)
* Program code

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

56

C memory layout
]] Address 4294967295
« Conceptually, the sections are laid (or something like that)
out next to each other

» Realistically, there are huge gaps
between them

« Because most programs don‘t use all
that much memory

* The stack/heap sections can grow

in size if necessary
Address 0 —>

Stack

\
t

Heap

Static

Text

57

C memory layout

int a;
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

58

C memory layout

_ Address 4294967295 3
(or something like that)
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4);

printf (“Hello CS211\n”);

Address 0 —>

Stack

Heap

Static

Text

59

C memory layout

int a;

void foo (

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

60

C memory layout

_ Address 4294967295
int a; (or something like that)

void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4);

printf (“Hello CS211\n”);

Address 0 —>

Stack

Heap

Static

Text

61

C memory layout

int a;
void fooishort b {

static int ¢ = 3;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

62

C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d =](char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

63

C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf {“"Hello CS211\n”};

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

64

C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n” | ;

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

65

C memory layout

int a;
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Program code goes in the Text
section (machine instructions)

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

66

Relating memory sections back to lifetimes

 Stack memory has the lifetime of the “scope”
« From open curly brace to close curly brace
* Local variables are here

e Static memory has the lifetime of the process
* From the start of main () until it returns

» Strings are here

« What if you want memory that outlives a function, but doesn't live
for the entire duration of the program
« Heap memory! Claim with malloc ()

67

Outline

* Pointers

» Address Sanitizer

» Arguments to main()

 Variable Lifetimes

 Memory Layout

» Review: strings

Iterating through a string string_print.c

vold print string chars(char* string)
for (size t i=0; stringl[i] != “\0’; i++) {
printf (“"String[%d] = ‘%c’\n”, i, stringli]);

 Note that we didn’t need a length this time!
« Just iterate until you find the null terminator

70

const_strings.c

String literals cannot be modified

» const in C marks a variable as constant (a.k.a. immutable)

« Example:
const 1nt x = 5;
x++; // Compilation error!

« String literals in C are of type const char*

const char* mystr = “Hello!\n”;
mystr[1l] = ‘B’; // Compilation error!

 Just removing the “const” will result in a runtime crash instead...

71

Making modifiable strings mutable_strings.c

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
« Need to be sure to copy over the "\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, 'b’, 'c/, and "\0")

72

	Default Section
	Slide 1: Lecture 05 Lifetimes and Memory

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Getting the code for today

	Pointers Review
	Slide 5: Outline
	Slide 6: Pointers are another type of value
	Slide 7: Pointer examples
	Slide 8: Dereference a pointer to get the value it points at
	Slide 9: Possible pointer values
	Slide 10: A note on writing meaningful code
	Slide 11: Arrays passed into functions are just pointers

	Address Sanitizer
	Slide 12: Outline
	Slide 13: DANGER! Nothing stops you from going past the end of an array
	Slide 14: Address Sanitizer
	Slide 15: Example address sanitizer error
	Slide 16: Example address sanitizer error
	Slide 17: Example address sanitizer error
	Slide 18: Example address sanitizer error
	Slide 19: Example address sanitizer error
	Slide 20: Example address sanitizer error
	Slide 22: Live demos of AddressSanitizer
	Slide 23: Where the error happened may not but where the bug is
	Slide 24: Other AddressSanitizer errors
	Slide 25: Break + Say hi to your neighbors
	Slide 26: Break + Say hi to your neighbors

	Arguments to main
	Slide 27: Outline
	Slide 28: Passing arguments to main
	Slide 29: Real signature for main
	Slide 30: Pointer to a pointer
	Slide 31: Working with argv

	Variable Lifetimes
	Slide 32: Outline
	Slide 33: When is a pointer “valid”?
	Slide 34: Examples of variable lifetimes
	Slide 35: Examples of variable lifetimes
	Slide 36: Examples of variable lifetimes
	Slide 37: Examples of variable lifetimes
	Slide 38: Lifetimes go from creation to end brace }
	Slide 39: Lifetimes go from creation to end brace }
	Slide 40: Lifetimes go from creation to end brace }
	Slide 41: Lifetimes go from creation to end brace }
	Slide 42: Lifetimes go from creation to end brace }
	Slide 43: Lifetimes go from creation to end brace }
	Slide 44: Lifetimes go from creation to end brace }
	Slide 45: Lifetimes go from creation to end brace }
	Slide 46: Variable lifetimes are what makes loops work
	Slide 47: Dangling pointers reference invalid objects
	Slide 48: Dangling pointers reference invalid objects
	Slide 49: Dangling pointers are especially dangerous
	Slide 50: String literals are an exception to scoping rules
	Slide 51: Break + Question
	Slide 52: Break + Question

	Memory
	Slide 53: Outline
	Slide 54: Memory
	Slide 55: What is memory conceptually?
	Slide 56: C memory layout
	Slide 57: C memory layout
	Slide 58: C memory layout
	Slide 59: C memory layout
	Slide 60: C memory layout
	Slide 61: C memory layout
	Slide 62: C memory layout
	Slide 63: C memory layout
	Slide 64: C memory layout
	Slide 65: C memory layout
	Slide 66: C memory layout
	Slide 67: Relating memory sections back to lifetimes

	Wrapup
	Slide 68: Outline

	Bonus: string review
	Slide 69: Bonus
	Slide 70: Iterating through a string
	Slide 71: String literals cannot be modified
	Slide 72: Making modifiable strings

