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Administrivia

« Homework 1 due tonight
« Homework 2 will also release tonight, with a one-week deadline

« Lots of office hours today to help with questions

« Slip days allow you to submit late without penalty
« Use them when you need them



Today’s Goals

 Continue examples of Strings, Arrays, and Pointers
» Explain AddressSanitizer errors you'll get when working with them

* Discuss variable lifetimes: when is a variable no longer valid

» Understand memory and C memory layout
» The basis for pointers and variable lifetimes



Getting the code for today

cd ~/cs21l/lec/ (or wherever you put stuff)
tar -xkvf ~cs211/lec/05 lifetimes memory.tgz

cd 05 lifetimes memory/



Outline

* Pointers

» Address Sanitizer

» Arguments to main()

 Variable Lifetimes

 Memory Layout




Pointers are another type of value

 Values could be a number, like 5 or 6.27

 Or they could be a “pointer” to an object
 Points at the object, not the variable or value
« It points at the “chunk of memory”
 Technically, in C it holds the address of that memory

Z_pointer:




Pointer examples

double alpha = 72; alpha: |72
double* beta = &alpha; beta:
gamma:

double* gamma = beta;

* Pointers have a “value” that is some memory address
 Contains the “location” of some object in memory
 Conceptually an arrow pointing at that object

« Operator & gets the memory address of an object



Dereference a pointer to get the value it points at

void add two (int* n) {  Operator * follows the

*n = *n + 2; pointer to interact with the
} value

« (Can be used to read or

int main (void) { write

int x = 15;

add_two (&x) ; « End result: functions have

printf (“sd\n”, x); the ability to directly modify

return 0; variables through pointers



Possible pointer values

» Uninitialized
unsigned long* zeta;

* Pointing at an existing object
char* letter ptr = &my char;

 Null (explicitly pointing at nothing)
int* p = NULL;
bool* b = NULL;
double* d = NULL;

« NULL works for any pointer type
« NULL is NOT the same as uninitialized (%3)
« Dereferencing a null pointer is an error (segfault)



A note on writing meaningful code

» Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
« false is implemented as zero as well

 So, technically, you could use any to mean any

« But humans will be the ones reading your code
« NULL "\0’, 0, and f£alse all have different meanings

* NULL means pointers
» '\0O" means the end of strings
« false means a Boolean value

0 means a number

Use the one that is
appropriate to the situation!
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array_print.c

Arrays passed into functions are just pointers

. W?en you pass an array into a function, you don’t pass a copy of the
values

 Instead you pass a pointer to the start of the array
» Be sure to pass a length as well! (no way to determine that in C)

vold print array(int* values, int count) {

}

int main (void) {
int array(10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};
print array(array, 10);
return O;

}
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DANGER! Nothing stops you from going past the end of an array

array_print.c

 C does not check whether your array accesses are valid
« It just tries to grab the value in the memory you asked for

« Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR

 Could result in anything happening

« If you're lucky, the code will crash
 But you will not always get lucky
 Be sure to always check if you're going past the end of the array
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Address Sanitizer

« Automatically compiled in as part of your homework code

 Checks various accesses to memory for validity
* Produces long error messages that can be scary at first! But are really helpful!

 Error locations: (more on these “locations” on Thursday)
 Stack — local variable
 Global — global variable (usually a string)
« Heap — variable created with malloc ()

 Error types:
 buffer-overflow — past the end of an array of memory
« buffer-underflow — before the beginning of an array of memory (rare)
* various others
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Example address sanitizer error

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7f££d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)
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Example address sanitizer error

:=238==ERROR:|AddressSanitizerI heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Error is coming from AddressSanitizer
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Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Heap-buffer-overflow means past the end of an array created with malloc ()
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Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inlexpand_charseq src/translate.c:74|
#1 0x55a44c0d6c23 in gr expand charseq harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

The error happened in expand charseqg () in src/translate.c line 74
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Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Full “stack trace” of functions that were called to get to where the error happened
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Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in| interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 injexpand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£f££f7£c0: 00 00 00 00 00 00 0O 0O OO OO OO OO OO OO OO0 OO

(more here that wouldn’t fit on the slide)

Where the array was created in the first place (expand charseq () in translate.c line 62)
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Live demos of AddressSanitizer

« With pointers, arrays, and strings

 Things to try
* Intentionally go past end of array
» Go before beginning of array
« Use a pointer as an array
* NULL pointer

 Malformed string with printf

array_print.c
string_print.c

22




Where the error happened may not but where the bug is

 AddressSanitizer usually points to a line where the array is being
accessed

 But the bug is often because an index is out of bounds
 Or because the pointer passed in was invalid to begin with

* This is a new class of problem you’ll all have to deal with
* Errors that occur because of bugs elsewhere
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Other AddressSanitizer errors

string_print.c

 Dereferencing a NULL pointer

src/string print.c:4:28: runtime error: load of null pointer of type 'const char'

AddressSanitizer:DEADLYSIGNAL

==2838978==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x000000400912 bp
0x000000000000 sp 0x7ffel379cecO TO)

==2838978==The signal 1s caused by a READ memory access.
==2838978==Hint: address points to the zero page.
SCARINESS: 10 (null-deref)
#0 0x400911 in print string chars src/string print.c:4
#1 0x400a33 in main src/string print.c:12
#2 Ox7fefdbf5a492 in  libc start main ../csu/libc-start.c:314
#3 0x40082d in start (/home/branden/cs211/f21/lec/04 arrays strings/string print+0x40082d)

AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV src/string print.c:4 in print string chars

——2838978==ABORTING 24



Break + Say hi to your neighbors

* Things to share
 Name

« Major

« One of the following
 Favorite Candy
 Favorite Pokemon
 Favorite Emoji

25



Break + Say hi to your neighbors

* Things to share
« Name -Branden

« Major -Electrical and Computer Engineering, and Computer Science

« One of the following
« Favorite Candy - Twix
« Favorite Pokemon - Eevee
- Favorite Emoji -

26
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Passing arguments to main

« We've been using "int main (void);” aSmain ()’s signature

 Actually, main () can receive arguments, which are what the user
called the program with

o\°

./programname argl arg2 arg3

28



Real signature for main

 The real signature for main () is:

int main(int argc, char* argvl[]);

« argc — the number of strings in argv (length of argv)

* argv — an array of strings (array of char*)

 The first string is the name of the program itself
« The remaining strings are the arguments to the function

* By using main (void), we've just been ignoring these
« Which is fine, because they aren’t always useful

29



Pointer to a pointer

Run program as: ./hello argl arg2

argv: m

char* argv[] — array of pointers

\hl

\II

\Il

\\OI

\1[

\\OI

\2[

\\OI

30



Working with argv argv_print.c

» Let’s print out all the arguments to the function

int mailn(int argc, char* argvl[]) {
for (int 1=0; 1<argc; 1++) {
printf (“Argument %d: \”%s\”\n”, i, argv[i]);

return 0;
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When is a pointer “valid™?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
« Variables “live” until the end of the scope they were created in
« Scopes are defined by { }

« Example:

volid some function (void) {
int a = 5;
} G— o gOeS out of scope” here
The variable stops being “alive”

33



Examples of variable lifetimes

return 0O;

34



Examples of variable lifetimes

return 0O;

35



Examples of variable lifetimes

=» return 0O;
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Examples of variable lifetimes

int main(void) {
int a = 5;
printf (“$d\n”, a);
return O;
*}

» Variable a is no longer “alive” at this point

« It “poofs” out of existence
 The variable is no longer valid

37



Lifetimes go from creation to end brace }

test (17);

=» vold test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;
printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17




Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
- int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17




Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
- 1f (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17




Lifetimes go from creation to end brace }

test (17);
volid test (int n) { a.
int a = 5; b:
if (n >= a) | '
= int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
}

17

5

16




Lifetimes go from creation to end brace }

test (17);

volid test (int n) { a.

int a = 5;
1if (n >= a) {
int b = 16;
—>> printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17

5

16




Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

-> }

printf (“$d\n”, n);
}

Q)
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Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

—=»  printf (“%d\n”, n);
}

17

Referring to variable b

at this point would be
a compilation error
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Lifetimes go from creation to end brace }

test (17);
A X
void test (int n) { 3 Z}:
int a = 5;

1if (n >= a) {

int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
=> }

45



Variable lifetimes are what makes loops work

« Variables created inside of loops only exist until the end of that
iteration of the loop
* i.e. they only exist until the next end curly brace }

while (n < 5) {

int 1 = 1; A new variable i is created

} n += 1i; each time the loop repeats

46



Dangling pointers reference invalid objects

int* get pointer to value(void) {
int n = 5;

return &n;

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

47



Dangling pointers reference invalid objec

int* get pointer to value(void) {
int n = 5;
return &n;j;

} e

(S

dangling_pointer.c

n goes out of scope at the end of this function

So what does the pointer point to???

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

48




Dangling pointers are especially dangerous

 Accessing a dangling pointer iS UNDEFINED BEHAVIOR
 Anything could happen!

« If you are lucky: segmentation fault (a.k.a. SIGSEGV)
» The OS kills your program because it accesses invalid memory

o If you are unlucky: anything at all

» Including returning the correct result the first time you run it and an
incorrect result the second time

 AddressSanitizer checks for this and will gift you a crash

49



String literals are an exception to scoping rules  [stinglfetime

» String literals always exist
 This is why they cannot be modified. They might be reused later

const char* get poilnter to string(void) {

return “oh, hello!”; // this is okay for string literals

int main (void) {
const char* string = get pointer to string();
printf (“$s on broadway\n”, string);

return 0O;

50



Break + Question

int* get array poilnter (int* array, int length) {

1f (length > 2) {

‘

return & (arrayl[2]);

} . | Is it valid to return a pointer here?
return array;
} —
int main (void) {
int array([] = {1, 2, 3, 4, 5};
int* x = get array poilnter(array, 5);

printf ("sd\n”, *x); g=———— | \Vill this access fault?

return 0O;

51



Break + Question

int* get array poilnter (int* array, int length) {

if (length > 2) {

‘

return & (arrayl[2]); - : :
\ _ | Is it valid to return a pointer here? Yes

return array;

) — This code works because the lifetime of

the array is longer than the lifetime of
the get array pointer () function.

int main (void) {

int array([] = {1, 2, 3, 4, 5};

int* x = get array pointer (array, 95);

printf ("sd\n”, *x); g \\i|| this access fault? No

return 0O;
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Memory

« Computers have memory
« RAM sticks

 Also some dedicated memory
inside of the processor

« The operating system of the computer hands out chunks of
memory to running processes
« Like our compiled C programs

« While they are running, they have a certain amount of memory reserved
for their use

* You can see this in Task Manager on Windows (or Top on Linux)
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What is memory conceptually?

* A nearly infinite series of slots that can
 Units of memory are known as bytes

DE USeC

* S0 4 GB of RAM is memory with 4294967296 bytes

- Typical variables take 1-8 bytes

to hold data

 Each slot in the memory has an index: a memory address
 Pointers are the memory address of a variable
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C memory layout

« Stack Section
 Local variables
« Function arguments

» Heap Section
« Memory granted through malloc ()

» Static Section (a.k.a. Data Section)
 Global variables
« Static function variables
« Subsection with read-only data
* Like string literals

» Text Section (a.k.a Code Section)
* Program code

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

56



C memory layout
] ] Address 4294967295
« Conceptually, the sections are laid (or something like that)
out next to each other

» Realistically, there are huge gaps
between them

« Because most programs don‘t use all
that much memory

* The stack/heap sections can grow

in size if necessary
Address 0 —>

Stack

\
t

Heap

Static

Text
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C memory layout

int a;
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

_ Address 4294967295 3
(or something like that)
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4);

printf (“Hello CS211\n”);

Address 0 —>

Stack

Heap

Static

Text

59



C memory layout

int a;

void foo (

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text

60



C memory layout

_ Address 4294967295
int a; (or something like that)

void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4);

printf (“Hello CS211\n”);

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

int a;
void fooishort b {

static int ¢ = 3;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d =](char*) malloc(4) ;

printf (“Hello CS211\n”);

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf {“"Hello CS211\n”};

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

int a;
void fooishort b {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n” | ;

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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C memory layout

int a;
void foo(short b) {

static int ¢ = 3;

char* d;

d = (char*) malloc(4) ;

printf (“Hello CS211\n”);

Program code goes in the Text
section (machine instructions)

Address 4294967295
(or something like that)

Address 0 —>

Stack

Heap

Static

Text
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Relating memory sections back to lifetimes

 Stack memory has the lifetime of the “scope”
« From open curly brace to close curly brace
* Local variables are here

e Static memory has the lifetime of the process
* From the start of main () until it returns

» Strings are here

« What if you want memory that outlives a function, but doesn't live
for the entire duration of the program
« Heap memory! Claim with malloc ()
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Outline

* Pointers

» Address Sanitizer

» Arguments to main()

 Variable Lifetimes

 Memory Layout




» Review: strings




Iterating through a string string_print.c

vold print string chars(char* string)
for (size t i=0; stringl[i] != “\0’; i++) {
printf (“"String[%d] = ‘%c’\n”, i, stringli]);

 Note that we didn’t need a length this time!
« Just iterate until you find the null terminator
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const_strings.c

String literals cannot be modified

» const in C marks a variable as constant (a.k.a. immutable)

« Example:
const 1nt x = 5;
x++; // Compilation error!

« String literals in C are of type const char*

const char* mystr = “Hello!\n”;
mystr[1l] = ‘B’; // Compilation error!

 Just removing the “const” will result in a runtime crash instead...
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Making modifiable strings mutable_strings.c

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
« Need to be sure to copy over the "\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, 'b’, 'c/, and "\0")
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