
Lecture 04
Pointers

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov

Administrivia

• EX3 due today

• EX4 available
• Slowing down. Not due until next week Tuesday

• This is the last set of C exercises. They’ll pick up again in week 6

• Quiz today
• Setting an alarm for 3:00 pm

• Homework 1 due Thursday
• Warning: much more work than the exercises are!

2

Gradescope demo

• Submitting code from terminal

• Seeing results in Gradescope
• Be sure to either follow link or navigate to assignment again

• Can submit as many times as you want
• We may later rate-limit your submissions

• Later assignments WILL have hidden tests

• Use the tests you fail on Gradescope to write your own tests!

3

Example Gradescope output

• Failure is that Expected and Received Output did not match

• You can duplicate this test locally, which is easier to fix!
• Create a new test that runs charseq_length() on “abc”

4

Test code locally and submit to Gradescope when ready

• Just running make compiles and runs tests

• I’ll recompile my code every few lines
• That way there are never too many bugs to fix at once

• Then I make sure that I’m passing all the tests before uploading
• And I add new tests whenever I see something weird I’m failing on

Gradescope

5

Today’s Goals

• Introduce pointers in C
• Why do they exist?

• What are they useful for?

• How do we use them?

• How do they connect to arrays?

• Explore AddressSanitizer:
• A tool that helps explain pointer errors

6

Getting files for today’s lecture

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/04_pointers.tgz

cd 04_pointers/

• A couple people asked for me to share the code from lectures
• It’s already shared! You can grab your own copy whenever

• I included “finished” versions of code we write

• Usually has working versions of code from slides too

7

8

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

Remember: values, objects, and variables

• Values are the actual information we want to work with
• Numbers, Strings, Images, etc.
• Example: 3 is an int value

• An object is a chunk of memory that can hold a value of a particular
type.
• Example: function f has a parameter int x

• Each type f is called, a “fresh” object that can hold an int is “created”

• A variable is the name of an object

• Assigning to a variable changes the value stored in the object named by
the variable

9

Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

10

z: 5

z_pointer:

C syntax for pointers

• Pointers are a family of types
• Each pointer is an existing C type, followed by a *

• To get the pointer to an existing variable, use the & operator
• Returns the address of that variable

• Example:

int z = 5;

int* z_pointer = &z;

11

z: 5

z_pointer:

Longer pointer example

1. double alpha;

12

alpha: ???

What is the initial value of alpha?

longer_pointers.c

Longer pointer example

1. double alpha;

13

alpha: 🐝

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

14

alpha: 🐝

beta: ???

What is the initial value of beta?

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

15

alpha: 🐝

beta: 🐝

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

16

alpha: 🐝

beta: 🐝

gamma: 🐝

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

17

alpha: 🐝

beta:

gamma: 🐝

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

18

alpha: 🐝

beta:

gamma:

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

19

alpha: 🐝

beta:

gamma:

test: true

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

20

alpha: -7.362

beta:

gamma:

test: true

longer_pointers.c

Dereferencing a pointer

• Pointers can be used to read or modify the value in the object
pointed at

• The * operator is used for getting/setting the value in the object
• This is called “dereferencing” the pointer

• Not multiply in this context

• Examples:
printf(“%d\n”, *my_int_pointer);

*my_int_pointer = 15;

21

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

8. test = (*beta < 0); // still true!

22

alpha: -7.362

beta:

gamma:

test: true

longer_pointers.c

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

8. test = (*beta < 0);

9. *gamma = 14.3

23

alpha: 14.3

beta:

gamma:

test: true

longer_pointers.c

Possible pointer values

• Uninitialized
unsigned long* zeta;

• Pointing at an existing object
char* letter_ptr = &my_char;

• Null (explicitly pointing at nothing)
int* p = NULL;

bool* b = NULL;

double* d = NULL;

• NULL works for any pointer type
• NULL is NOT the same as uninitialized (🐝)
• Dereferencing a null pointer is an error (segfault)

24

Some things to remember about pointers

1. Remember that a pointer is a type
• int*, char*, short*, bool*, double*, size_t*, etc.

2. Think carefully about whether the pointer is being modified or
the value in the object it points to
• my_pointer = &x; // modifies which object we are pointing at

• *my_pointer = x; // modifies the value in the object we are pointing at

3. Remember that pointer variables are themselves variables
• They have values: the address of the object being pointed at

• They name objects: memory is allocated to hold the address

25

Break + Question

int a = 15;

int* b = &a;

int* c = b;

*c = 7;

What are the values of:

a =

*b =

c =

26

Break + Question

int a = 15;

int* b = &a;

int* c = b;

*c = 7;

What are the values of:

a = 7 // set by *c=7

*b =

c =

27

Break + Question

int a = 15;

int* b = &a;

int* c = b;

*c = 7;

What are the values of:

a = 7 // set by *c=7

*b = 7 // points to value of a

c =

28

Break + Question

int a = 15;

int* b = &a;

int* c = b;

*c = 7;

What are the values of:

a = 7 // set by *c=7

*b = 7 // points to value of a

c = &a // holds the address of a

29

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x;

2. int * x;

3. int *x;

30

// I strongly recommend you use this

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this

2. int * x;

3. int *x;

• The * operator also means multiplication
signed long w = *t * *v; // multiply values referenced

// by the pointers t and v 🤯

31

Never define multiple variables at once

• You can define multiple variables at once in C

double x, y, radius;

Equivalent code:

double x;

double y;

double radius;

32

Never define multiple variables at once

• But this breaks when you’re using pointers

double* x, y, radius;

Equivalent code:

double* x;

double y;

double radius;

• To write that line correctly, you need to write:
double *x, *y, *radius; OR double * x, * y, * radius;

• Or just never ever declare multiple variables in the same line!

• That’s the CS211 style rule

33

Not pointers!!! 😱

Full CS211 C style guidelines

• https://nu-cs211.github.io/cs211-files/cstyle.html

• Read them and make sure you follow them for homework
• 5-10% of your grade for each homework is based on style

• We’ll be gentler about it on this first homework

34

https://nu-cs211.github.io/cs211-files/cstyle.html

35

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

Pointers functions directly modify values inside variables

• Normally, functions get a copy of the value inside the variable

• With pointers, functions can directly modify the variable
• The function gets a copy of the pointer to the variable

36

Example programming

1. Add two to a variable with and without pointers

37

add-starter.c

Adding two to a variable WITHOUT pointers

int add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

38

add_without_pointers.c

Adding two to a variable WITH pointers

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

39

add_with_pointers.c

Side-by-side comparison of without/with pointers

int add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

40

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

Example programming

1. Add two to a variable with and without pointers

2. Use pointers to initialize a struct

41

struct-starter.c

Another example: what if we want to pass a struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

int main(void){

plant_t plant_a;

initialize_oak_tree(&plant_a);

return 0;

}

42

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

struct_with_pointers.c

Shortcut for pointers to structs

• C programs end up using pointers to structs A LOT

• It’s annoying to type (*struct).field all the time
• So we made a shortcut. These two mean exactly the same thing:

(*struct).field

struct->field (that’s dash and greater than)

• This is known as “syntactic sugar”

• Bonus syntax to make common things easier

43

Example programming

1. Add two to a variable with and without pointers

2. Use pointers to initialize a struct

3. Use pointers to print a struct

44

struct-starter.c

Adding a function to print the struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

void print_plant(plant_t* plant){

printf(“Plant is %d meters tall and ”

”has %d leaves.\n”,

plant->height, plant->num_leaves);

if (!plant->watered) {

printf(“\tIt needs to be watered!\n”);

}

}

45

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

struct_with_pointers.c

Scanf example

• scanf() uses pointers to write to the variables you pass it

int x = 0;

int count = scanf(“%d”, &x);

• Pointers allow scanf() to read results directly into your variable

• Pointers also scanf() to simultaneously return the number of arguments
matched

46

Break + Question

double x = 7.0;

double* xptr = &x;

*xptr += 3.0;

x = x / 4.0;

printf(“%f\n”, *xptr);

What value prints?

47

Break + Question

double x = 7.0;

double* xptr = &x;

*xptr += 3.0;

x = x / 4.0;

printf(“%f\n”, *xptr);

What value prints? 2.5

48

49

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

Reminder: arrays and strings

int array_x[5] = {1, 2, 3, 4, 5};

const char* phrase = “The cake is a lie”;

50

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

array_x: 1 2 3 4 5

The name of the array is like a pointer to the first element

• You can treat the name of the array like a pointer
• It basically is one

• You could dereference it, and you’ll get the value in the first slot of
the array

• Two ramifications of this:
• You can’t pass arrays into functions, only pointers

• Array indexing is identical to pointer arithmetic

51

Arrays passed into functions are just pointers

• When you pass an array into a function, you don’t pass a copy of the
values
• Instead you pass a pointer to the start of the array
• Be sure to pass a length as well! (no way to determine that in C)

void print_array(int* values, int count) {

. . .

}

int main(void) {

int array[10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};

print_array(array, 10);

return 0;

}

52

array_print.c

Square brackets are the same as adding to the pointer

• Indexing into arrays is just adding to the pointer value
• Example, these two are equivalent:

array[10] // array indexing

*(array+10) // pointer arithmetic

• As are these two: (both result in a pointer)

&(array[7])

array+7

53

A note on writing meaningful code

• Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
• false is implemented as zero as well

• So, technically, you could use any to mean any

• But humans will be the ones reading your code
• NULL ‘\0’, 0, and false all have different meanings

• NULL means pointers

• ‘\0’ means the end of strings

• false means a Boolean value

• 0 means a number

54

Use the one that is
appropriate to the situation!

55

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

DANGER! Nothing stops you from going past the end of an array

• C does not check whether your array accesses are valid
• It just tries to grab the value in the memory you asked for

• Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR
• Could result in anything happening

• If you’re lucky, the code will crash
• But you will not always get lucky

• Be sure to always check if you’re going past the end of the array

56

array_print.c

Address Sanitizer

• Automatically compiled in as part of your homework code

• Checks various accesses to memory for validity
• Produces long error messages that can be scary at first! But are really helpful!

• Error locations: (more on these “locations” on Thursday)
• Stack – local variable
• Global – global variable (usually a string)
• Heap – variable created with malloc()

• Error types:
• buffer-overflow – past the end of an array of memory
• buffer-underflow – before the beginning of an array of memory (rare)
• various others

57

Example address sanitizer error

58

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Example address sanitizer error

59

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Error is coming from AddressSanitizer

Example address sanitizer error

60

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Heap-buffer-overflow means past the end of an array created with malloc()

Example address sanitizer error

61

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

The error happened in expand_charseq() in src/translate.c line 74

Example address sanitizer error

62

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Full “stack trace” of functions that were called to get to where the error happened

Example address sanitizer error

63

===

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7ffd8caf8c10 sp 0x7ffd8caf8c00

WRITE of size 1 at 0x602000000016 thread T0

SCARINESS: 31 (1-byte-write-heap-buffer-overflow)

#0 0x55a44c0d8242 in expand_charseq src/translate.c:74

#1 0x55a44c0d6c23 in gr_expand_charseq harness/hw02_tester.c:37

#2 0x55a44c0d7394 in main harness/tester.c:28

#3 0x7fa42386fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

#4 0x55a44c0d6699 in _start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)

allocated by thread T0 here:

#0 0x7fa4248b8c68 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10bc68)

#1 0x55a44c0d8006 in expand_charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand_charseq

Shadow bytes around the buggy address:

0x0c047fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c047fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. . .

(more here that wouldn’t fit on the slide)

Where the array was created in the first place (expand_charseq() in translate.c line 62)

Live demos of AddressSanitizer

• array_print.c

• string_print.c

64

Where the error happened may not but where the bug is

• AddressSanitizer usually points to a line where the array is being
accessed

• But the bug is often because an index is out of bounds

• Or because the pointer passed in was invalid to begin with

• This is a new class of problem you’ll all have to deal with
• Errors that occur because of bugs elsewhere

65

Other AddressSanitizer errors

• Dereferencing a NULL pointer

src/string_print.c:4:28: runtime error: load of null pointer of type 'const char'

AddressSanitizer:DEADLYSIGNAL

===

==2838978==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x000000400912 bp

0x000000000000 sp 0x7ffe1379cec0 T0)

==2838978==The signal is caused by a READ memory access.

==2838978==Hint: address points to the zero page.

SCARINESS: 10 (null-deref)

#0 0x400911 in print_string_chars src/string_print.c:4

#1 0x400a33 in main src/string_print.c:12

#2 0x7fefdbf5a492 in __libc_start_main ../csu/libc-start.c:314

#3 0x40082d in _start (/home/branden/cs211/f21/lec/04_arrays_strings/string_print+0x40082d)

AddressSanitizer can not provide additional info.

SUMMARY: AddressSanitizer: SEGV src/string_print.c:4 in print_string_chars

==2838978==ABORTING
66

string_print.c

67

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

Passing arguments to main

• We’ve been using “int main(void);” as main()’s signature

• Actually, main() can receive arguments, which are what the user
called the program with

% ./programname arg1 arg2 arg3

68

Real signature for main

• The real signature for main() is:

int main(int argc, char* argv[]);

• argc – the number of strings in argv (length of argv)

• argv – an array of strings (array of char*)
• The first string is the name of the program itself

• The remaining strings are the arguments to the function

• By using main(void), we’ve just been ignoring these
• Which is fine, because they aren’t always useful

69

Working with argv

• Let’s print out all the arguments to the function

int main(int argc, char* argv[]) {

for (int i=0; i<argc; i++) {

printf(“Argument %d: \”%s\”\n”, i, argv[i]);

}

return 0;

}

70

argv_print.c

71

• Pointers
• What are pointers?

• Why are pointers?

• Pointers & Arrays

• Address Sanitizer

• Arguments to main

Outline

	Default Section
	Slide 1: Lecture 04 Pointers

	Goals
	Slide 2: Administrivia
	Slide 3: Gradescope demo
	Slide 4: Example Gradescope output
	Slide 5: Test code locally and submit to Gradescope when ready
	Slide 6: Today’s Goals
	Slide 7: Getting files for today’s lecture

	What are pointers
	Slide 8: Outline
	Slide 9: Remember: values, objects, and variables
	Slide 10: Pointers are another type of value
	Slide 11: C syntax for pointers
	Slide 12: Longer pointer example
	Slide 13: Longer pointer example
	Slide 14: Longer pointer example
	Slide 15: Longer pointer example
	Slide 16: Longer pointer example
	Slide 17: Longer pointer example
	Slide 18: Longer pointer example
	Slide 19: Longer pointer example
	Slide 20: Longer pointer example
	Slide 21: Dereferencing a pointer
	Slide 22: Longer pointer example
	Slide 23: Longer pointer example
	Slide 24: Possible pointer values
	Slide 25: Some things to remember about pointers
	Slide 26: Break + Question
	Slide 27: Break + Question
	Slide 28: Break + Question
	Slide 29: Break + Question
	Slide 30: C things that make pointers annoying
	Slide 31: C things that make pointers annoying
	Slide 32: Never define multiple variables at once
	Slide 33: Never define multiple variables at once
	Slide 34: Full CS211 C style guidelines

	Why are pointers
	Slide 35: Outline
	Slide 36: Pointers functions directly modify values inside variables
	Slide 37: Example programming
	Slide 38: Adding two to a variable WITHOUT pointers
	Slide 39: Adding two to a variable WITH pointers
	Slide 40: Side-by-side comparison of without/with pointers
	Slide 41: Example programming
	Slide 42: Another example: what if we want to pass a struct
	Slide 43: Shortcut for pointers to structs
	Slide 44: Example programming
	Slide 45: Adding a function to print the struct
	Slide 46: Scanf example
	Slide 47: Break + Question
	Slide 48: Break + Question

	Pointers & Arrays
	Slide 49: Outline
	Slide 50: Reminder: arrays and strings
	Slide 51: The name of the array is like a pointer to the first element
	Slide 52: Arrays passed into functions are just pointers
	Slide 53: Square brackets are the same as adding to the pointer
	Slide 54: A note on writing meaningful code

	Address Sanitizer
	Slide 55: Outline
	Slide 56: DANGER! Nothing stops you from going past the end of an array
	Slide 57: Address Sanitizer
	Slide 58: Example address sanitizer error
	Slide 59: Example address sanitizer error
	Slide 60: Example address sanitizer error
	Slide 61: Example address sanitizer error
	Slide 62: Example address sanitizer error
	Slide 63: Example address sanitizer error
	Slide 64: Live demos of AddressSanitizer
	Slide 65: Where the error happened may not but where the bug is
	Slide 66: Other AddressSanitizer errors

	Arguments to main
	Slide 67: Outline
	Slide 68: Passing arguments to main
	Slide 69: Real signature for main
	Slide 70: Working with argv

	Wrapup
	Slide 71: Outline

