Lecture 04
Pointers

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Spring 2023

Slides adapted from:
Jesse Tov

Northwestern



Administrivia

« EX3 due today

« EX4 available

» Slowing down. Not due until next week Tuesday
 This is the last set of C exercises. They’ll pick up again in week 6

 Quiz today
» Setting an alarm for 3:00 pm

« Homework 1 due Thursday
- Warning: much more work than the exercises are!



Gradescope demo

« Submitting code from terminal

 Seeing results in Gradescope
 Be sure to either follow link or navigate to assignment again

« Can submit as many times as you want
« We may later rate-limit your submissions
« Later assignments WILL have hidden tests

 Use the tests you fail on Gradescope to write your own tests!



Example Gradescope output

Unit test: charseq_length("abc") (0/0.5)

uig e T = =1 ' T 1 5
§Test: charseg length("akc™)

* Failure is that Expected and Received Output did not match

 You can duplicate this test locally, which is easier to fix!
- Create a new test that runs charseq length () on “abc”



Test code locally and submit to Gradescope when ready

» Just running make compiles and runs tests

* I'll recompile my code every few lines
« That way there are never too many bugs to fix at once

« Then I make sure that I'm passing all the tests before uploading

« And I add new tests whenever I see something weird I'm failing on
Gradescope



Today’s Goals

» Introduce pointers in C
* Why do they exist?
« What are they useful for?
« How do we use them?
« How do they connect to arrays?

 Explore AddressSanitizer:
* A tool that helps explain pointer errors



Getting files for today’s lecture

cd ~/cs211/lec/ (or wherever you put stuff)
tar -xkvf ~cs2ll/lec/04 pointers.tgz
cd 04 pointers/

A couple people asked for me to share the code from lectures
« It's already shared! You can grab your own copy whenever
» I included “finished” versions of code we write
 Usually has working versions of code from slides too



Outline

* Pointers
- What are pointers?
« Why are pointers?
 Pointers & Arrays

» Address Sanitizer

* Arguments to main




Remember: values, objects, and variables

« Values are the actual information we want to work with

« Numbers, Strings, Images, etc.
« Example: 3 is an int value

« An object is a chunk of memory that can hold a value of a particular

type.

« Example: function £ has a parameter int x
« Each type £ is called, a “fresh” object that can hold an int is “created”

A variable is the name of an object

» Assigning to a variable changes the va/ue stored in the object named by
the variable



Pointers are another type of value

 Values could be a number, like 5 or 6.27

 Or they could be a “pointer” to an object
 Points at the object, not the variable or value
« It points at the “chunk of memory”
 Technically, in C it holds the address of that memory

Z_pointer:

10



C syntax for pointers

* Pointers are a family of types
« Each pointer is an existing C type, followed by a *

 To get the pointer to an existing variable, use the & operator
« Returns the address of that variable

« Example:

intz=25; Y

int* z_pointer = &z; Z_pointer:

11



Longer pointer example

1. double alpha;

longer_pointers.c

alpha: | ???

What is the initial value of alpha?

12




Longer pointer example

1. double alpha;

alpha:

longer_pointers.c

13




Longer pointer example

1. double alpha;
2. double* beta;

longer_pointers.c

alpha: | %

beta: | ???

What is the initial value of beta?

14




Longer pointer example

1. double alpha;
2. double* beta;

alpha:
beta:

longer_pointers.c

B

15




Longer pointer example

1. double alpha;
2. double* beta;

3. double* gamma;

alpha:
beta:
gamma:

longer_pointers.c

SRR

16




Longer pointer example

1. double alpha;
2. double* beta;
3. double* gamma;
4. beta = &alpha;

alpha:
beta:
gamma:

longer_pointers.c

D

17




Longer pointer example

g s w N

. double alpha;
. double* beta;
. double* gamma;
. beta = &alpha;

. gamma = &alpha;

alpha:
beta:
gamma:

longer_pointers.c

D

18




longer_pointers.c

Longer pointer example

. double alpha; alpha: | % N
beta:
. double* beta;
gamma:
. double* gamma;
test: |true

. beta = &alpha;

. gamma = &alpha;

A O s w N

. bool test = (beta == gamma && beta == &alpha);

19



Longer pointer example

. double alpha;

. double* beta;

. double* gamma;

. beta = &alpha;

. gamma = &alpha;

. bool test = (beta
. alpha = -7.362;

< o O s, w N

gamma && beta

alpha:
beta:
gamma:
test:

longer_pointers.c

7.362
D

true

== &alpha) ;

20



Dereferencing a pointer

» Pointers can be used to read or modify the value in the object
pointed at

* The * operator is used for getting/setting the value in the object
« This is called “dereferencing” the pointer
« Not multiply in this context

« Examples:
printf (“$d\n”, *my int pointer);

*my 1nt pointer = 15;

21



longer_pointers.c

Longer pointer example

1. double alpha; alpha:|-7.362 N
beta:
2. double* beta;
gamma:
3. double* gamma;
test: | true
4. beta = &alpha;
O. gamma = &alpha;
6. bool test = (beta == gamma && beta == &alpha);
7. alpha = -7.362;
8. test = (*beta < 0); // still true!

22



longer_pointers.c

Longer pointer example

1. double alpha; alpha: | 14.3 N
beta:
2. double* beta;
gamma:
3. double* gamma;
test: | true
4. beta = &alpha;
5. gamma = &alpha;
6. bool test = (beta == gamma && beta == &alpha);
7. alpha = -7.362;
8. test = (*beta < 0);
9

. *gamma = 14.3

23



Possible pointer values

» Uninitialized
unsigned long* zeta;

* Pointing at an existing object
char* letter ptr = &my char;

 Null (explicitly pointing at nothing)
int* p = NULL;
bool* b = NULL;
double* d = NULL;

« NULL works for any pointer type
« NULL is NOT the same as uninitialized (%3)
« Dereferencing a null pointer is an error (segfault)

24



Some things to remember about pointers

1. Remember that a pointer is a type
 int*, char*, short*, bool*, double*, size_t*, etc.

2. Think carefully about whether the pointer is being modified or
the value in the object it points to

« my_pointer = &x; // modifies which object we are pointing at
« *my_pointer = x; // modifies the value in the object we are pointing at

3. Remember that pointer variables are themselves variables
« They have values: the address of the object being pointed at
« They name objects: memory is allocated to hold the address

25



Break + Question

int a = 15;
int* b = &a;
int* ¢ = b;
*c = 73

What are the values of:
a p—
*b —

C =

26



Break + Question

int a = 15;
int* b = &a;
int* ¢ = b;
*c = 73

What are the values of:

a = 7/
*b —

C =

// set by *c=7

27



Break + Question

int a = 15;

int* b = &a;
int* ¢ = b;
*c = 73

What are the values of:
a = // set by *c=7
*b =7 // points to value of a

C =



Break + Question

int a = 15;
int* b = &a;
int* ¢ = b;
*c = 73

What are the values of:
a = // set by *c=7
*b =7 // points to value of a
C = &a // holds the address of a



C things that make pointers annoying

* For pointer types, the * doesn’t have to be next to the type

» These three all mean exactly the same thing:
1. int* x; // I strongly recommend you use this

2. 1nt * x;

3. 1nt *x;

30



C things that make pointers annoying

* For pointer types, the * doesn’t have to be next to the type

» These three all mean exactly the same thing:
1. 1int* x; // I strongly recommend you use this

2. 1nt * x;

3. 1nt *x;

* The * operator also means multiplication
signed long w = *t * *v; // multiply values referenced

// by the pointers t and v 65

31



Never define multiple variables at once

 You can define multiple variables at once in C

double x, vy, radius;

Equivalent code:
double x;

double vy;
double radius;

32



Never define multiple variables at once

 But this breaks when you’re using pointers

double* x, vy, radius;

Equivalent code:
double* x;

double vy;
double radius; } Not pointers!!! @

 To write that line correctly, you need to write:
double *x, *y, *radius; OR double * x, * vy,

 Or just never ever declare multiple variables in the same line!
« That's the CS211 style rule

* radius;

33



Full CS211 C style guidelines

» https://nu-cs211.github.io/cs211-files/cstyle.html

« Read them and make sure you follow them for homework
* 5-10% of your grade for each homework is based on style
« We'll be gentler about it on this first homework

34


https://nu-cs211.github.io/cs211-files/cstyle.html

Outline

* Pointers
« What are pointers?
 Why are pointers?
 Pointers & Arrays

» Address Sanitizer

* Arguments to main




Pointers functions directly modify values inside variables

« Normally, functions get a copy of the value inside the variable

« With pointers, functions can directly modify the variable
« The function gets a copy of the pointer to the variable

36



Example programming

1. Add two to a variable with and without pointers

add-starter.c

37




Adding two to a variable WITHOUT pointers

int add two(int n) {
return n+2;

J

int main (void) {
int x = 15;
x = add two (x);
printf (“$d\n”, x);
return 0O;

add_without_pointers.c

38



Adding two to a variable WITH pointers

volid add two (int* n)

*n += 2;

J

int main (void) {
int x = 15;
add two (&x) ;
printf (“sd\n”,
return 0O;

X);

{

add_with_pointers.c

39




Side-by-side comparison of without/with pointers

vold add two (int* n)

int add two(int n) {
*n o += 2;

return n+2;

J J

{ int main (void) {
int x = 15;
add two (&x) ;

int main (void)
int x = 15;
x = add two (x);
printf (“sd\n”, x);

return 0O; return 0;

printf (“$d\n”, x);

{

40



Example programming

1. Add two to a variable with and without pointers

2. Use pointers to initialize a struct

struct-starter.c

41




Another example: what if we want to pass a struct

struct_with_pointers.c

typedef struct plants {
bool 1s watered;
double height;
int num leaves;

} plant t; }

void initialize oak tree(plant t* plant) {
(*plant) .1s watered = true;

(*plant) .height = 10;
(*plant) .num leaves = 100000;

int main (void) {
plant t plant a;

initlalize oak tree(&plant a);
return 0;

42



Shortcut for pointers to structs

« C programs end up using pointers to structs A LOT

« [t's annoying to type (*struct).field all the time

« S0 we made a shortcut. These two mean exactly the same thing:

(*struct) . field

struct->field (that’s dash and greater than)

 This is known as “syntactic sugar”
» Bonus syntax to make common things easier

43



Example programming

1. Add two to a variable with and without pointers
2. Use pointers to initialize a struct

3. Use pointers to print a struct

struct-starter.c

44




Adding a function to print the struct struct_with_pointers.c

typedef struct plants { void initialize oak tree(plant t* plant) {

bool is watered; (*plant) .1s watered = true;

double height; (*plant) .height = 10;

int num leaves; (*plant) .num leaves = 100000;
} plant t; }

void print plant (plant t* plant) {
printf (“Plant 1s %d meters tall and ”
"has %d leaves.\n”,
plant->height, plant->num leaves);

if (!plant->watered) {
printf ("\tIt needs to be watered!\n”);

45



Scanf example

* scanf () uses pointers to write to the variables you pass it

int x = 0;
int count = scanf (“%d”, &x);

 Pointers allow scanf () to read results directly into your variable

* Pointers also scanf () to simultaneously return the number of arguments
matched

46



Break + Question

double x = 7.0;
double* xptr =
*xptr += 3.0;

x =x / 4.0;
printf (“sf\n”,

What value prints?

&X;

*xptr);

47



Break + Question

double x = 7.0;
double* xptr =
*xptr += 3.0;

x =x / 4.0;
printf (“sf\n”,

What value prints?

&X;

*xptr);

2.5

48



Outline

* Pointers
« What are pointers?
« Why are pointers?
- Pointers & Arrays

» Address Sanitizer

* Arguments to main




Reminder: arrays and strings

int array x[5] = {1, 2, 3, 4, 5};

array_x:| 1 2 3 4 5

const char* phrase = “"The cake 1s a lie”;

\TI \hl \el \7 \CI \al \kl \el '\ \il \sl \\ \al

\II

\\Ol

phrase:

50



The name of the array is like a pointer to the first element

* You can treat the name of the array like a pointer
o It basically is one

* You could dereference it, and you’'ll get the value in the first slot of
the array

« Two ramifications of this:
 You can't pass arrays into functions, only pointers

 Array indexing is identical to pointer arithmetic

51



array_print.c

Arrays passed into functions are just pointers

. W?en you pass an array into a function, you don’t pass a copy of the
values

 Instead you pass a pointer to the start of the array
» Be sure to pass a length as well! (no way to determine that in C)

vold print array(int* values, int count) {

}

int main (void) {
int array(10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};
print array(array, 10);
return O;

}

52



Square brackets are the same as adding to the pointer

 Indexing into arrays is just adding to the pointer value
« Example, these two are equivalent:

array[10] // array indexing

* (array+10) // pointer arithmetic
 As are these two: (both result in a pointer)

& (array|[7])

array+/

53



A note on writing meaningful code

» Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
« false is implemented as zero as well

 So, technically, you could use any to mean any

« But humans will be the ones reading your code
« NULL "\0’, 0, and f£alse all have different meanings

* NULL means pointers
» '\0O" means the end of strings
« false means a Boolean value

0 means a number

Use the one that is
appropriate to the situation!

54



Outline

* Pointers
« What are pointers?
« Why are pointers?
 Pointers & Arrays

 Address Sanitizer

* Arguments to main




DANGER! Nothing stops you from going past the end of an array

array_print.c

 C does not check whether your array accesses are valid
« It just tries to grab the value in the memory you asked for

« Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR

 Could result in anything happening

« If you're lucky, the code will crash
 But you will not always get lucky
 Be sure to always check if you're going past the end of the array

56



Address Sanitizer

« Automatically compiled in as part of your homework code

 Checks various accesses to memory for validity
* Produces long error messages that can be scary at first! But are really helpful!

 Error locations: (more on these “locations” on Thursday)
 Stack — local variable
 Global — global variable (usually a string)
« Heap — variable created with malloc ()

 Error types:
 buffer-overflow — past the end of an array of memory
« buffer-underflow — before the beginning of an array of memory (rare)
* various others

57



Example address sanitizer error

==238==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7f££d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

58



Example address sanitizer error

:=238==ERROR:|AddressSanitizerI heap-buffer-overflow on address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Error is coming from AddressSanitizer

59



Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243

bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 in expand charseq src/translate.c:74
#1 0x55a44c0d6c23 in gr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Heap-buffer-overflow means past the end of an array created with malloc ()

60



Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inlexpand_charseq src/translate.c:74|
#1 0x55a44c0d6c23 in gr expand charseq harness/hw02 tester.c:37
#2 0x55a44c0d7394 in main harness/tester.c:28
#3 0x7fa42386fbf6 in  libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bfo6)
#4 0x55a44c0d6699 in start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

The error happened in expand charseqg () in src/translate.c line 74

61



Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in  interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 in expand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Full “stack trace” of functions that were called to get to where the error happened

62



Example address sanitizer error

:=238==ERROR:|AddressSanitizerIIheap—buffer—overflowlon address 0x602000000016 at pc 0x55a44c0d8243
bp 0x7f£fd8caf8cl0 sp 0x7ff£d8caf8c00
WRITE of size 1 at 0x602000000016 thread TO
SCARINESS: 31 (l-byte-write-heap-buffer-overflow)
#0 0x55a44c0d8242 inJexpand charseq src/translate.c:74
#1 0x55a44c0d6c23 inJgr expand charseqg harness/hw02 tester.c:37
#2 0x55a44c0d7394 in|main harness/tester.c:28
#3 0x7fa42386fbf6 in| libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21bf6)
#4 0x55a44c0d6699 in| start (/autograder/source/compile/tester+0x4699)

0x602000000016 is located 0 bytes to the right of 6-byte region [0x602000000010,0x602000000016)
allocated by thread TO here:
#0 0x7fa4248b8c68 in| interceptor malloc (/usr/lib/x86 64-linux-gnu/libasan.so.5+0x10bc68)
#1 0x55a44c0d8006 injexpand charseq src/translate.c:62

SUMMARY: AddressSanitizer: heap-buffer-overflow src/translate.c:74 in expand charseq
Shadow bytes around the buggy address:

O0x0c047£f££7£fb0: 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO

0x0c047£££7£c0: 00 00 00 00 00 OO OO OO OO OO OO OO0 OO OO 0O OO

(more here that wouldn’t fit on the slide)

Where the array was created in the first place (expand charseq () in translate.c line 62)

63



Live demos of AddressSanitizer

e array_print.c

» string_print.cC

64



Where the error happened may not but where the bug is

 AddressSanitizer usually points to a line where the array is being
accessed

 But the bug is often because an index is out of bounds
 Or because the pointer passed in was invalid to begin with

* This is a new class of problem you’ll all have to deal with
* Errors that occur because of bugs elsewhere

65



Other AddressSanitizer errors

string_print.c

 Dereferencing a NULL pointer

src/string print.c:4:28: runtime error: load of null pointer of type 'const char'

AddressSanitizer:DEADLYSIGNAL

==2838978==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x000000400912 bp
0x000000000000 sp 0x7ffel379cecO TO)

==2838978==The signal 1s caused by a READ memory access.
==2838978==Hint: address points to the zero page.
SCARINESS: 10 (null-deref)
#0 0x400911 in print string chars src/string print.c:4
#1 0x400a33 in main src/string print.c:12
#2 Ox7fefdbf5a492 in  libc start main ../csu/libc-start.c:314
#3 0x40082d in start (/home/branden/cs211/f21/lec/04 arrays strings/string print+0x40082d)

AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV src/string print.c:4 in print string chars

~=2838978==ABORTING 66



Outline

* Pointers
« What are pointers?
« Why are pointers?
 Pointers & Arrays

» Address Sanitizer

 Arguments to main




Passing arguments to main

« We've been using "int main (void);” aSmain ()’s signature

 Actually, main () can receive arguments, which are what the user
called the program with

o\°

./programname argl arg2 arg3

68



Real signature for main

 The real signature for main () is:

int main(int argc, char* argvl[]);

« argc — the number of strings in argv (length of argv)

* argv — an array of strings (array of char*)

 The first string is the name of the program itself
« The remaining strings are the arguments to the function

* By using main (void), we've just been ignoring these
« Which is fine, because they aren’t always useful

69



Working with argv argv_print.c

» Let’s print out all the arguments to the function

int mailn(int argc, char* argvl[]) {
for (int 1=0; 1<argc; 1++) {
printf (“Argument %d: \”%s\”\n”, i, argv[i]);

return 0;



Outline

* Pointers
« What are pointers?
« Why are pointers?
 Pointers & Arrays

» Address Sanitizer

* Arguments to main




	Default Section
	Slide 1: Lecture 04 Pointers

	Goals
	Slide 2: Administrivia
	Slide 3: Gradescope demo
	Slide 4: Example Gradescope output
	Slide 5: Test code locally and submit to Gradescope when ready
	Slide 6: Today’s Goals
	Slide 7: Getting files for today’s lecture

	What are pointers
	Slide 8: Outline
	Slide 9: Remember: values, objects, and variables
	Slide 10: Pointers are another type of value
	Slide 11: C syntax for pointers
	Slide 12: Longer pointer example
	Slide 13: Longer pointer example
	Slide 14: Longer pointer example
	Slide 15: Longer pointer example
	Slide 16: Longer pointer example
	Slide 17: Longer pointer example
	Slide 18: Longer pointer example
	Slide 19: Longer pointer example
	Slide 20: Longer pointer example
	Slide 21: Dereferencing a pointer
	Slide 22: Longer pointer example
	Slide 23: Longer pointer example
	Slide 24: Possible pointer values
	Slide 25: Some things to remember about pointers
	Slide 26: Break + Question
	Slide 27: Break + Question
	Slide 28: Break + Question
	Slide 29: Break + Question
	Slide 30: C things that make pointers annoying
	Slide 31: C things that make pointers annoying
	Slide 32: Never define multiple variables at once
	Slide 33: Never define multiple variables at once
	Slide 34: Full CS211 C style guidelines

	Why are pointers
	Slide 35: Outline
	Slide 36: Pointers functions directly modify values inside variables
	Slide 37: Example programming
	Slide 38: Adding two to a variable WITHOUT pointers
	Slide 39: Adding two to a variable WITH pointers
	Slide 40: Side-by-side comparison of without/with pointers
	Slide 41: Example programming
	Slide 42: Another example: what if we want to pass a struct
	Slide 43: Shortcut for pointers to structs
	Slide 44: Example programming
	Slide 45: Adding a function to print the struct
	Slide 46: Scanf example
	Slide 47: Break + Question
	Slide 48: Break + Question

	Pointers & Arrays
	Slide 49: Outline
	Slide 50: Reminder: arrays and strings
	Slide 51: The name of the array is like a pointer to the first element
	Slide 52: Arrays passed into functions are just pointers
	Slide 53: Square brackets are the same as adding to the pointer
	Slide 54: A note on writing meaningful code

	Address Sanitizer
	Slide 55: Outline
	Slide 56: DANGER! Nothing stops you from going past the end of an array
	Slide 57: Address Sanitizer
	Slide 58: Example address sanitizer error
	Slide 59: Example address sanitizer error
	Slide 60: Example address sanitizer error
	Slide 61: Example address sanitizer error
	Slide 62: Example address sanitizer error
	Slide 63: Example address sanitizer error
	Slide 64: Live demos of AddressSanitizer
	Slide 65: Where the error happened may not but where the bug is
	Slide 66: Other AddressSanitizer errors

	Arguments to main
	Slide 67: Outline
	Slide 68: Passing arguments to main
	Slide 69: Real signature for main
	Slide 70: Working with argv

	Wrapup
	Slide 71: Outline


