
Lecture 03
Arrays and Strings

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2023

Slides adapted from:
Jesse Tov

Administrivia

• Lab1 is due today (76% of the class already done)

• EX2 is due today (71% of the class already done)

• EX3 available now (due Tuesday)

• Homework 1 will be released late tonight (due next Thursday)
• Lots of string manipulation

• Get started early!

2

Quiz 1 details

• Next week Tuesday during class
• We’ll stop lecture near the end and give you fifteen minutes to work on it

• Bring a pencil
• No notes allowed

• No calculators, laptops, headphones, etc.

• Covers
• Material from the first three lectures (includes today)

• Won’t expect you to memorize shell commands

3

Today’s Goals

• Finally get to some miscellaneous C syntax we haven’t covered

• Introduce more complex types in C
• Structs and Arrays

• Demonstrate Strings which are arrays of characters
• How do they work in C?

• How do we use them?

4

Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/03_arrays_strings.tgz

cd 03_arrays_strings/

5

6

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Definition of Fibonacci Function

• 𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7

n fib(n)

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

8

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Statements and Conditions aren’t enough

• Not all problems are easily solved with recursion

• C, like many programming languages, also has loops
• Repeats the statements inside it until some condition is met

9

Iteration with the While Statement

• Syntax

while (⟨test-expression⟩) {

⟨body-statements⟩

}

• Semantics
1. Evaluate ⟨test-expression⟩ to a bool

2. If the bool is false then skip to the statement after the while loop

3. Execute ⟨body-statements⟩ (if the bool was true)

4. Go back to step 1

10

Let’s reimplement fib using a while loop

• To the shell!

11

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

12

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

For loops

• For loops allow you to combine iteration and incrementing
• When you write a for statement like this:

for (⟨start-decl⟩; ⟨test-expr⟩; ⟨step-expr⟩) {

⟨body-stms⟩

}

• It’s as if you’d written this while statement:

{

⟨start-decl⟩;

while (⟨test-expr⟩) {

⟨body-stms⟩

⟨step-expr⟩;

}

} 13

Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

14

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

int i = 0;

while (i < n) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}

15

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Complete: modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; i = i + 1) {

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

19

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

20

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

C comments

• // means a single-line comment

• /* starts a multiline comment, which continues until */

• How to use comments effectively
• Comment “blocks” of code with their purpose

• Every line is too much

• Often helpful to write the comments before the code as planning

• Comment tricky bits of code so you know what it means

• You + several weeks = “what does that code mean?!”

21

Logical operators

• || &&
• Logical OR, and Logical AND
• a < 5 && b > 12

• !
• Logical NOT
• !(a < 5) equivalent to (a >= 5)

• ==
• Equality test
• 5 == 5 -> TRUE
• 16 == -3 -> FALSE

• Don’t mix it up with assignment (single equals sign)
• Really common new C programmer mistake

22

Other operators you’ll see around

• += *= -= /=
• Perform the action of VAR = VAR operator ARG
• a += 5 -> a = a + 5
• a *= b -> a = a * b

• %
• Modulus operator
• Returns the remainder of division
• 12 % 10 -> 2

• ~ | & ^
• Bitwise NOT, OR, AND, and XOR (you’ll learn these in CS213)
• Importantly, ^ is not exponentiation!!!

23

Adding and Subtracting one

• ++ --
• Shorthand for plus 1 or minus 1

• ++a -> a += 1 -> a = a + 1

• The auto-increment/decrement operators can go before or after
the variable
• (--x) subtracts one and returns the new value of x from the expression

• (x--) subtracts one but returns the old value of x from the expression

• Usually, this doesn’t matter, unless you write complicated statements that
combine assignment and conditions

• if (--x > 0) … (please just never do this)

24

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; ++i) { // i++ also works

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

25

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Break + Question

• What value will this code return when called as:
• loop_function(6)

• loop_function(5)

• loop_function(3)

27

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval++;

test++;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5)

• loop_function(3)

28

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval++;

test++;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3)

29

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval++;

test++;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3) returns 2

30

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval++;

test++;

}

return retval;

}

31

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Working with more complex data

• Sometimes it makes sense to collect multiple variables together
• Coordinate in 2D space: {x, y}

• Multiple attributes that describe a user: Name, ID, Email

• Structs are a collection of fields, each of which has its own type
and name
• First, you define a type and what fields it has

• Then, you can create a struct and initialize the fields

32

Struct definitions

struct coordinate {

int x;

int y;

};

• Creates a new type that can be used in code “struct coordinate”
• With fields “x” and “y” which are accessed with .

• Any type can be a struct field
• int, unsigned int, char, double, another struct, array, etc.

33

Initializing a struct

struct coordinate pos; // uninitialized for now

• Can initialize fields individually

34

x: 🐝 y: 🐝pos:

Initializing a struct

struct coordinate pos; // uninitialized for now

• Can initialize fields individually

pos.x = 1;

(period operator accesses individual fields)

35

x: 1 y: 🐝pos:

Initializing a struct

struct coordinate pos; // uninitialized for now

• Can initialize fields individually

pos.x = 1;

pos.y = 2;

(period operator accesses individual fields)

36

x: 1 y: 2pos:

Can initialize all fields of a struct at once

struct coordinate pos = {3, -5};

OR

struct coordinate pos = {.x=3, .y=-5};

37

x: 3 y: -5pos:

typedef can be used to make new C type names

• Typedef creates a new type name that is a copy of an existing type

• Typedef keyword is followed by two types
• First type: the original type name

• Second type: the new type name

• Example:
typedef int x_coordinate_t;

x_coordinate_t my_variable = 5;

38

Struct definitions usually use typedef

• Defining

typedef struct {

int x;

int y;

} coordinate_t;

• Initializing

coordinate_t pos = {1, 2};

39

40

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Array types

• Arrays are another way to store more complex data
• They hold many instances of a single type

• Analogy: one horizontal shelf
• Can hold multiple books

• A shelf is an “array of books”

41

Arrays in C

int x;

int array_x[4];

• Generally:
type variable_name[N]; (array of type with length N)

42

x: 🐝

array_x: 🐝 🐝 🐝 🐝

Multiple objects
for a single variable,
each with their own value

Working with values in arrays

• Every array has one or more objects, each with their own values
• Like fields in a struct

• The “slots” in an array are numbered from zero
• Arrays in C are zero-indexed

double values[3] = {1.2, -3.5623, 0.0};

double x = values[0];

43

values: 1.2 -3.5623 0.0

x: 1.2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

44

array_x: 🐝 🐝 🐝 🐝 🐝

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

45

array_x: 🐝 🐝 🐝 🐝 🐝

i: 0

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

46

array_x: 5 🐝 🐝 🐝 🐝

i: 0

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

47

array_x: 5 🐝 🐝 🐝 🐝

i: 1

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

48

array_x: 5 4 🐝 🐝 🐝

i: 1

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

49

array_x: 5 4 🐝 🐝 🐝

i: 2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

50

array_x: 5 4 3 🐝 🐝

i: 2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

51

array_x: 5 4 3 🐝 🐝

i: 3

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

52

array_x: 5 4 3 2 🐝

i: 3

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

53

array_x: 5 4 3 2 🐝

i: 4

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

54

array_x: 5 4 3 2 1

i: 4

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

55

array_x: 5 4 3 2 1

i: 5

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

56

array_x: 5 4 3 2 9

Remember array[N-1]

is the last slot in an array
of length N

Lengths of arrays

• How do you determine how long an array is?

• You cannot in C
• Hopefully, you remember

• Or someone told you

• This is an example of C giving you “full control”
• Why bother storing the length of the array? That wastes memory

57

DANGER! Nothing stops you from going past the end of an array

• C does not check whether your array accesses are valid
• It just tries to grab the value in the memory you asked for

• Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR
• Could result in anything happening

• If you’re lucky, the code will crash
• But you will not always get lucky

• Be sure to always check if you’re going past the end of the array

58

Passing arrays into functions

• When you pass an array into a function, you don’t pass a copy of the
values
• Instead you pass the location of the start of the array (a pointer)
• Be sure to pass a length as well! (no way to determine that in C)

void print_array(int* values, int count) {

// can still access with square brackets

// values[0] == 1, values[1] == 2, values[4] == 5, etc.

. . .

}

int main(void) {

int array[10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};

print_array(array, 10);

return 0;

}

59

array_print-starter.c
array_print.c

Let’s print the contents of an array

• To the shell!

60

Ways of creating arrays

• Statically sized “local variable” (a variable inside a function)
int array[10];

• Dynamically sized local variable
int data_size;

scanf(“%d”, &data_size);

int data[data_size]; // probably should have checked

// the value in data_size first...

61

One more way to create arrays

• Using a library that gives you a chunk of memory for the objects

• Example
double* array = malloc(4 * sizeof(double));

• malloc() returns a pointer to an amount of memory requested

• sizeof() returns the size of a type in bytes

• 4 slots, each of which can hold a double

• MUCH more about pointers and malloc next week

62

C arrays cannot change length

• Once an array is created, its length cannot be changed
• You cannot grow or shrink the number of slots

• You can make a whole new array that’s bigger
• Copy over elements from the old array

• malloc() and dynamic memory are a way to create new arrays
• We’ll talk about this more next week

63

Array of structs example

• Arrays can be made of any type
• int, float, bool, char, etc.
• Also structs!

struct circle {

double x;

double y;

double radius;
};

struct circle many_circles[5] = {0};

many_circles[1].x = 1;

many_circles[1].y = 1;

many_circles[1].radius = 2;

64

Special syntax to initialize all
values as zero within the
array. Only works for zero.

array_structs.c

Struct with an array example

• Structs can hold any type
• int, float, bool, char, etc.

• Also arrays!

struct samples {

int id;

double data[100];

};

struct samples raw_samples = {0};

raw_samples.id = 5;

raw_samples.data[0] = 1.5;

65

Break + Question

• Fill in the remaining code to sum an array in C

int sum_array(int* array, size_t length) {

int sum = 0;

for (size_t i=0; ________; ___) {

sum += ________;

}

return sum;

}

66

Break + Question

• Fill in the remaining code to sum an array in C

int sum_array(int* array, size_t length) {

int sum = 0;

for (size_t i=0; i<length; i++) {

sum += array[i];

}

return sum;

}

67

71

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Character types

• char, signed char, unsigned char
• Capable of holding numbers from 0 to 255 or -128 to 127

• Also capable of holding single “characters”
• A letter, a digit, a symbol

char letter = ‘a’;

char number = ‘1’;

char symbol = ‘~’;

72

MUST use single quotes in C
when referring to characters

Characters are both numbers and letters

• How can a char hold either a letter or a number?
• Each number represents a certain character

• Example:
• 33 is ‘!’

• 65 is ‘A’
• 66 is ‘B’

• 97 is ‘a’

• 50 is ‘2’
• 51 is ‘3’
• ‘2’ + ‘3’ == 101 (‘e’)

73

ASCII character encoding

• Mappings from number to letter
• ASCII is one such mapping (https://www.asciitable.com/)

• Maps American keyboard characters and symbols

• Also special characters like tab, newline, or backspace

74

https://www.asciitable.com/

Other encoding systems

• ASCII was made in 1961 and was never meant to encompass
everything (American Standard Code for Information Interchange)

• Modern systems use Unicode
• Which includes letters in other alphabets

• 144762 characters from 159 modern and historic written languages

• Also includes various symbols like emoji

• Doesn’t fit in a char though, that’s only 256 options

• We’ll stick to simple ASCII for this class

75

Escape sequences

• The first part of the ASCII table was various
special sequences
• Most of which aren’t relevant anymore, but some are
• We need a way to type those “characters”
• Also sometimes want to write normal characters that

would break C syntax

• Escape sequences: \ followed by another symbol
(only counts as one character)
• Common examples:

• \n – newline
• \t – tab

• \\ – backslash
• \’ – single quote
• \” – double quote

76

77

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Strings in C

• C strings are arrays of characters, ending with a null terminator
• Null terminator: ‘\0’ character, which is the integer value zero

• No relation to NULL pointers

• String literals in code are arrays of characters
• And a ‘\0’ is placed at the end of them automatically

“Hello!\n”

78

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘!’ ‘\n’ ‘\0’

MUST use double quotes in C
when referring to strings

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

79

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

80

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

81

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

82

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase: letter: ‘e’

WARNING! Single quotes versus double quotes

• Single quotes mean single characters
‘a’

‘\n’

‘&’

• Double quotes mean strings (zero or more characters)
“a”

“alpha”

“”

“She-Ra is the best show ever!\n”

• Be really careful not to mix them up!
• Especially because in many other languages they are identical
• And the error message you’ll get is hard to understand

83

The null terminator marks the end of the string

• So, strings are arrays of characters

• And there’s no way to know the length of an array in C

• So how does printf know when to stop printing characters?

• It looks for the null terminator!

84

Iterating through a string

void print_string_chars(char* string) {

for (size_t i=0; string[i] != ‘\0’; i++) {

printf(“String[%d] = ‘%c’\n”, i, string[i]);

}

}

• Note that we didn’t need a length this time!
• Just iterate until you find the null terminator

85

string_print.c

String literals cannot be modified

• const in C marks a variable as constant (a.k.a. immutable)
• Example:

const int x = 5;

x++; // Compilation error!

• String literals in C are of type const char*

const char* mystr = “Hello!\n”;

mystr[1] = ‘B’; // Compilation error!

• Just removing the “const” will result in a runtime crash instead…

86

const_strings.c

Making modifiable strings

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
• Need to be sure to copy over the ‘\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, ‘b’, ‘c’, and ‘\0’)

87

mutable_strings.c

C has a library for working with strings

#include <string.h>

• https://www.cplusplus.com/reference/cstring/
• Particularly useful:

• strlen() finds the length of a string (not including null terminator)

• strcpy() copies the characters of a string

• strcmp() compares two strings to determine alphabetic order
• Note: you cannot compare two strings with ==

• That would just check if the pointers are the same

88

https://www.cplusplus.com/reference/cstring/

90

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

Passing arguments to main

• We’ve been using “int main(void);” as main()’s signature

• Actually, main() can receive arguments, which are what the user
called the program with

% ./programname arg1 arg2 arg3

91

Real signature for main

• The real signature for main() is:

int main(int argc, char* argv[]);

• argc – the number of strings in argv (length of argv)

• argv – an array of strings (array of char*)
• The first string is the name of the program itself

• The remaining strings are the arguments to the function

• By using main(void), we’ve just been ignoring these
• Which is fine, because they aren’t always useful

92

Working with argv

• Let’s print out all the arguments to the function

int main(int argc, char* argv[]) {

for (int i=0; i<argc; i++) {

printf(“Argument %d: \”%s\”\n”, i, argv[i]);

}

return 0;

}

93

argv_print.c

94

• More C syntax
• Iteration
• Miscellaneous syntax

• Complex data types
• Structs
• Arrays

• Text
• Characters
• Strings
• Arguments to main

Outline

	Default Section
	Slide 1: Lecture 03 Arrays and Strings

	Goals
	Slide 2: Administrivia
	Slide 3: Quiz 1 details
	Slide 4: Today’s Goals
	Slide 5: Getting the code for today

	Iteration
	Slide 6: Outline
	Slide 7: Definition of Fibonacci Function
	Slide 8: Implementing Fibonacci in C
	Slide 9: Statements and Conditions aren’t enough
	Slide 10: Iteration with the While Statement
	Slide 11: Let’s reimplement fib using a while loop
	Slide 12: Implementing Fibonacci in C
	Slide 13: For loops
	Slide 14: Modify fib to use a for loop
	Slide 15: Modify fib to use a for loop
	Slide 19: Complete: modify fib to use a for loop

	Other C syntax
	Slide 20: Outline
	Slide 21: C comments
	Slide 22: Logical operators
	Slide 23: Other operators you’ll see around
	Slide 24: Adding and Subtracting one
	Slide 25: Implementing Fibonacci in C
	Slide 27: Break + Question
	Slide 28: Break + Question
	Slide 29: Break + Question
	Slide 30: Break + Question

	Structs
	Slide 31: Outline
	Slide 32: Working with more complex data
	Slide 33: Struct definitions
	Slide 34: Initializing a struct
	Slide 35: Initializing a struct
	Slide 36: Initializing a struct
	Slide 37: Can initialize all fields of a struct at once
	Slide 38: typedef can be used to make new C type names
	Slide 39: Struct definitions usually use typedef

	Arrays
	Slide 40: Outline
	Slide 41: Array types
	Slide 42: Arrays in C
	Slide 43: Working with values in arrays
	Slide 44: Array assignment example
	Slide 45: Array assignment example
	Slide 46: Array assignment example
	Slide 47: Array assignment example
	Slide 48: Array assignment example
	Slide 49: Array assignment example
	Slide 50: Array assignment example
	Slide 51: Array assignment example
	Slide 52: Array assignment example
	Slide 53: Array assignment example
	Slide 54: Array assignment example
	Slide 55: Array assignment example
	Slide 56: Array assignment example
	Slide 57: Lengths of arrays
	Slide 58: DANGER! Nothing stops you from going past the end of an array
	Slide 59: Passing arrays into functions
	Slide 60: Let’s print the contents of an array
	Slide 61: Ways of creating arrays
	Slide 62: One more way to create arrays
	Slide 63: C arrays cannot change length
	Slide 64: Array of structs example
	Slide 65: Struct with an array example
	Slide 66: Break + Question
	Slide 67: Break + Question

	Characters
	Slide 71: Outline
	Slide 72: Character types
	Slide 73: Characters are both numbers and letters
	Slide 74: ASCII character encoding
	Slide 75: Other encoding systems
	Slide 76: Escape sequences

	Strings
	Slide 77: Outline
	Slide 78: Strings in C
	Slide 79: Working with strings
	Slide 80: Working with strings
	Slide 81: Working with strings
	Slide 82: Working with strings
	Slide 83: WARNING! Single quotes versus double quotes
	Slide 84: The null terminator marks the end of the string
	Slide 85: Iterating through a string
	Slide 86: String literals cannot be modified
	Slide 87: Making modifiable strings
	Slide 88: C has a library for working with strings

	Arguments to main
	Slide 90: Outline
	Slide 91: Passing arguments to main
	Slide 92: Real signature for main
	Slide 93: Working with argv

	Wrapup
	Slide 94: Outline

