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Administrivia

• Office hours have started!
• Check Canvas homepage for 

calendar

• I have office hours right
after class today!

• Everyone should have 
Piazza access
• Email me ASAP if you don’t
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Assignments

• EX1 due today (88%+ of you are done)
• Need to buy the textbook unfortunately

• Remember: no late submission for exercises

• EX2 due Thursday (32%+ completed)
• A little deeper into C programming: Branches and Loops

• Lab1 due Thursday (31%+ completed)
• SSH access to lab servers for C programming

• Using Linux command line

• Submitted to Gradescope
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Today’s Goals

• Introduction to working in Unix shell (command line)

• Understand the C compilation process

• Continue exploring C programming
• Iteration

• Input and Output
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Getting the examples from lecture

• First, make your own cs211 directory to store class stuff in
• cd ~/

• mkdir cs211

• The files for this class are in a zipped tarball (just like a zip file)
• We can extract them right into your cs211/ directory

• cd ~/cs211/

• tar -xvkf ~cs211/lec/02_shell_compilation.tgz

• cd 02_shell_compilation

• What does that command do?: https://explainshell.com/explain?cmd=tar+-
xvkf+%7Ecs211%2Flec%2F02_shell_compilation.tgz
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How do you get a Unix shell?

• Have a MacOS or Linux computer
• Or set up Windows Subsystem for Linux (WSL) on Windows

• Install Virtualbox and Linux
• Installing Ubuntu is free and only takes twenty minutes

• Log in to a class server remotely!
• This is what we’ll do for CS211

• Lab01 teaches you how to do this
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Command line interfaces

• Text-based commands

• Positives
• It’s easy to be precisely clear about what you want and how things are 

configured

• Negatives
• How do you remember everything?

• Reality
• There will be a few dozen commands you’ll memorize (after practice)
• And you’ll learn how to look up everything else
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Commands for moving between directories

• Directory structure and moving through it
• ls

• Lists files in the current directory
• cd

• Change directory
• pwd

• Prints the path of the current directory

• Mis-typing something
• “Command not found” means you tried to run something invalid
• fish: somecommandyoumistyped: command not found...
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Live command-line demo!!!

• To do:
• Log in

• Move around with commands

• Fail at some command

• Tab completion

• Get files from lecture!
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Directory structure in Linux

• Example: /usr/bin/ is the path to user-installed programs
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Special paths

. the current directory

.. the parent of the current directory

../../ the parent of the parent of the current directory

../../../ and so on…

- the previous directory you were in before the current one

~/ the home directory of the current user (your home)

~cs211 the home directory of the user cs211
(works for any user, but you’ll probably won’t interact with other users)

/ the root directory (analogous to C:\ on windows)
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Relative vs absolute paths

• Relative paths are relative to the current directory
• ../

• src/

• ../../code/src/../build/

• Absolute paths have the full path name to the location
• /home/branden/

• /home/branden/cs213/code/

• /home/branden/cs213/code/src/../build/
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Wildcard in path names

• Sometimes you’re not sure exactly what the name is
• Or there might be multiple files that you want to interact with 

simultaneously

• The wildcard symbol, *, replaces any number of characters in a 
path name

• Examples
• ls /home/*/ List all files in all user’s home directories

• ls ~/cs21*/ List all files in any directory starting with cs21

• ls code/src/*.c List all files that end with “.c” in code/src/
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Tab Completion

• Typing takes toooooooo looooooonnnnggg
• Solution, let the computer guess what you’re trying to type

• Pressing tab while part-way through typing just about anything in 
terminal will tab-complete it for you
• As long as you have typed enough characters so that only one option 

remains, it will complete it

• If multiple options remain, it will stop trying

• Also, up-arrow gets you the previously typed command
• And you can edit that, if that’s faster
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Working with files

• cat path

• Prints out the contents of the file

• mv path1 path2

• Moves a file from path1 to path2

• cp path1 path2

• Copies a file from path1 to path2

• rm path

• Deletes (removes) a file
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Editing files

• There are many different terminal text editors
• And there are holy wars about why one is best

• There is no best. Just use whatever you like

• Example editors
• Vim, Emacs, Nano

• In CS211, I’ll be teaching you using the Micro text editor
• Occasionally I’ll open vim by accident. Someone yell at me when I do

• https://micro-editor.github.io/
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Editing with Micro

• micro filename
• Opens micro, editing filename

• Works just like any text editor you’ve used
• Mouse moves the cursor around, as do the arrow keys

• Typing makes text appear

• (This isn’t true in some shell editors, looking at you vim)

• Ctrl-s save the file

• Ctrl-o open a file

• Ctrl-q quit
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Live command-line demo 2!!

• To do:
• Make directories

• Edit a file

• Move a file

• Use a command with flags
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Cancelling a command

• Ctrl-C stops most things from running
• Ctrl key and C key both at once

• If you have C code that’s stuck in an infinite loop, Ctrl-C will stop it

• Note: this means Ctrl-C isn’t usually copy
• Except it does work as copy in Micro!

(but that means it won’t stop Micro from running)
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Command flags

• man

• Opens the manual pages for a program

• Example: man ls

• Flags are configurations for a command that change what it does
• ls –l lists files in the current directory in a vertical list with details 

• ls –t sorts the ls output by most recently modified

• ls –l –t does both

• You can type multiple flags after a single dash
• ls –lt is equivalent to ls –l –t is equivalent to ls -tl
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Searching for things

• grep –r “text” *

• Explanation

• Grep prints lines matching a pattern

• The pattern in this case is “text”

• -r means search recursively, i.e. in this directory and all subdirectories

• * means to search in any file in the current directory

• Summary

• Search all the files here and below for the word “text”
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Don’t be overwhelmed!!!!

• You have plenty of time to learn this

• Lab01 guides you through the same kinds of commands I did 
today, step by step

• Practice is the only thing that will really help
• And CS211 will give you plenty of practice
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Helpful guides

• Great lecture notes on using the shell
• https://swcarpentry.github.io/shell-novice/

• Tool to explain various shell command syntax
• https://explainshell.com/

• Tool to explain how to use various shell commands
• Just type the command into the box at the top

• https://tldr.ostera.io/
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Shell command: sudo

• Superuser do
• Executes a command with special administrator privilege (superuser)
• Necessary for installing new programs and modifying the OS

• Run it before a command to execute that command as a superuser
• Example: sudo rm –rf / (don’t run this!)

• You can only use sudo on computers where you are an admin
• Only use with caution and care. It can destroy your computer

• You’ll never need it for class stuff
• You are NOT an admin on the class servers! (neither am I)
• You might see it in stack overflow answers (won’t solve 211 problems though)
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sudo example
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sudo example
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Break + relevant xkcd

29https://xkcd.com/838/
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How do you “run” C code?

• First, the C code needs to be translated
• From human-readable source code

• To machine code capable of being executed on a particular machine
(definitely not human readable)

• This translation process is called “compiling”
• The tool that does it is a “compiler”

31

Source Code Machine Code
compilation



What does machine code look like?

• Just a bunch of numbers
• Your text editor would interpret those numbers as random characters

• The computer processor reads the numbers to figure out which 
instruction to run
• This is a version of assembly code
• See CS213 for way more details
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Compiling a C program

• The compiler we’ll use is referred to as cc
• Short for C Compiler

• It takes in C source code and outputs executable machine code

• cc hello.c

• ls
a.out hello.c

• ./a.out
Hello, CS 211!
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Don’t memorize this. You won’t
be running cc manually.



Compiling a C program

• a.out is the default name, but we probably want to use something 
more memorable

• The -o flag specifies the output filename for the compiler

• cc -o hello hello.c

• ls
hello hello.c

• ./hello
Hello, CS 211!

34

Don’t memorize this. You won’t
be running cc manually.



Remember to compile!

• You need to re-compile code every time the source code changes

• You WILL forget to do this at some point
• And you’ll run the program but it’ll do the old behavior rather than the 

new things you’ve written

• Compile often!
• Keep multiple windows open to make this easier

• I write a handful of lines of C code, then compile again

• Way easier to find one or two mistakes now than deal with MANY later
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IMPORTANT: compile often!

• Important enough that I’ll repeat it

• Keep multiple terminals open
• One for editing and one for compiling

• Compile every few lines of C code you write
• Maybe every time you finish a function

• Compilation points out errors in your code for you!
• But it can get overwhelming if you don’t run it until the end
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Real-world projects have multiple files

• You can write code in any number of different C files
• And combine them together while compiling

• But we need some way to tell C code in one file about the 
existence of C code in another file
• Solution: header files (.h)

• Header files list all the publicly available functions and variables from a C 
file

• Usually, there is a .c and .h file for various libraries

• Header files are #include-ed at the top of your C file
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Compiling multiple C files

• Each C file is compiled separately

• Then combine multiple together into a single program

• Compilers have a middle step: object files (.o)
• Still not human readable

• Meant to be joined together into a single executable

• Object files don’t have to be recompiled if their source file hasn’t 
changed
• This speeds up compilation for large projects!
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General C project layout

• src/
• Various code that actually runs your project

• test/
• Various code that tests your files in src/

• We separate code in src/ into two categories
• The executable, which has a main() function and not much else

• Named whatever your executable is, but with a .c
• Example: interact.c

• Libraries which have both .c and .h files
• Example: posn.c and posn.h
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Example of multiple compilation

41

example_project/
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New problem, how do you remember all these steps?
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And this doesn’t even 
include various flags we 
give to the compiler, 
such as the location of 
the 211.h library



Simplifying multiple compilation with Make

• Make is a tool for building programs out of multiple source files
• Allows you to specify goals and requirements as “rules”

• And then runs the compiler to fulfill those

• To build a file named ⟨goal⟩ using make, you run:
make ⟨goal⟩

• Make looks around the current directory for a file named Makefile
which specifies the various rules
• We’ll provide the Makefile for you in this class

• But you’ll have to use make to compile your programs
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What does a make rule look like?

• A rule has a goal and pre-requisites for the goal
• And then specifies commands to create the goal given the pre-requisites

⟨goal⟩: ⟨prereqs⟩. . .

⟨commands⟩
...

• Example:
hello: hello.c

cc -o hello hello.c
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Always use Make, rather than calling the compiler yourself

• Make is our tool for compiling programs
• It has rules for how to build the programs using the compiler

• You could compile your programs manually
• But you would need to know the proper flags for the compiler to do so

• Some programs rely on class-specific libraries for testing and memory 
management

• This is a big pain, so just you make instead

• And if you’re curious, you can look at the Makefile to see what the flags 
we’re providing are
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C pre-processor

• Reads in the text of your source code

• Does some initial text-based manipulations to the code
• Prepares everything for the compiler
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C reads files from the top down

• First important thing to know about the pre-processor/compiler
• They read from the top of the file down
• Functions that don’t exist when you try to call them are an error

• How would we write this code then?

void a(void) {

b();
}

void b(void) {

a();
}
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Function declaration

• You can inform the compiler about functions that will later be 
defined
• You are telling the C compiler: “here’s what this other function looks like, 

you’ll get details about how it works later”
• Very useful for libraries that you are using

• A function declaration in C includes the return type, name, and 
argument types
• Examples:

void a(int, float);

struct posn read_posn(void);

• A function definition in C also includes the body of the function
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Header files are collections of declarations

• You could manually type out the declaration for each function you 
want to use at the top of your C file

• Instead, we create “Header files” (.h) that hold all the function 
declarations for functions in the associated .c file

• #include-ing a header file tells the pre-processor to paste its 
contents
• The same as if you had typed them in the top of the file yourself

• Leads to weird errors sometimes if you mess up a header file

• Be sure to only include header files!

51



Examples

• The –E flag tells the compiler to only run the pre-processor

• In example_project/
• cc –E src/interact.c –o interact.i

• Note that header files are included

• Note that some functions are only definitions right now

• Simpler example can be found in preprocessor_example/
• Run make to create client.i and library.i

52

example_project/
preprocessor_example/



Break + relevant xkcd
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Definition of Fibonacci Function

• 𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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n fib(n)

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21



Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c
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Statements and Conditions aren’t enough

• Not all problems are easily solved with recursion

• C, like many programming languages, also has loops
• Repeats the statements inside it until some condition is met
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Iteration with the While Statement

• Syntax

while (⟨test-expression⟩) {

⟨body-statements⟩

}

• Semantics
1. Evaluate ⟨test-expression⟩ to a bool

2. If the bool is false then skip to the statement after the while loop

3. Execute ⟨body-statements⟩ (if the bool was true)

4. Go back to step 1
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Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c



For loops

• For loops allow you to combine iteration and incrementing
• When you write a for statement like this:

for (⟨start-decl⟩; ⟨test-expr⟩; ⟨step-expr⟩) {

⟨body-stms⟩

}

• It’s as if you’d written this while statement:

{

⟨start-decl⟩;

while (⟨test-expr⟩) {

⟨body-stms⟩

⟨step-expr⟩;

}

} 61



Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c



Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

int i = 0;

while (i < n) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c



Complete: modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; i = i + 1) {

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c



Break + Question

• What value will this code return when called as:
• loop_function(6)

• loop_function(5)

• loop_function(3)

68

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}



Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5)

• loop_function(3)
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int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}



Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3)
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int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}



Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3) returns 2
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int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}
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printf() function

• The usual way to print in C is the printf() function
• Takes a format string followed by arguments to interpolate in place of the 

string’s format specifiers

printf("(%d, %d)\n", x, y);

%d format specifier means the argument is an int

Prints “(“ + the value of x + “, “ + the value of y + “)\n”

• printf() is in the stdio.h library, which needs to be #include-ed
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Example: formatted output

#include <stdio.h>

int main(void){

int x = 5;

double f = 5.1;

printf("sizeof x: %zu bytes\n", sizeof(x));

printf("sizeof f: %zu bytes\n", sizeof(f));

printf("x: %d\nf: %.60e\n", x, f);

}

• A format specifier gives the argument’s type and maybe some options

• %zu type: size_t (the return result of sizeof)

• %d type: int

• %.60e type: double, include 60 digits of precision
74

output.c



How do you learn format specifiers?

• You look them up in a guide!
• Even I don’t have them memorized…

• man 3 printf

• Runs in the terminal

• Shows details about printf

• google “printf format specifiers” (this is what I do)
• cplusplus.com is a good resource

• https://www.cplusplus.com/reference/cstdio/printf/
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Reading user input

• To input numbers in C, use the scanf() function

• scanf reads keyboard input, converts it to the require type, and 
stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf(), scanf() uses a format string to determine what type to 
convert the input into

• &x means to pass x’s location, not its value (more on this next week)

• Careful: scanf() directives aren’t exactly the same as printf()
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Example: reading input

#include <stdio.h>

double sqr_dbl(double n){

return n * n;

}

int main(void){

double d = 0.0;

scanf("%lf", &d);

printf("%lf squared is %lf\n", d, sqr_dbl(d));

}

77

input.c



Example: reading multiple items

#include <stdio.h>

int main(void){

int x;

int y;

printf("Enter two integers: ");

scanf("%d%d", &x, &y);

printf("%d * %d = %d\n", x, y, x * y);

}

78

multi_input.c



What if scanf() has an error?

• scanf() returns the number of successful conversions

#include <stdio.h>

int main(void){

int x
int y;

printf("Enter two integers: ");

if (scanf("%d%d", &x, &y) != 2) {

printf("Input error\n");

return 1;

}

printf("%d * %d == %d\n", x, y, x * y);

}

79

check_input.c
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C comments

• // means a single-line comment

• /* starts a multiline comment, which continues until */

• How to use comments effectively
• Comment “blocks” of code with their purpose

• Every line is too much

• Often helpful to write the comments before the code as planning

• Comment tricky bits of code so you know what it means

• You + several weeks = “what does that code mean?!”
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Logical operators

• ||    &&
• Logical OR, and Logical AND
• a < 5 && b > 12

• !
• Logical NOT
• !(a < 5) equivalent to (a >= 5)

• ==
• Equality test
• 5 == 5 ->  TRUE
• 16 == -3 ->  FALSE

• Don’t mix it up with assignment (single equals sign)
• Really common new C programmer mistake
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Other operators you’ll see around

• +=   *=   -=   /=
• Perform the action of   VAR = VAR operator ARG
• a += 5 ->  a = a + 5
• a *= b ->   a = a * b

• %
• Modulus operator
• Returns the remainder of division
• 12 % 10 ->  2

• ~  |  &  ^
• Bitwise NOT, OR, AND, and XOR (you’ll learn these in CS213)
• Importantly, ^ is not exponentiation!!!
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Adding and Subtracting one

• ++   --
• Shorthand for plus 1 or minus 1

• ++a ->  a += 1 ->   a = a + 1

• The auto-increment/decrement operators can go before or after 
the variable
• (--x) subtracts one and returns the new value of x from the expression

• (x--) subtracts one but returns the old value of x from the expression

• Usually, this doesn’t matter, unless you write complicated statements that 
combine assignment and conditions

• if (--x > 0) … (please just never do this)
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Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; ++i) {  // i++ also works

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}
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𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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typedef can be used to make new C type names

• Typedef creates a new type name that is a copy of an existing type

• Typedef keyword is followed by two types
• First type: the original type name

• Second type: the new type name

• Example:
typedef int x_coordinate_t;

x_coordinate_t my_variable = 5;
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Ternary Operator

• ? :
• Shorthand version of an if statement, determining result of expression

• Example:
• return (a < 5) ? a : b;

equivalent to

• if (a < 5) {
return a;

} else {
return b;

}

• You won’t need to use this. Usually, it just makes code harder to read.
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• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline
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• Bonus: these are optional extra things that you might be 
interested in
• They won’t be on a quiz, but may come up in real code

• More Pre-processor

• Makefile Syntax

Outline



What else can the pre-processor do?

• Macros
• Text substitutions made by the pre-processor

• Compile-time code inclusion
• Determine which code is actually compiled based on flags

• Pragma
• Special commands to the compiler
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C macros

#define NAME_OF_MACRO value_of_macro

• Examples:
#define LENGTH 20

#define FAIL_MESSAGE “There was an error!\n”

• The pre-processor pastes the text of the “value” wherever it finds 
the macro “name” in the source code
• Useful for defining values that will be used in code

• Again, be careful about weird bugs here!
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Macro functions

• Macros can be used as functions as well

#define DEBUG(msg) printf(msg)

#define MIN(a, b) ((a < b) ? a : b)

• Generally, avoid this
• You could just write a C function to do the operation instead

• And the compiler will check this for errors better

• It can be tricky to get right
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Example of macro function trickiness

#define ADD(a, b) a+b

int x = ADD(3,4)*5; // Expects 7*5=35

• The pre-processor will expand this to:

int x = 3+4*5; // Expects 7*5=35

• Extra parentheses around the macro value prevent this issue
#define ADD(a, b) (a+b)
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Ifdef in C

• The pre-processor evaluates the statement before compilation and 
either includes or removes the text
• Useful because the code literally does not exist if removed

#ifdef DEBUG

printf(“Debug message here\n”);

#endif

• Ifdef hell: when you can’t figure out which C code is actually being
compiled due to too many #ifdefs
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Pragma examples

• Pragmas tell the C compiler to do something
• Turn on/off warnings

• Various compiler tricks that are important for low-level OS code

• Most common example: #pragma once at the top of each header
• Tells the compiler to track this file and only paste it in a given C file once

• Otherwise could end up with a bunch of different copies

• Old C code uses #ifdef at the top of header files for the same task

• Paired with an #endif at the very bottom of the file

95



96

• Bonus: these are optional extra things that you might be 
interested in
• They won’t be on a quiz, but may come up in real code

• More Pre-processor

• Makefile Syntax

Outline



Bonus: Makefile for example_project/

• Take a look at these if you want to understand the Makefile for the 
interact and posn_test programs from today’s lecture files
• In the example_project/ directory
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Bonus: Makefile for building interact and posn_test

• These rules encode the dependency diagram from a few slides back 
(but with preprocessing and translation combined)

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c
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Bonus: Makefile for building interact and posn_test

• Good programmers are lazy and hate repetition. So much repetition here!

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c

99



Bonus: Makefile for building interact and posn_test

• You don’t have to repeat the goal in each recipe
• It’s better to use the special variable $@ instead

interact: interact.o posn.o

cc -o $@ interact.o posn.o

posn_test: posn_test.o posn.o

cc -o $@ posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o $@ interact.c

posn_test.o: posn_test.c posn.h

cc -c -o $@ posn_test.c

posn.o: posn.c posn.h

cc -c -o $@ posn.c
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Bonus: Makefile for building interact and posn_test

• Similarly, $^ is a variable that stands for the prerequisites
• Or $< when you only want the first prerequisite

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<
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Bonus: Makefile for building interact and posn_test

• Now note that the bottom three compilation rules are the same except for 
the filename. We can replace them with a pattern rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<
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Bonus: Makefile for building interact and posn_test

• This pattern says we can build any .o file from a matching .c file

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c posn.h

cc -c -o $@ $<
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Bonus: Makefile for building interact and posn_test

• That pattern is pretty generic except for the reliance on posn.h
• Let’s break that out into a separate rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c

cc -c -o $@ $<

interact.o posn_test.o posn.o: posn.h
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Bonus: Makefile for building interact and posn_test

• And we really ought to make the compiler used a variable
• Then others could change it out if desired

interact: interact.o posn.o

$(CC) -o $@ $^

posn_test: posn_test.o posn.o

$(CC) -o $@ $^

%.o: %.c

$(CC) -c -o $@ $<

interact.o posn_test.o posn.o: posn.h
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Bonus: Makefile for building interact and posn_test

• Finally, there are often compiler options we want to pass in
• Here are the standard variables for holding those

interact: interact.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

posn_test: posn_test.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

%.o: %.c

$(CC) -c -o $@ $< $(CPPFLAGS) $(CFLAGS)

interact.o posn_test.o posn.o: posn.h
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