
Lecture 02
Unix Shell & C Compilation

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov

Administrivia

• Office hours have started!
• Check Canvas homepage for

calendar

• I have office hours right
after class today!

• Everyone should have
Piazza access
• Email me ASAP if you don’t

2

Assignments

• EX1 due today (88%+ of you are done)
• Need to buy the textbook unfortunately

• Remember: no late submission for exercises

• EX2 due Thursday (32%+ completed)
• A little deeper into C programming: Branches and Loops

• Lab1 due Thursday (31%+ completed)
• SSH access to lab servers for C programming

• Using Linux command line

• Submitted to Gradescope

3

Today’s Goals

• Introduction to working in Unix shell (command line)

• Understand the C compilation process

• Continue exploring C programming
• Iteration

• Input and Output

4

Getting the examples from lecture

• First, make your own cs211 directory to store class stuff in
• cd ~/

• mkdir cs211

• The files for this class are in a zipped tarball (just like a zip file)
• We can extract them right into your cs211/ directory

• cd ~/cs211/

• tar -xvkf ~cs211/lec/02_shell_compilation.tgz

• cd 02_shell_compilation

• What does that command do?: https://explainshell.com/explain?cmd=tar+-
xvkf+%7Ecs211%2Flec%2F02_shell_compilation.tgz

5

https://explainshell.com/explain?cmd=tar+-xvkf+%7Ecs211%2Flec%2F02_shell_compilation.tgz
https://explainshell.com/explain?cmd=tar+-xvkf+%7Ecs211%2Flec%2F02_shell_compilation.tgz

6

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

How do you get a Unix shell?

• Have a MacOS or Linux computer
• Or set up Windows Subsystem for Linux (WSL) on Windows

• Install Virtualbox and Linux
• Installing Ubuntu is free and only takes twenty minutes

• Log in to a class server remotely!
• This is what we’ll do for CS211

• Lab01 teaches you how to do this

7

Command line interfaces

• Text-based commands

• Positives
• It’s easy to be precisely clear about what you want and how things are

configured

• Negatives
• How do you remember everything?

• Reality
• There will be a few dozen commands you’ll memorize (after practice)
• And you’ll learn how to look up everything else

8

Commands for moving between directories

• Directory structure and moving through it
• ls

• Lists files in the current directory
• cd

• Change directory
• pwd

• Prints the path of the current directory

• Mis-typing something
• “Command not found” means you tried to run something invalid
• fish: somecommandyoumistyped: command not found...

9

Live command-line demo!!!

• To do:
• Log in

• Move around with commands

• Fail at some command

• Tab completion

• Get files from lecture!

10

Directory structure in Linux

• Example: /usr/bin/ is the path to user-installed programs

11

Special paths

. the current directory

.. the parent of the current directory

../../ the parent of the parent of the current directory

../../../ and so on…

- the previous directory you were in before the current one

~/ the home directory of the current user (your home)

~cs211 the home directory of the user cs211
(works for any user, but you’ll probably won’t interact with other users)

/ the root directory (analogous to C:\ on windows)

12

Relative vs absolute paths

• Relative paths are relative to the current directory
• ../

• src/

• ../../code/src/../build/

• Absolute paths have the full path name to the location
• /home/branden/

• /home/branden/cs213/code/

• /home/branden/cs213/code/src/../build/

13

Wildcard in path names

• Sometimes you’re not sure exactly what the name is
• Or there might be multiple files that you want to interact with

simultaneously

• The wildcard symbol, *, replaces any number of characters in a
path name

• Examples
• ls /home/*/ List all files in all user’s home directories

• ls ~/cs21*/ List all files in any directory starting with cs21

• ls code/src/*.c List all files that end with “.c” in code/src/

14

Tab Completion

• Typing takes toooooooo looooooonnnnggg
• Solution, let the computer guess what you’re trying to type

• Pressing tab while part-way through typing just about anything in
terminal will tab-complete it for you
• As long as you have typed enough characters so that only one option

remains, it will complete it

• If multiple options remain, it will stop trying

• Also, up-arrow gets you the previously typed command
• And you can edit that, if that’s faster

15

16

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

Working with files

• cat path

• Prints out the contents of the file

• mv path1 path2

• Moves a file from path1 to path2

• cp path1 path2

• Copies a file from path1 to path2

• rm path

• Deletes (removes) a file

17

Editing files

• There are many different terminal text editors
• And there are holy wars about why one is best

• There is no best. Just use whatever you like

• Example editors
• Vim, Emacs, Nano

• In CS211, I’ll be teaching you using the Micro text editor
• Occasionally I’ll open vim by accident. Someone yell at me when I do

• https://micro-editor.github.io/

18

Editing with Micro

• micro filename
• Opens micro, editing filename

• Works just like any text editor you’ve used
• Mouse moves the cursor around, as do the arrow keys

• Typing makes text appear

• (This isn’t true in some shell editors, looking at you vim)

• Ctrl-s save the file

• Ctrl-o open a file

• Ctrl-q quit

19

Live command-line demo 2!!

• To do:
• Make directories

• Edit a file

• Move a file

• Use a command with flags

20

Cancelling a command

• Ctrl-C stops most things from running
• Ctrl key and C key both at once

• If you have C code that’s stuck in an infinite loop, Ctrl-C will stop it

• Note: this means Ctrl-C isn’t usually copy
• Except it does work as copy in Micro!

(but that means it won’t stop Micro from running)

21

Command flags

• man

• Opens the manual pages for a program

• Example: man ls

• Flags are configurations for a command that change what it does
• ls –l lists files in the current directory in a vertical list with details

• ls –t sorts the ls output by most recently modified

• ls –l –t does both

• You can type multiple flags after a single dash
• ls –lt is equivalent to ls –l –t is equivalent to ls -tl

22

Searching for things

• grep –r “text” *

• Explanation

• Grep prints lines matching a pattern

• The pattern in this case is “text”

• -r means search recursively, i.e. in this directory and all subdirectories

• * means to search in any file in the current directory

• Summary

• Search all the files here and below for the word “text”

23

Don’t be overwhelmed!!!!

• You have plenty of time to learn this

• Lab01 guides you through the same kinds of commands I did
today, step by step

• Practice is the only thing that will really help
• And CS211 will give you plenty of practice

24

Helpful guides

• Great lecture notes on using the shell
• https://swcarpentry.github.io/shell-novice/

• Tool to explain various shell command syntax
• https://explainshell.com/

• Tool to explain how to use various shell commands
• Just type the command into the box at the top

• https://tldr.ostera.io/

25

https://swcarpentry.github.io/shell-novice/
https://explainshell.com/
https://tldr.ostera.io/

Shell command: sudo

• Superuser do
• Executes a command with special administrator privilege (superuser)
• Necessary for installing new programs and modifying the OS

• Run it before a command to execute that command as a superuser
• Example: sudo rm –rf / (don’t run this!)

• You can only use sudo on computers where you are an admin
• Only use with caution and care. It can destroy your computer

• You’ll never need it for class stuff
• You are NOT an admin on the class servers! (neither am I)
• You might see it in stack overflow answers (won’t solve 211 problems though)

26

sudo example

27

sudo example

28

Break + relevant xkcd

29https://xkcd.com/838/

30

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

How do you “run” C code?

• First, the C code needs to be translated
• From human-readable source code

• To machine code capable of being executed on a particular machine
(definitely not human readable)

• This translation process is called “compiling”
• The tool that does it is a “compiler”

31

Source Code Machine Code
compilation

What does machine code look like?

• Just a bunch of numbers
• Your text editor would interpret those numbers as random characters

• The computer processor reads the numbers to figure out which
instruction to run
• This is a version of assembly code
• See CS213 for way more details

32

Compiling a C program

• The compiler we’ll use is referred to as cc
• Short for C Compiler

• It takes in C source code and outputs executable machine code

• cc hello.c

• ls
a.out hello.c

• ./a.out
Hello, CS 211!

33

Don’t memorize this. You won’t
be running cc manually.

Compiling a C program

• a.out is the default name, but we probably want to use something
more memorable

• The -o flag specifies the output filename for the compiler

• cc -o hello hello.c

• ls
hello hello.c

• ./hello
Hello, CS 211!

34

Don’t memorize this. You won’t
be running cc manually.

Remember to compile!

• You need to re-compile code every time the source code changes

• You WILL forget to do this at some point
• And you’ll run the program but it’ll do the old behavior rather than the

new things you’ve written

• Compile often!
• Keep multiple windows open to make this easier

• I write a handful of lines of C code, then compile again

• Way easier to find one or two mistakes now than deal with MANY later

35

IMPORTANT: compile often!

• Important enough that I’ll repeat it

• Keep multiple terminals open
• One for editing and one for compiling

• Compile every few lines of C code you write
• Maybe every time you finish a function

• Compilation points out errors in your code for you!
• But it can get overwhelming if you don’t run it until the end

36

37

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

Real-world projects have multiple files

• You can write code in any number of different C files
• And combine them together while compiling

• But we need some way to tell C code in one file about the
existence of C code in another file
• Solution: header files (.h)

• Header files list all the publicly available functions and variables from a C
file

• Usually, there is a .c and .h file for various libraries

• Header files are #include-ed at the top of your C file

38

Compiling multiple C files

• Each C file is compiled separately

• Then combine multiple together into a single program

• Compilers have a middle step: object files (.o)
• Still not human readable

• Meant to be joined together into a single executable

• Object files don’t have to be recompiled if their source file hasn’t
changed
• This speeds up compilation for large projects!

39

General C project layout

• src/
• Various code that actually runs your project

• test/
• Various code that tests your files in src/

• We separate code in src/ into two categories
• The executable, which has a main() function and not much else

• Named whatever your executable is, but with a .c
• Example: interact.c

• Libraries which have both .c and .h files
• Example: posn.c and posn.h

40

Example of multiple compilation

41

example_project/

42

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

New problem, how do you remember all these steps?

43

And this doesn’t even
include various flags we
give to the compiler,
such as the location of
the 211.h library

Simplifying multiple compilation with Make

• Make is a tool for building programs out of multiple source files
• Allows you to specify goals and requirements as “rules”

• And then runs the compiler to fulfill those

• To build a file named ⟨goal⟩ using make, you run:
make ⟨goal⟩

• Make looks around the current directory for a file named Makefile
which specifies the various rules
• We’ll provide the Makefile for you in this class

• But you’ll have to use make to compile your programs

44

What does a make rule look like?

• A rule has a goal and pre-requisites for the goal
• And then specifies commands to create the goal given the pre-requisites

⟨goal⟩: ⟨prereqs⟩. . .

⟨commands⟩
...

• Example:
hello: hello.c

cc -o hello hello.c

45

Always use Make, rather than calling the compiler yourself

• Make is our tool for compiling programs
• It has rules for how to build the programs using the compiler

• You could compile your programs manually
• But you would need to know the proper flags for the compiler to do so

• Some programs rely on class-specific libraries for testing and memory
management

• This is a big pain, so just you make instead

• And if you’re curious, you can look at the Makefile to see what the flags
we’re providing are

46

47

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

C pre-processor

• Reads in the text of your source code

• Does some initial text-based manipulations to the code
• Prepares everything for the compiler

48

C reads files from the top down

• First important thing to know about the pre-processor/compiler
• They read from the top of the file down
• Functions that don’t exist when you try to call them are an error

• How would we write this code then?

void a(void) {

b();
}

void b(void) {

a();
}

49

Function declaration

• You can inform the compiler about functions that will later be
defined
• You are telling the C compiler: “here’s what this other function looks like,

you’ll get details about how it works later”
• Very useful for libraries that you are using

• A function declaration in C includes the return type, name, and
argument types
• Examples:

void a(int, float);

struct posn read_posn(void);

• A function definition in C also includes the body of the function

50

Header files are collections of declarations

• You could manually type out the declaration for each function you
want to use at the top of your C file

• Instead, we create “Header files” (.h) that hold all the function
declarations for functions in the associated .c file

• #include-ing a header file tells the pre-processor to paste its
contents
• The same as if you had typed them in the top of the file yourself

• Leads to weird errors sometimes if you mess up a header file

• Be sure to only include header files!

51

Examples

• The –E flag tells the compiler to only run the pre-processor

• In example_project/
• cc –E src/interact.c –o interact.i

• Note that header files are included

• Note that some functions are only definitions right now

• Simpler example can be found in preprocessor_example/
• Run make to create client.i and library.i

52

example_project/
preprocessor_example/

Break + relevant xkcd

53
https://xkcd.com/303/

54

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

Definition of Fibonacci Function

• 𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

55

n fib(n)

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

56

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

57

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

Statements and Conditions aren’t enough

• Not all problems are easily solved with recursion

• C, like many programming languages, also has loops
• Repeats the statements inside it until some condition is met

58

Iteration with the While Statement

• Syntax

while (⟨test-expression⟩) {

⟨body-statements⟩

}

• Semantics
1. Evaluate ⟨test-expression⟩ to a bool

2. If the bool is false then skip to the statement after the while loop

3. Execute ⟨body-statements⟩ (if the bool was true)

4. Go back to step 1

59

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

60

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

For loops

• For loops allow you to combine iteration and incrementing
• When you write a for statement like this:

for (⟨start-decl⟩; ⟨test-expr⟩; ⟨step-expr⟩) {

⟨body-stms⟩

}

• It’s as if you’d written this while statement:

{

⟨start-decl⟩;

while (⟨test-expr⟩) {

⟨body-stms⟩

⟨step-expr⟩;

}

} 61

Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

62

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

int i = 0;

while (i < n) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}

63

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Complete: modify fib to use a for loop

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; i = i + 1) {

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

67

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Break + Question

• What value will this code return when called as:
• loop_function(6)

• loop_function(5)

• loop_function(3)

68

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5)

• loop_function(3)

69

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3)

70

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(6) returns 0

• loop_function(5) returns 0

• loop_function(3) returns 2

71

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

72

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

printf() function

• The usual way to print in C is the printf() function
• Takes a format string followed by arguments to interpolate in place of the

string’s format specifiers

printf("(%d, %d)\n", x, y);

%d format specifier means the argument is an int

Prints “(“ + the value of x + “, “ + the value of y + “)\n”

• printf() is in the stdio.h library, which needs to be #include-ed

73

Example: formatted output

#include <stdio.h>

int main(void){

int x = 5;

double f = 5.1;

printf("sizeof x: %zu bytes\n", sizeof(x));

printf("sizeof f: %zu bytes\n", sizeof(f));

printf("x: %d\nf: %.60e\n", x, f);

}

• A format specifier gives the argument’s type and maybe some options

• %zu type: size_t (the return result of sizeof)

• %d type: int

• %.60e type: double, include 60 digits of precision
74

output.c

How do you learn format specifiers?

• You look them up in a guide!
• Even I don’t have them memorized…

• man 3 printf

• Runs in the terminal

• Shows details about printf

• google “printf format specifiers” (this is what I do)
• cplusplus.com is a good resource

• https://www.cplusplus.com/reference/cstdio/printf/

75

https://www.cplusplus.com/reference/cstdio/printf/

Reading user input

• To input numbers in C, use the scanf() function

• scanf reads keyboard input, converts it to the require type, and
stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf(), scanf() uses a format string to determine what type to
convert the input into

• &x means to pass x’s location, not its value (more on this next week)

• Careful: scanf() directives aren’t exactly the same as printf()

76

Example: reading input

#include <stdio.h>

double sqr_dbl(double n){

return n * n;

}

int main(void){

double d = 0.0;

scanf("%lf", &d);

printf("%lf squared is %lf\n", d, sqr_dbl(d));

}

77

input.c

Example: reading multiple items

#include <stdio.h>

int main(void){

int x;

int y;

printf("Enter two integers: ");

scanf("%d%d", &x, &y);

printf("%d * %d = %d\n", x, y, x * y);

}

78

multi_input.c

What if scanf() has an error?

• scanf() returns the number of successful conversions

#include <stdio.h>

int main(void){

int x
int y;

printf("Enter two integers: ");

if (scanf("%d%d", &x, &y) != 2) {

printf("Input error\n");

return 1;

}

printf("%d * %d == %d\n", x, y, x * y);

}

79

check_input.c

80

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

C comments

• // means a single-line comment

• /* starts a multiline comment, which continues until */

• How to use comments effectively
• Comment “blocks” of code with their purpose

• Every line is too much

• Often helpful to write the comments before the code as planning

• Comment tricky bits of code so you know what it means

• You + several weeks = “what does that code mean?!”

81

Logical operators

• || &&
• Logical OR, and Logical AND
• a < 5 && b > 12

• !
• Logical NOT
• !(a < 5) equivalent to (a >= 5)

• ==
• Equality test
• 5 == 5 -> TRUE
• 16 == -3 -> FALSE

• Don’t mix it up with assignment (single equals sign)
• Really common new C programmer mistake

82

Other operators you’ll see around

• += *= -= /=
• Perform the action of VAR = VAR operator ARG
• a += 5 -> a = a + 5
• a *= b -> a = a * b

• %
• Modulus operator
• Returns the remainder of division
• 12 % 10 -> 2

• ~ | & ^
• Bitwise NOT, OR, AND, and XOR (you’ll learn these in CS213)
• Importantly, ^ is not exponentiation!!!

83

Adding and Subtracting one

• ++ --
• Shorthand for plus 1 or minus 1

• ++a -> a += 1 -> a = a + 1

• The auto-increment/decrement operators can go before or after
the variable
• (--x) subtracts one and returns the new value of x from the expression

• (x--) subtracts one but returns the old value of x from the expression

• Usually, this doesn’t matter, unless you write complicated statements that
combine assignment and conditions

• if (--x > 0) … (please just never do this)

84

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; ++i) { // i++ also works

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

85

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

typedef can be used to make new C type names

• Typedef creates a new type name that is a copy of an existing type

• Typedef keyword is followed by two types
• First type: the original type name

• Second type: the new type name

• Example:
typedef int x_coordinate_t;

x_coordinate_t my_variable = 5;

86

Ternary Operator

• ? :
• Shorthand version of an if statement, determining result of expression

• Example:
• return (a < 5) ? a : b;

equivalent to

• if (a < 5) {
return a;

} else {
return b;

}

• You won’t need to use this. Usually, it just makes code harder to read.

87

88

• Unix Shell
• Navigation
• Working with files

• Compilation
• Separate Compilation
• Makefiles
• Pre-processor

• More C syntax
• Computing Fibonacci Numbers
• Iteration
• Input and Output
• Other C Syntax

Outline

89

• Bonus: these are optional extra things that you might be
interested in
• They won’t be on a quiz, but may come up in real code

• More Pre-processor

• Makefile Syntax

Outline

What else can the pre-processor do?

• Macros
• Text substitutions made by the pre-processor

• Compile-time code inclusion
• Determine which code is actually compiled based on flags

• Pragma
• Special commands to the compiler

90

C macros

#define NAME_OF_MACRO value_of_macro

• Examples:
#define LENGTH 20

#define FAIL_MESSAGE “There was an error!\n”

• The pre-processor pastes the text of the “value” wherever it finds
the macro “name” in the source code
• Useful for defining values that will be used in code

• Again, be careful about weird bugs here!

91

Macro functions

• Macros can be used as functions as well

#define DEBUG(msg) printf(msg)

#define MIN(a, b) ((a < b) ? a : b)

• Generally, avoid this
• You could just write a C function to do the operation instead

• And the compiler will check this for errors better

• It can be tricky to get right

92

Example of macro function trickiness

#define ADD(a, b) a+b

int x = ADD(3,4)*5; // Expects 7*5=35

• The pre-processor will expand this to:

int x = 3+4*5; // Expects 7*5=35

• Extra parentheses around the macro value prevent this issue
#define ADD(a, b) (a+b)

93

Ifdef in C

• The pre-processor evaluates the statement before compilation and
either includes or removes the text
• Useful because the code literally does not exist if removed

#ifdef DEBUG

printf(“Debug message here\n”);

#endif

• Ifdef hell: when you can’t figure out which C code is actually being
compiled due to too many #ifdefs

94

Pragma examples

• Pragmas tell the C compiler to do something
• Turn on/off warnings

• Various compiler tricks that are important for low-level OS code

• Most common example: #pragma once at the top of each header
• Tells the compiler to track this file and only paste it in a given C file once

• Otherwise could end up with a bunch of different copies

• Old C code uses #ifdef at the top of header files for the same task

• Paired with an #endif at the very bottom of the file

95

96

• Bonus: these are optional extra things that you might be
interested in
• They won’t be on a quiz, but may come up in real code

• More Pre-processor

• Makefile Syntax

Outline

Bonus: Makefile for example_project/

• Take a look at these if you want to understand the Makefile for the
interact and posn_test programs from today’s lecture files
• In the example_project/ directory

97

example_project/

Bonus: Makefile for building interact and posn_test

• These rules encode the dependency diagram from a few slides back
(but with preprocessing and translation combined)

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c

98

Bonus: Makefile for building interact and posn_test

• Good programmers are lazy and hate repetition. So much repetition here!

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c

99

Bonus: Makefile for building interact and posn_test

• You don’t have to repeat the goal in each recipe
• It’s better to use the special variable $@ instead

interact: interact.o posn.o

cc -o $@ interact.o posn.o

posn_test: posn_test.o posn.o

cc -o $@ posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o $@ interact.c

posn_test.o: posn_test.c posn.h

cc -c -o $@ posn_test.c

posn.o: posn.c posn.h

cc -c -o $@ posn.c

100

Bonus: Makefile for building interact and posn_test

• Similarly, $^ is a variable that stands for the prerequisites
• Or $< when you only want the first prerequisite

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<

101

Bonus: Makefile for building interact and posn_test

• Now note that the bottom three compilation rules are the same except for
the filename. We can replace them with a pattern rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<

102

Bonus: Makefile for building interact and posn_test

• This pattern says we can build any .o file from a matching .c file

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c posn.h

cc -c -o $@ $<

103

Bonus: Makefile for building interact and posn_test

• That pattern is pretty generic except for the reliance on posn.h
• Let’s break that out into a separate rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c

cc -c -o $@ $<

interact.o posn_test.o posn.o: posn.h

104

Bonus: Makefile for building interact and posn_test

• And we really ought to make the compiler used a variable
• Then others could change it out if desired

interact: interact.o posn.o

$(CC) -o $@ $^

posn_test: posn_test.o posn.o

$(CC) -o $@ $^

%.o: %.c

$(CC) -c -o $@ $<

interact.o posn_test.o posn.o: posn.h

105

Bonus: Makefile for building interact and posn_test

• Finally, there are often compiler options we want to pass in
• Here are the standard variables for holding those

interact: interact.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

posn_test: posn_test.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

%.o: %.c

$(CC) -c -o $@ $< $(CPPFLAGS) $(CFLAGS)

interact.o posn_test.o posn.o: posn.h

106

	Default Section
	Slide 1: Lecture 02 Unix Shell & C Compilation

	Goals
	Slide 2: Administrivia
	Slide 3: Assignments
	Slide 4: Today’s Goals
	Slide 5: Getting the examples from lecture

	Unix Shell
	Slide 6: Outline
	Slide 7: How do you get a Unix shell?
	Slide 8: Command line interfaces
	Slide 9: Commands for moving between directories
	Slide 10: Live command-line demo!!!
	Slide 11: Directory structure in Linux
	Slide 12: Special paths
	Slide 13: Relative vs absolute paths
	Slide 14: Wildcard in path names
	Slide 15: Tab Completion

	Working with files
	Slide 16: Outline
	Slide 17: Working with files
	Slide 18: Editing files
	Slide 19: Editing with Micro
	Slide 20: Live command-line demo 2!!
	Slide 21: Cancelling a command
	Slide 22: Command flags
	Slide 23: Searching for things
	Slide 24: Don’t be overwhelmed!!!!
	Slide 25: Helpful guides
	Slide 26: Shell command: sudo
	Slide 27: sudo example
	Slide 28: sudo example
	Slide 29: Break + relevant xkcd

	Compilation
	Slide 30: Outline
	Slide 31: How do you “run” C code?
	Slide 32: What does machine code look like?
	Slide 33: Compiling a C program
	Slide 34: Compiling a C program
	Slide 35: Remember to compile!
	Slide 36: IMPORTANT: compile often!

	Separate Compilation
	Slide 37: Outline
	Slide 38: Real-world projects have multiple files
	Slide 39: Compiling multiple C files
	Slide 40: General C project layout
	Slide 41: Example of multiple compilation

	Makefiles
	Slide 42: Outline
	Slide 43: New problem, how do you remember all these steps?
	Slide 44: Simplifying multiple compilation with Make
	Slide 45: What does a make rule look like?
	Slide 46: Always use Make, rather than calling the compiler yourself

	C Pre-processor
	Slide 47: Outline
	Slide 48: C pre-processor
	Slide 49: C reads files from the top down
	Slide 50: Function declaration
	Slide 51: Header files are collections of declarations
	Slide 52: Examples
	Slide 53: Break + relevant xkcd

	Computing Fibonacci Numbers
	Slide 54: Outline
	Slide 55: Definition of Fibonacci Function
	Slide 56: Implementing Fibonacci in C

	Iteration
	Slide 57: Outline
	Slide 58: Statements and Conditions aren’t enough
	Slide 59: Iteration with the While Statement
	Slide 60: Implementing Fibonacci in C
	Slide 61: For loops
	Slide 62: Modify fib to use a for loop
	Slide 63: Modify fib to use a for loop
	Slide 67: Complete: modify fib to use a for loop
	Slide 68: Break + Question
	Slide 69: Break + Question
	Slide 70: Break + Question
	Slide 71: Break + Question

	Input and Output
	Slide 72: Outline
	Slide 73: printf() function
	Slide 74: Example: formatted output
	Slide 75: How do you learn format specifiers?
	Slide 76: Reading user input
	Slide 77: Example: reading input
	Slide 78: Example: reading multiple items
	Slide 79: What if scanf() has an error?

	Other C Syntax
	Slide 80: Outline
	Slide 81: C comments
	Slide 82: Logical operators
	Slide 83: Other operators you’ll see around
	Slide 84: Adding and Subtracting one
	Slide 85: Implementing Fibonacci in C
	Slide 86: typedef can be used to make new C type names
	Slide 87: Ternary Operator

	Wrapup
	Slide 88: Outline

	Bonus: pre-processor
	Slide 89: Outline
	Slide 90: What else can the pre-processor do?
	Slide 91: C macros
	Slide 92: Macro functions
	Slide 93: Example of macro function trickiness
	Slide 94: Ifdef in C
	Slide 95: Pragma examples

	Bonus: Makefile Syntax
	Slide 96: Outline
	Slide 97: Bonus: Makefile for example_project/
	Slide 98: Bonus: Makefile for building interact and posn_test
	Slide 99: Bonus: Makefile for building interact and posn_test
	Slide 100: Bonus: Makefile for building interact and posn_test
	Slide 101: Bonus: Makefile for building interact and posn_test
	Slide 102: Bonus: Makefile for building interact and posn_test
	Slide 103: Bonus: Makefile for building interact and posn_test
	Slide 104: Bonus: Makefile for building interact and posn_test
	Slide 105: Bonus: Makefile for building interact and posn_test
	Slide 106: Bonus: Makefile for building interact and posn_test

