
Lecture 01
Introduction & C

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Spring 2023

Slides adapted from:
Jesse Tov, Sruti Bhagavatula, Joe Hummel



Welcome to CS211

• Course Goal: become a better and broader programmer

• First half
• C programming
• Unix shell

• Second half
• C++ programming

• Introduces students to industry-standard languages and tools

• Builds foundational software design skills at a medium scale

2



Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT

3

Things I love



Questions in class

• Please ask questions!!!
• It’s not just you who doesn’t understand something.

• You can always ask questions verbally during class
• Raise hand whenever

• I’ll stop for questions too

• Other options
• Ask me after class

• Ask on Piazza

4



Today’s Goals

• Discuss why we teach (and require) this class

• Describe how this class is going to function

• Introduction to C programming

5



6

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline



What does CS211 teach?

• C and C++ Programming

• Unix Shell

7



C - the most important programming language

• Old (1972), but nowhere near the first programming language
• FORTRAN, LISP, ALGOL, COBOL, Basic, B, and many others came first

• Right time, right place, right capability
• Enables both low-level control and (relatively) high level thinking

• Fast, efficient, and highly portable

• Inspired everything that has come since
• C syntax is copied partially or completely in MANY other languages

• Lessons learned from using C inspired improvements to make 
programming easier

8



C++ - an evolutionary addition to C

• Additional features on top of C
• Most important: classes to support Object Oriented Programming

• Also includes a significant amount of libraries that C does not

• Enables more complicated software design
• Manages which part of code can access which things at which times

• Manages how things are named and referred to

• Manages errors to help software respond to them

9



Things written in C/C++

• All major modern operating systems are partially or entirely C
• Windows, Linux, MacOS, Android, iOS

• Scientific computing (mix of C and C++)
• Mathematica, MATLAB, various scientific libraries

• Video game engines (often C++)
• Unreal Engine, Unity, CryEngine

• Embedded control systems (usually C, occasionally C++)
• Cars, Airplanes, Satellites and Rovers, Thermostats, Webcams, …

10



Upsides to C and C++

• You are in charge of everything
• You can do anything you want without constraints

• Capable of directly interacting with hardware (“systems language”)
• Grab exactly as much memory as you need and manage it yourself

• Makes it incredibly fast (~100x faster than Python)

• Makes it incredibly efficient (no memory is wasted)

• These lead to the languages being very widely used
• Top five programming languages for decades include C and C++

11



Downsides to C and C++

• You are in charge of everything
• And nothing is taken care of for you

• Things you “can’t” do are often UNDEFINED BEHAVIOR

• To enable portability, the languages just straight-up don’t say what 
happens if you violate the rules

• The computer could do anything

• Backwards compatibility means features are only ever added
• You’ll see this especially in C++, C just has less features total
• C++ feels like a bunch of things stapled together

• And there’s an amazing programming language hiding in there

12



Analogies for programming languages

• Racket
• Generic beginner’s car that gets you places

• Python
• Great car you can drive without a license
• Unless you want to go really fast or on bad terrain, might be good enough

• C
• A racing car that goes incredibly fast but breaks down every fifty miles

• C++
• A souped-up version of the C racing car with dozens of extra features that only 

breaks down every 250 miles
• But when it breaks down, nobody can figure out what went wrong

13http://users.cms.caltech.edu/~mvanier/hacking/rants/cars.html



So why teach C and C++?

• You’ll learn a lot more about programming
• Syntax and ideas from C inspired a lot of other languages

• Feels very different from Racket or Python

• You’ll become a better programmer
• You’re going to run into a lot of errors and problems in this class

• Hopefully they teach you to better design and plan your code

• Prepare you to dig deeper into computer systems
• A “systems language” is needed to interact directly with hardware

• Major options: Pascal, C, C++, Ada, Rust

14



What does CS211 teach?

• C and C++ Programming

• Unix Shell

15



Unix

• A wildly popular operating system in the 1970s and 80s

• Today refers to the family of operating systems inspired or grown from 
Unix
• Particular design style for “everything is a file”
• Various tools the OS is expected to provide
• Command line interface, also known as a “shell”

16

Unix

Linux Android

BSD
MacOS

iOS



C and Unix were born together

• Operating systems used to be written in assembly
• Basic instructions specific to a certain processor family (see CS213)

• So supporting a new computer type meant rewriting all of your software

• Unix development (1969) by Ken Thompson and Dennis Ritchie
• Developed at Bell Labs, which was a computing research powerhouse

• C language (1972) by Dennis Ritchie to write Unix programs
• And they quickly rewrote the whole OS in C as well

• This made the OS simpler to modify and easier to port to new systems

• Unix became enormously popular due in part to its portability

17



Unix shell

• Text-based interface to a computer
• Compare to graphical interfaces that need a mouse

• Necessary for remote interactions with many computers
• Cloud servers
• Specialized “headless” hardware

• Can be incredibly efficient and powerful
• Find all JPEG files in this folder and convert into PNGs
mogrify –format png *.jpg

• Replace all instances of CS150 with CS211 across all Markdown files
sed –i ‘s/CS150/CS211/g’ *.md

18



So why teach Unix shell?

• Many future classes are going to require you to work on a 
specialized computer that is shared by the class
• More resources, specific capabilities, etc.

• Add another basic computing tool to your skillset
• You might not use shell every day

• But maybe you might

• You get to feel like a “hacker”
• Using shell isn’t the only way to be a

programmer, but is a stereotypical way

19



So, why CS211?

• It’s going to make you a much better programmer

• It’s going to teach you a bunch of new skills

• It’s going to enable you to succeed in future classes

20



Architecture of a lecture

21

A
tt

en
ti

o
n

Time (minutes)

0 20 25 50 53 78 80

Administrivia
+ stretch break

Summary
+ Bonus

Open
Question

Full



Break + Question

• Why might some software use C instead of Python?

22



Break + Question

• Why might some software use C instead of Python?

• Performance!!
• C is MUCH faster than Python

• Tricky low-level “systems” behavior
• Directly manipulating memory and hardware devices
• E.g., an Operating System or a Game Engine

• Legacy code
• C is older than Python is, and is supported on more systems

• An old Palm Pilot from the 90s: Python won’t work on it but C will

23



24

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline



Course Staff

• TA (1)
• Sherwin Shen - PhD student in Computer Science

• PMs (14)
• Sofia Melendez Ethan McAlpin
• Natalie Hill John Sanchez
• Chisara Ojiako Matt Saperstein
• Mercy Omwoyo Jackie Lin
• Eli Barlow Ben Geduld
• Antonio Rocha Liz Yumbla
• Inessa Verbitsky Emily Wei

• Their role: support student questions via office hours and Piazza

25



How to learn stuff

• Lectures: here in class on Tuesdays and Thursdays
• Please attend and ask questions!

• Panopto tab on Canvas will have recordings (a few hours later)

• Textbook
• Zybooks “Programming in C” and “Programming in C++”

• Interactive materials covering the basics of C and C++

• Office hours (starting next week)
• Planning a mix of in-person and online

• More info will be posted to Piazza when the schedule is ready

26



Asking questions

• Class and office hours are always an option!
• I’ve got time to hang out after lectures and answer questions

• Piazza: (similar to Campuswire)
• Post questions
• Answer each other’s questions
• Find posts from the course staff
• Post private info just to course staff

• Please do not email me! Post to Piazza instead!
• I’m terrible at email and won’t respond when I get busy
• Exception: email me if you can’t access Piazza.

I’ll be updating roster again a few times

27



Exercises

• Practice labs in the zyBooks textbook
• Small snippets of code you’ll need to write to match some expected output

• Usually, 1-20 lines of code

• Immediate feedback, infinite retries, graded on completion
• Can work with others on them if that’s helpful

• Provides practice programming in C/C++
• If you’re already comfortable, should be easy

• If you’re uncomfortable, these should help!

28



Bad news: first assignment is already out

• The first set of exercises (“EX1”) is due next week Tuesday

• Posted on Canvas
homepage

• Lecture slides are also
posted to Canvas right
before class

29



Labs

• Small, guided practice sessions to set up a new environment
1. Setup for SSH access to lab machines (C programming)

2. CLion IDE setup with game engine (C++)

• These are super important, because without them you won’t be 
able to work on your homework!
• First lab will be out tonight or tomorrow

• These are not formal assignments or quizzes
• You may work with others on them

• Goal is to make sure your setup works before the homework starts

30



Homeworks

• Medium-sized individual programming assignments
• Around 200-1000 lines of code (50-200 is your solution)

• About a week to complete them

• First three are C, last two are C++

• These are serious work, but also where the most learning will 
happen
• Individual, may NOT work with other students on them

31



Final Project

• A bigger homework, where you get to choose what you want to do
• Done with a partner of your choosing

• Make an “interactive program” (usually a game)
• Examples: Pacman, Tetris, Two-dots, MS Paint, Checkers, Desert Bus

• This is your chance to do something interesting and fun!

• Can be a significant amount of work though

32



Quizzes

• Multiple quizzes instead of a big exam
• Should be four total
• Each is roughly 15-20 minutes

• Quizzes cover mainly material from the last two weeks
• But build upon knowledge from the entire course

• Only 10% of your grade total (2.5% each)
• Focus is really on making sure you’re caught up on class material
• Hopefully shouldn’t be too stressful

• First quiz isn’t until Tuesday of Week 3

33



Grade composition

34

• Standard letter grade 
scale
• 93%+ A

• 90%+ A-

• 87%+ B+

• etc.

Category Count Total Value

Exercises 6 5%

Labs 2 5%

Homework 5 55%

Final project 1 25%

Quizzes 4 10%



Relative homework difficulties

* But really it’s up to you

35

Homework Difficulty

HW1 5

HW2 7

HW3 11

HW4 6

HW5 9

Final Project 10ish*

HW3 is the last in C

It’s a two-part assignment 
spread over two weeks



Late Policy

• You can submit homeworks late
• Quizzes, exercises, and labs cannot be submitted late

• 10% penalty to maximum grade per day late
• Example: three days late means maximum grade is 70%

• Final project has a sliding scale
• 90% for up to 24-hours late

• 60% and 30% for the two days after that

36



We will support you if possible and equitable

• We can be flexible with deadlines for problems outside of your 
control
• Sick, family emergency, broken computer

• Contact me (via Piazza) and I’ll provide additional extensions

• Also, we support expected accessibility needs
• Make sure to submit ANU requests if you have any

• Let me know about anything else you need and we can discuss it

37



Slip Days

• Slip days let you turn in a homework late and receive no penalty

• Each student gets 4 slip days
• Apply to homeworks only (not final project, exercises, or labs)

• You don’t need to tell us you’re using them, we’ll just automatically apply 
them at the end of the year

• Examples:
• Turn in HW1 three days late

• Turn in HW4 two days late and HW5 one day late

• Turn in HW2 four days late with only a one-day penalty

38



Getting Help – Office Hours

• Office hours are mostly hosted by the PMs and TA
• I will have some too! Especially for higher-level questions

• Schedule
• We’re going to host a TON of office hours

• With some in-person and some online

• Details to follow, schedule on Canvas homepage

• Reminder: office hours are meant to augment the class
• Attend them when you need to!

39



Getting Help – Request a Meeting

• Lecture is my side gig

• My main job is helping students succeed

• If you are struggling, reach out and I will meet with you
• Course material

• Homework

• Other stuff going on in your life

40



Advice

• Submit assignments early and often!

• If you find this course difficult, that’s because it is difficult.

• However, nobody fails unless they give up.

• You belong here and can succeed here.

• Be kind to each other.

41



Break + relevant xkcd

42https://xkcd.com/1053/



Collaboration in CS211, three levels:

1. Partner Collaboration
• Your code and the other student’s code are identical because you share it and 

work on it together
• ONLY for registered partners on final project

2. Close Collaboration
• You communicate about code however you see fit
• ONLY acceptable for labs and exercises

3. Arms-Length Collaboration
• You discuss problems and solutions at a high level
• MAY NOT read, write, look at, record, or transcribe code
• MAY NOT have the code up on screen during collaboration
• MUST cite your sources, both arms-length collaborators and other resources

43
Refer to syllabus for the official version of this policy



Academic Honesty

• In CS211, we take cheating very seriously

• Cheating is when you:
• Engage in an inappropriate level of collaboration

• Such as look at another student’s code

• Enable another student, present or future, to cheat
• Such as letting a CS211 student read your code next year

• Fail to cite your sources (friend, Stack Overflow, etc.)
• Such as you get a big hint and don’t acknowledge where it came from 

in a code comment

44



Academic Honesty

• Please do not cheat in CS211

1. If you don’t write code, you won’t learn!

2. Cheating on code is super easy to catch!!
• No, like really really easy

• All suspected cheating is reported to the relevant dean for investigation

• Last time I taught CS211, eight different students were reported

• If you are unsure about a situation, ask the staff on Piazza

45



46

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

47

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

48

hello.c

This is the code file 
where you can find 
this code!

Usually, I’ll provide 
students source code 
for any in-class 
examples



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

49

A function named main()

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

50

A function named main()

No Arguments (void)

Returns an integer

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

51

Call to the printf() function

One argument to the function, 
the string “Hello, CS211\n”

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

52

Call to the printf() function

One argument to the function, 
the string “Hello, CS211\n”

The printf() function is a part of 

the standard input/output library, 
included here

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

53

Returns a value, 0
(which is of type int)

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

54

Two special things going on here:

1. main() is a special function 
name that is called when the 
program runs

hello.c



Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

55

Two special things going on here:

1. main() is a special function 
name that is called when the 
program runs

2. main() returns a number that 
specifies whether the program 
succeeded or failed and how
• 0 means success
• non-zero means failure
• specific numbers mean 

different things to different 
programs

hello.c



56

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline



Program state is preserved in variables

• C is an Imperative programming language
• List of step-by-step statements that modify the program’s state

• State is information from prior steps that influences future steps
• Example: TV volume Up/Down apply to prior setting

• In programs, we explicitly keep state in variables

int z = 5;

57



Values, objects, and variables

• Values are the actual information we want to work with
• Numbers, Strings, Images, etc.
• Example: 5 is an int value while ‘a’ is a char value

• An object is a chunk of memory that can hold a value of a particular 
type.
• Example: function f takes an argument int x

• Each time f is called, a “fresh” object that can hold an int is “created”

• A variable is the name of an object

• Assigning to a variable changes the value stored in the object named 
by the variable

58



Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?

59



Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
1. The first statement is a definition.

It creates an int object,
names it z,
and initializes it to the value 5

60

z: 5



Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
2. The second statement is an assignment.

It replaces the value 5
stored in the object named by z
with the value 7.

61

z: 7



Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
3. The third statement is also an assignment.

It retrieves the current value of z (which is 7),
then adds 4 to it,
and then stores the result back in the object named by z.

62

z: 11



C: Typed imperative programming

• Imperative programming
• Each line is a statement that changes the program’s state

• Usually, the values within a variable

• Type System
• Variables have a type associated with them

1. The type determines qualities of the object

• Example: how much memory it takes up

2. The type specifies what kind of value the variable holds

• Example: integers, decimal numbers, strings, etc.

63



Some types in C

• Hold an integer number (like 5 or 0 or -3)
• char, short, int, long, size_t, int8_t, int16_t, int32_t, etc.
• These can also specify signedness

• unsigned: only 0 and greater
• signed: negative, 0, or positive

• Hold a decimal number (like 6.238 or 0.00001 or -32566.5)
• float, double
• These are always negative, 0, or positive

• Difference between types: how big of a value they can hold
• short: 0 to 65536 OR signed short: -32768 to 32767
• int: 0 to 4294967296 OR signed int: -2147483648 to 2147483647

• We’ll have a whole future lecture on why the types are like this

64



Signed vs unsigned variables

• All “integer” types in C can be signed or unsigned
• char, short, int, long, etc.

• Unsigned: only zero or positive

• Signed: negative, zero, or positive

• Signed is the default! If it doesn’t say, it’s usually signed
• An exception is size_t which is unsigned

• Comparing signed and unsigned numbers generates a warning
• Should make sure they’re the same before comparing

65



Temporarily changing types while comparing

• You can cast a variable to another type during an expression
• To cast, put a type in parentheses before the variable name

• Example
int i = 0; //int is signed by default

size_t length = 5; //size_t is unsigned

if (i > length) { // warning here!

printf(“Too big!\n”);

}

66



Temporarily changing types while comparing

• You can cast a variable to another type during an expression
• To cast, put a type in parentheses before the variable name

• Example
int i = 0; //int is signed by default

size_t length = 5; //size_t is unsigned

if (i > (int)length) { // no warning anymore!

printf(“Too big!\n”);

}

67



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

69



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

70

prev: 🐝



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

71

prev: 🐝

curr: 5



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

72

prev: 🐝

curr: 5

next: 8



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

73

prev: 5

curr: 5

next: 8



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

74

prev: 5

curr: 8

next: 8



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

75

prev: 5

curr: 8

next: 13



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

76

prev: 8

curr: 8

next: 13



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

77

prev: 8

curr: 13

next: 13



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

78

prev: 8

curr: 13

next: 21



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

79

prev: 13

curr: 13

next: 21



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

80

prev: 13

curr: 21

next: 21



More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr; 

81

prev: 13

curr: 21

next: 34



82

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline



Definition of Fibonacci Function

• 𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

83

n fib(n)

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21



Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

84

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c

Recursion works in C!



Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

85

if (⟨test-expr⟩) { // evaluate ⟨test-expr⟩; then…
⟨then-stms⟩ // do these if ⟨test-expr⟩ was true

} else {

⟨else-stms⟩ // do these if ⟨test-expr⟩ was false

}

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

fib.c



Any statements can be nested in C

if (⟨first-test-expr⟩) {

if (⟨second-test-expr⟩) {

⟨A-stms⟩

} else {

⟨B-stms⟩

}

} else {

if (⟨third-test-expr⟩) {

⟨C-stms⟩

} else {

⟨D-stms⟩

}

}

86



C ignores most whitespace

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

87

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



C ignores most whitespace

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) +

fib(n - 1);

}

}

88

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C doesn’t care about whitespace



C ignores most whitespace

long fib(int n){if(n<2){return n;}else{return 

fib(n-2)+fib(n-1);}}

89

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C really doesn’t care about whitespace



C ignores most whitespace

long fib(int n){if(n<2){return n;}else{return 

fib(n-2)+fib(n-1);}}

90

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C really doesn’t care about whitespace

But humans do!

So don’t write your code this way!!!!!!!!!!



A note on style

• A lot of things are possible in C, but bad ideas
• They can make things hard to read

• They can be a source of bugs in code

• We try to provide you with what we think of as “good” C code

• We have a guide to how you should write your C code
• This is a (small) portion of your grade on each homework!

• https://nu-cs211.github.io/cs211-files/cstyle.html

91

https://nu-cs211.github.io/cs211-files/cstyle.html


92

• Why?

• Course Overview

• Intro to C
• Hello World

• Variables

• Computing Fibonacci

Outline


	Default Section
	Slide 1: Lecture 01 Introduction & C

	Goals
	Slide 2: Welcome to CS211
	Slide 3: Branden Ghena (he/him)
	Slide 4: Questions in class
	Slide 5: Today’s Goals

	Why?
	Slide 6: Outline
	Slide 7: What does CS211 teach?
	Slide 8: C - the most important programming language
	Slide 9: C++ - an evolutionary addition to C
	Slide 10: Things written in C/C++
	Slide 11: Upsides to C and C++
	Slide 12: Downsides to C and C++
	Slide 13: Analogies for programming languages
	Slide 14: So why teach C and C++?
	Slide 15: What does CS211 teach?
	Slide 16: Unix
	Slide 17: C and Unix were born together
	Slide 18: Unix shell
	Slide 19: So why teach Unix shell?
	Slide 20: So, why CS211?
	Slide 21: Architecture of a lecture
	Slide 22: Break + Question
	Slide 23: Break + Question

	Course Overview
	Slide 24: Outline
	Slide 25: Course Staff
	Slide 26: How to learn stuff
	Slide 27: Asking questions
	Slide 28: Exercises
	Slide 29: Bad news: first assignment is already out
	Slide 30: Labs
	Slide 31: Homeworks
	Slide 32: Final Project
	Slide 33: Quizzes
	Slide 34: Grade composition
	Slide 35: Relative homework difficulties
	Slide 36: Late Policy
	Slide 37: We will support you if possible and equitable
	Slide 38: Slip Days
	Slide 39: Getting Help – Office Hours
	Slide 40: Getting Help – Request a Meeting
	Slide 41: Advice
	Slide 42: Break + relevant xkcd
	Slide 43: Collaboration in CS211, three levels:
	Slide 44: Academic Honesty
	Slide 45: Academic Honesty

	Hello World in C
	Slide 46: Outline
	Slide 47: Hello world C program
	Slide 48: Hello world C program
	Slide 49: Hello world C program
	Slide 50: Hello world C program
	Slide 51: Hello world C program
	Slide 52: Hello world C program
	Slide 53: Hello world C program
	Slide 54: Hello world C program
	Slide 55: Hello world C program

	Variables
	Slide 56: Outline
	Slide 57: Program state is preserved in variables
	Slide 58: Values, objects, and variables
	Slide 59: Example of definition and assignment
	Slide 60: Example of definition and assignment
	Slide 61: Example of definition and assignment
	Slide 62: Example of definition and assignment
	Slide 63: C: Typed imperative programming
	Slide 64: Some types in C
	Slide 65: Signed vs unsigned variables
	Slide 66: Temporarily changing types while comparing
	Slide 67: Temporarily changing types while comparing
	Slide 69: More complicated example
	Slide 70: More complicated example
	Slide 71: More complicated example
	Slide 72: More complicated example
	Slide 73: More complicated example
	Slide 74: More complicated example
	Slide 75: More complicated example
	Slide 76: More complicated example
	Slide 77: More complicated example
	Slide 78: More complicated example
	Slide 79: More complicated example
	Slide 80: More complicated example
	Slide 81: More complicated example

	Computing Fibonacci Numbers
	Slide 82: Outline
	Slide 83: Definition of Fibonacci Function
	Slide 84: Implementing Fibonacci in C
	Slide 85: Implementing Fibonacci in C
	Slide 86: Any statements can be nested in C
	Slide 87: C ignores most whitespace
	Slide 88: C ignores most whitespace
	Slide 89: C ignores most whitespace
	Slide 90: C ignores most whitespace
	Slide 91: A note on style

	Wrapup
	Slide 92: Outline


