
CS 211 Lab 2
Welcome to C++

Spring 2023

Today we begin programming in C++ and the GE211 game engine
in a minimal example game. The game is quite simple: The player
controls two circles on the screen—one with the mouse and one with
the keyboard—and when the two circles overlap, one changes color.
As you will see, however, it comes with a bug.

Before you can get started, you’ll need to install a C++ and GE211

development environment. This means you’ll be setting up a C++
compiler, the CLion IDE, and the SDL2 graphics libraries.

Lab setup

Toolchain setup

Like the remaining homeworks, this lab is designed to be done on
your own computer, which means you need a C++14 toolchain and
the SDL2 libraries installed. Follow these instructions to setup your
computer for C++ and GE211.

Project setup

For C++ projects, including this lab, the starter code is provided as
a ZIP file for you to download: https://nu-cs211.github.io/cs211-files/

lab/lab02.zip. Extract the archive file into a directory in the location
of your choosing. Once you have your new directory containing the
starter files, you can open it in CLion.

Be careful, as CLion will only work correctly if you open the main
project directory (which has the the CMakeLists.txt in it). If you open
any other directory, CLion will create a CMakeLists.txt for you, but it
won’t work properly.

If you have problems loading the game, the first thing to try is to
reset the CMake configuration. This is true for all the future projects
as well! In CLion, click “Tools->CMake->Reset Cache and Reload
Project”. That will take ten seconds to run. Afterwards things will
hopefully work.

If that doesn’t solve your problem, please talk to us in office
hours or post to Piazza ASAP! We will help you get a working C++
environment.

https://nu-cs211.github.io/cs211-files/toolchain_setup.html
https://nu-cs211.github.io/cs211-files/lab/lab02.zip
https://nu-cs211.github.io/cs211-files/lab/lab02.zip


cs 211 lab 2 2

The game

Stating a program

To select your build target, use the dropdown menu in the top right
of the CLion IDE. You should select “circle_game”. To compile and
run code, click the green “play” button in the right of toolbar. After
compiling, the game window should automatically pop up.

Broken control

Currently, there is an bug in this code. Run the program by clicking
the green “play” button in the toolbar. Then try to control the circle
with your left and right arrow keys, and the big circle should likely
move in the opposite direction of what you intend. A bug!.

Open the project viewer by clicking “Project” on the right side
of the CLion IDE and locate the code for this—hint: look in the
src/model.cxx—and fix it. Run the code again to verify your fix.

There are also test cases for checking the model’s movement, so
when you are done try running your code against the tests. To build
the tests, choose “model_test” from the dropdown menu and again
click the green “play” button. This time a window won’t pop up, but
rather the test results will appear at the bottom of the CLion IDE.

Up and down

The circle should also be controllable by the keyboard to move up
and down. Figure out how that code works and make sure it works
properly.

Be sure to run the “circle_game” code after you modify it and
make sure that it works. You might get the directions wrong on the
up and down keys the first time you try!

Click, not hover

Currently, the position of the smaller circle tracks the position of the
mouse. However, what if we want the game to only update the posi-
tion of smaller circle when we click? To detect mouse clicks, you will
have to override the Abstract_game::on_mouse_down(Mouse_button,

Position) function in the Game struct. The function signature is a link
to the function’s documenta-
tion.

You’ll need to modify the code in ui.cxx and ui.hxx to remove the
on_mouse_move() function and instead override on_mouse_down with
the proper arguments. After you do, run the game again and verify
successful behavior.

https://tov.github.io/ge211/classge211_1_1_abstract__game.html#ae010e7d2f2f51229f45eb2046e1a5bde
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#ae010e7d2f2f51229f45eb2046e1a5bde


cs 211 lab 2 3

Testing

The current tests include a few examples that should pass for your
code. Fill in the two tests for moving the large circle up and down to
verify it works as expected.

There is a test case that checks that Model::overlapped() will
return true when the two circles are touching. Fill in the final test for
checking when the circles aren’t touching.

To run the tests, choose “All in model_test” from the target drop-
down and click the green “play” button.

Submission

We expect three modifications to the provided code (as described
above):

1. Fix horizontal controls

2. Fix vertical controls

3. Update position on mouse clicks

Once these are complete, you should submit your code to Grade-
scope for a grade. For this lab, you should be sure to include the
files:

• src/model.cxx

• src/ui.cxx

• test/model_test.cxx

Different from prior assignments, we won’t be submitting with the
submit211 tool since we aren’t in terminal. Instead, you’ll upload the
files to Gradescope manually.

When you click on the assignment in Gradescope for the first time,
you will get a window where you can upload files. You can drag-and-
drop files or browse to select them. Make sure you include all the
necessary files in the src/ and test/ directories! Submitting extra files is
fine. To submit additional times, select the “Resubmit” button on the
bottom right.

Other things to try

If you want to play around with this example more, here is documen-
tation for the Abstract Game Class.

Here are some things you could try to do:

https://tov.github.io/ge211/classge211_1_1_abstract__game.html


cs 211 lab 2 4

• Change the scoring mechanism so it shows something other than
zero.

• Make the small circle change colors when it’s touching the large
circle.

• Make the small circle change to a different color when it’s touch-
ing the edge of the window.

• Make a circle change size when touching the other.

• Let the user change the colors by pressing different keys on the
keyboard.

• Change a circle to a rectangle.


	Lab setup
	The game
	Submission
	Other things to try

