
CS 211 Lab 1
Navigating the Unix Shell

Spring 2023

Today we are going over the basics of how to log into a remote
computer, use shell commands to create and edit files, and compile
and run C code. There are different shells with slightly

different syntax. In this class, we will
use a shell called fish (for “Friendly
Interactive SHell”). Other shells include
tcsh (the default on the EECS servers),
bash (the default on most Linux sys-
tems), and zsh (the default on recent
versions of Mac OS).

The shell works as a textual conversation. It presents a prompt,
like [wsc147@robin]~/cs211%. (The default EECS prompt shows the
username, the hostname, and the current working directory.) You
type a command and press enter. The shell executes the command
and then prints another prompt, waiting for further commands. For
example, to list the files in the current directory, you will run the ls
command by typing it at the prompt:

% ls Don’t type the %. That represents the
prompt that the shell prints for you to
tell you it’s ready.

Before you can do that, though, we have to get you logged in.

Getting around the firewall

The workstations we want to connect to are not directly accessible
from off-campus, so in that case you will need to do a little extra
work to reach them. There are essentially two alternatives:

• Configure SSH to use a “proxy” through a different host than the
one we ultimately want to reach. SSH can do this automatically for
you if you set it up just right, but it’s a bit harder than the other
option. It’s also probably preferable, for privacy and performance
reasons.

Instructions for setting up a proxy appear in the per-system sec-
tions below.

• Use Northwestern’s virtual private network (VPN), Global Protect.
When you enable this, all your network traffic goes through an
encrypted tunnel to Northwestern’s campus, which means you are
effectively there. This solution is easy, but it can slow down your
network, so you’ll want to turn it off when you aren’t using it.

To setup the NU VPN, follow these instructions.

Shell access

For the majority of you who are unfamiliar with the Unix shell, it
probably seems like a scary foreign concept reserved for computer

https://services.northwestern.edu/TDClient/30/Portal/KB/ArticleDet?ID=1818


cs 211 lab 1 2

hackers on TV shows and movies. However, in reality, with a little
bit of time and a few basic commands, you will realize that the Unix
shell is not something to be scared of, and in fact a very useful tool to
embrace as you continue your computer science education. Don’t get
frustrated if it seems hard at first! Every great computer scientist was
at one point also unfamiliar with the shell, just like you, but with a
little bit of exposure, it will start to make sense.

SSH (secure shell) is a protocol that allows you to login remotely
onto an external system. We will be using it in order to create a
connection onto a Northwestern remote server, where we will be
learning our first Unix skills. For the first step of establishing the
connection, it will be different for Windows and Mac/Linux, but for
the rest it should not matter which OS you are on, since you’ll be
using the remote Unix machine.

You will need your NetID and EECS password to log into the com-
puters. If you do not remember it, you can create a new password at
https://selfserv.eecs.northwestern.edu/temp_password/ You will need to
use your NetID (in lowercase) and Northwestern password to login
to that website. The link will only work once, so pick a memorable
password. If you need to reset your password again, you’ll have to
contact EECS IT: help@eecs.northwestern.edu

Shell access on Windows

Preferred Method: Git Bash

Git Bash will give you a Unix-style terminal on Windows, and is the
recommended method of setting stuff up on Windows.

Download Git Bash from here and then follow these instructions
to install it. Once installed, you can open it by searching for “Git
Bash” in the Start Menu. From there, you should follow the “Shell
access on Mac/Linux” instructions below.

Secondary Method: PuTTY

Shell access setup (once)
Download the SSH client PuTTY; we recommend the MSI installer, https://www.chiark.greenend.org.uk/

~sgtatham/putty/latest.htmlsince it’s usually easier. You’ll want the “64-bit x86” version.
If you’re off-campus, you need to set up one of these two options

for getting past the firewall:

Setup for Moore. You can use PuTTY to connect to one machine,
Moore, without using VPN. Follow these instructions.

Setup for VPN. If you want to use the VPN and haven’t set it up
already, follow these instructions.

https://selfserv.eecs.northwestern.edu/temp_password/
mailto:help@eecs.northwestern.edu
https://git-scm.com/download/win
https://www.maketecheasier.com/install-git-bash-on-windows/
https://www.maketecheasier.com/install-git-bash-on-windows/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://nu-cs211.github.io/cs211-files/putty_setup_guide.pdf
https://services.northwestern.edu/TDClient/30/Portal/KB/ArticleDet?ID=1818


cs 211 lab 1 3

Logging in (every time)
If you’re off-campus and haven’t done the proxy setup (above)

then you’ll need to be running Global Protect (NU’s VPN) to log in.
After you install PuTTY, open it up. You’ll need to enter a host-

name to login to. The link on the right will take you to a list of
student lab hostnames (such as batgirl.eecs.northwestern.edu or You can find a list here:

it.eecs.northwestern.edu/info/2015/11/03/info-
labs.html#workstations

hush.eecs.northwestern.edu), although remember that you can only
use Moore without the VPN.

Ensure SSH is selected, then press Open. You should get some sort
of message asking whether or not you trust the host. Press yes. From
here, login as your EECS username (probably the same as NetID),
and your EECS password (not necessarily your NetID password).
Note that Linux does not show any indication while you are typing
your password as a security feature. You should now be logged into
one of the Northwestern EECS boxes!

Note that you can and should configure PuTTY so that you don’t
have to do all of this every time by saving a session.

Shell access on Mac/Linux

Shell access setup (once)

For those of you on Mac or Linux, you have a terminal and SSH
client installed already. Open up your terminal to get a shell prompt. Mac users: search for “terminal” in

SpotlightIf you’re off-campus, you need to set up one of these two options
for getting past the firewall:

Setup for proxy. You can configure ssh to proxy automatically, and to
use a cryptographic key for authentication so that you don’t have
to type your password. If you want to try this, run the following
command in your terminal and follow the instructions: Notes: 1) Run this command locally in

the terminal on your own computer, not
while logged into a remote workstation.
2) Type or paste that command exactly
as written (after the %). 3) If you’d
like to see the script, run just the curl
command that’s inside the parentheses
(not including the parentheses), or click
the link.

% bash -c "$(curl -fsLS https://bit.ly/3nBxDH3)"

Setup for VPN. If you want to use the VPN and haven’t set it up
already, follow these instructions.

Logging in (every time)

Using our proxy. In a terminal, run this command at the prompt:

% ssh 〈eecs-host〉 Don’t type the %. That stands for your
shell prompt.

where is replaced by one of the EECS hostnames from the list of
student lab hostnames (such as freeze or joker). You can find a list here:

it.eecs.northwestern.edu/info/2015/11/03/info-
labs.html#workstations

https://bit.ly/3c1qyui
https://bit.ly/3c1qyui
https://en.wikipedia.org/wiki/Key_authentication
https://bit.ly/3nBxDH3
https://services.northwestern.edu/TDClient/30/Portal/KB/ArticleDet?ID=1818
https://bit.ly/3c1qyui
https://bit.ly/3c1qyui


cs 211 lab 1 4

For example, your instructor might run % ssh freeze or % ssh

joker.

The first time you connect to a given host, you should get a mes-
sage saying that the authenticity of the host can’t be established,
and you will be asked if you want to continue connecting. Type
“yes” as prompted and press Enter.

Using the VPN. First make sure the VPN is running and connected.
Then in a terminal, run this command at the prompt:

% ssh 〈eecs-id〉@〈eecs-host〉.eecs.northwestern.edu Don’t type the %. That stands for your
shell prompt.

where 〈eecs-id〉 is your EECS username (probably your NetID) and
〈eecs-host〉 is replaced by one of the EECS hostnames from the list
of student lab hostnames (such as alfred or robin). You can find a list here:

it.eecs.northwestern.edu/info/2015/11/03/info-
labs.html#workstationsFor example, your instructor might run % ssh srutib@alfred.-

eecs.northwestern.edu or % ssh srutib@robin.eecs.northwestern.-
edu.

The first time you connect to a given host, you should get a mes-
sage saying that the authenticity of the host can’t be established,
and you will be asked if you want to continue connecting. Type
“yes” as prompted and press Enter. Now type in your EECS ac-
count password (not necessarily your NetID password) and press
Enter again. Note that Linux does not show any indication while
you are typing your password as a security feature. You should
now be logged in remotely!

Setting up the CS 211 development environment

After you’ve logged into a remote machine, your next step is to
install the CS 211 development environment. You only have to install
it once, but you’ll have to remember to start it each time you log in.

As you saw in class, we will be using the fish shell in CS 211,
because it’s friendlier and generally easier than other shells. We’ll
also be using the Micro text editor. These have recently been installed
on the lab machines, but

To start our CS211 environment, we’ll run the 211 command,
which will start the fish shell and set up CS211 environment variables.
It’s not available by default though. If you try to run it now, you’ll
get a response like this:

% 211

211: Command not found.

https://bit.ly/3c1qyui
https://bit.ly/3c1qyui


cs 211 lab 1 5

Configurations for shells and various programs are placed in
hidden files in your home directory. The directories where tcsh (the On Unix-line operating systems,

include Linux and Mac OS, files whose
name begin with a period (.) are
omitted from directory listings by
default. Passing the -a flag to ls causes
it to show these hidden files as well.

default shell on these workstations) looks for programs (called the
“path”) is configured in .tcshrc.

We’ve provided a script to create these files for you. If you already
have these files, it will first back them up and tell you the names of
the backup files. Here is the command to run:

% ~cs211/setup211 Remember not to type the prompt.

The changes will take effect the next time tcsh restarts. You can log
out and back in, or run the command % exec tcsh to reload tcsh.

Once you’ve done so, you should be able to start the CS 211 pro-
gramming environment and fish:

% 211

You only need to do the above setup once, but you’ll want to run
the 211 command each time you log in. If you ever get a message
about stuff not being found, then run 211 command to start the
environment and fix it.

Basic shell navigation

There are a few basic commands we will be using frequently through-
out this exercise in our shell: cd, ls, and pwd, and man.

cd stands for “change directory,” and is used to change the current
directory we are looking at in our shell (our working directory). You
can think of a directory as a folder from your regular interactions
with your computer. For example the command % cd Documents will As usual, don’t type the %.

look for a directory inside our current directory called Documents,
and if it exists, our working directory will become that Documents

directory. If you ever want to go back to your home directory, the
command % cd with no argument will switch your working directory
back to your home directory. The command % cd .. will switch your
working directory up one level from where you currently are.

pwd stands for “print working directory,” and is used to print out
the current working directory of your shell. For example, if you have
been navigating around for a while and you are lost you can type in
the command % pwd and you will see your directory printed out into
the shell.

ls is short for the word “list,” and is used to list the contents and
subdirectories within your current working directory. You can type
the command % ls into your shell, and you will see all files and
directories within your current working directory.

https://bit.ly/2yJyeD2


cs 211 lab 1 6

Play around with these three commands for a few minutes in your
shell, and see what directories and files already exist on your EECS
box!

man is short for “manual,” and is used to access the system man-
uals. For example, you can read the manual pages for pwd and ls by
running the commands % man pwd and % man ls. To learn about man, Hit q to quit.

you can of course run % man man.
Once you are done playing around, type % cd in to navigate back

to your home directory. We will be making a new directory for this
lab using the mkdir command.

Creating new files

mkdir stands for make directory, and is used to create a new direc-
tory within our current working directory. For example, % mkdir

fun-project will create a new directory inside our current one called
fun-project that we can cd into if we so desire. We can create hierar-
chies of directories to keep our files well organized.

Create a new directory inside your home directory called lab01-dir.
Change your current working directory to lab01-dir, and we will now
practice editing and compiling some C source files!

The % micro command in the shell will open up the Micro text Text editor preferences can be a fairly
contentious issue among software
engineers, and if you already have
experience with one of Vim or Emacs,
feel free to use whichever you already
have experience with instead of Micro.
However, for the purpose of this class,
we will be teaching using Micro. Micro
might still feel a bit scary at first, but
after you learn a few simple commands,
it will quickly start making sense.

editor. Pass in a file that you want to edit (even if it hasn’t been
created yet), and you can start editing that file! For example type
% micro my_code.c and you can start editing a file called my_code.c

within your current working directory.
Inside your lab01-dir directory create and open a file using Micro

called animals.txt. Note that the .c file extension is what we will be
using to indicate C files. You will see a text editor pop up that does
not look dissimilar to a Notepad.exe or TextEdit.app editor from your
Windows or Mac. Clicking a location using your mouse will even
move the cursor to where you click.

Inside this text editor, type in a list of your 3 favorite animals.
Once you have typed in your list, you are going to want to save your
file so you can use it later. In Micro, saving is similar to many other
programs. You use the key combination Ctrl-s to save a file. This will If you are curious about more Micro

commands, there is a nice basic list
here: https://github.com/zyedidia/micro/blob/
master/runtime/help/defaultkeys.md You
can also open the same list inside Micro
by pressing Ctrl-e and then typing “help
defaultkeys”.

save your file to your current working directory. Now we want to
close our Micro window and get back to our Unix shell. In order to
close our Micro window, we will type Ctrl-q.

We can ensure that our file was properly created by using the cat
command in the shell. cat is short for “conCATenate,” and prints out
contents of a given file. % cat 〈filename〉 will print the contents of the
file to the shell. If you run % cat animals.txt you should see the file
you just created on your shell.

https://github.com/zyedidia/micro/blob/master/runtime/help/defaultkeys.md
https://github.com/zyedidia/micro/blob/master/runtime/help/defaultkeys.md


cs 211 lab 1 7

Getting the files

We provide archives of starter code for both this lab and the home-
work assignments (as well as code from the lectures) on the EECS
login boxes in a place where you can access them to make a copy.
You’ll want to use these rather than starting from scratch because
they include the build system we’ll be using (more on this below) as
well as configuration options that you need.

Lab code is found in ~cs211/lab, and the code for this lab in On Unix, ~ in front of a user’s name
is the path to their home directory.
This means the lab/ subdirectory in
~cs211/lab belongs to a user named
cs211.

particular may be found in ~cs211/lab/lab01.tgz. But what is a
.tgz file and how can you use it?

The .tgz file extension is used for
“gzipped tarball,” which is like the
Linux equivalent of a .ZIP file. The
name “tar” stands for “tape archive,”
because it was invented when com-
puter systems still stored backups on
magentic tape.

In order to extract the contents of an archive into your current
working directory, the command is:

% tar -xkvf 〈archive〉

This week, 〈archive〉 should be ~cs211/lab/lab01.tgz

The letters after the hyphen are flags, which specify various op-
tions to the program:

k tells tar to keep any existing files rather than overwrite them,
which is the default. You might want to make a habit of this so
that you never accidentally replace your completed homework
with starter code, but you can leave the k out if you feel like living
dangerously.

x tells tar you want to extract files from the archive, as opposed to
creating an archive or just telling you what’s in it.

v tells tar to be verbose, meaning it will print out the names of the
files that it extracts; so if you don’t like seeing that part, you can
leave it out.

f tells tar to extract from the file whose name follows (as opposed to
from some other place, like its standard input).

Now, you have our new directory with the files you need, so
change your directory to lab01/ using the cd command. Now list its
contents using ls, and notice that there is a Makefile file, and a src/

directory. The Makefile file is a make configuration file which you
won’t have to worry about too much right now; the src/ directory
contains the file hello.c, which we have provided you.

Using our build system

As briefly mentioned in class, make is our build system we will be
using for the first few weeks of the course at least. We will usually be

https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Tar_(computing)


cs 211 lab 1 8

giving some sort of starting structure for the projects you will work
on, and right now is no exception.

If you are the directory with the Makefile then can build your This means you should see it when you
run ls.program using the command make.

The basic purpose of make is to build your project into an exe-
cutable file. In your build directory, each time you update your code,
you can run

% make 〈target-name〉

to create your executable called 〈target-name〉. In this case, run % make

hello to build a program called hello, which will be put in the current
directory. You can run the program like this:

% ./hello

This should spit out a nice greeting.

Updating our code

So, we gave you a basic function and you were able to run it, but how
do you change the code?

Open up the src/hello.c file using Micro, and edit it so it now says
“Aloha 211 student!” instead of “Hello 211 student!”. Make sure to
save and exit Micro. Remember Ctrl-s to save and Ctrl-q to

exit.Then try running % ./hello again. Did anything change?
The reason why you still see “Hello 211 student!” on your screen

is because while you changed your C code, your computer doesn’t
understand the C code, but only the machine code you create by
using make. So now, run % make hello once again, and try % ./hello.
Notice how you now have the correct output! Each time we want to
change our code, we are going to need to remember to rebuild our
executable. Don’t worry if you have error messages your first few
times trying to write new code, this is completely normal. Even the
best developers in the world usually need a few tries before they
can properly build their files, so just take a deep breath, and try and
figure out what went wrong.

Conclusion

Knowing how to use the shell is an extremely important tool in
computer science. Don’t worry if it is still hard for you to use, like
much of life, it is one of those things you’ll just need to practice with
until it seems much more familiar! On your own time, it would be
a good idea to continue learning more about the shell and playing
around with some more commands. A good resource for some ba-

sic commands is here: http://www.
computerworld.com/article/2598082/linux/
linux-linux-command-line-cheat-sheet.html.

http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html


cs 211 lab 1 9

Submission

Homework and Lab submission and grading will use Gradescope.
You must include any files that you create or change. For this lab,
we’ll just submit the src/hello.c file you modified. The file contents
aren’t important, as long as you submit the file at all, we’ll know
your setup works.

Submit using the command-line tool submit211. You can run the
command with the --help flag to see more details. The tool will ask
you to log in with your Gradescope credentials, so make sure you’ve
created an account first!

To submit the necessary files for this lab, you will run something
that looks like:

% submit211 submit --hw lab1 src/hello.c

The last part of that command is a relative path to any files you
want to submit. So in future homeworks, you’ll change it depending
on the files.

For this assignment, you will have unlimited submissions and all
tests are visible to you. In future homework assignments, this will
not be the case.

Useful links

EECS login server hostnames it.eecs.northwestern.edu/info/2015/11/03/info-

labs.html#workstations

VPN instructions https://services.northwestern.edu/TDClient/30/Portal/KB/

ArticleDet?ID=1818

Simple command line cheat sheet http://www.computerworld.com/article/

2598082/linux/linux-linux-command-line-cheat-sheet.html

Micro keybindings https://github.com/zyedidia/micro/blob/master/runtime/

help/defaultkeys.md

Nice Emacs guide http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/

emacs.htm

Nice Vim guide http://www.openvim.com/

https://bit.ly/3c1qyui
https://bit.ly/3c1qyui
https://services.northwestern.edu/TDClient/30/Portal/KB/ArticleDet?ID=1818
https://services.northwestern.edu/TDClient/30/Portal/KB/ArticleDet?ID=1818
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
https://github.com/zyedidia/micro/blob/master/runtime/help/defaultkeys.md
https://github.com/zyedidia/micro/blob/master/runtime/help/defaultkeys.md
http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
http://www.openvim.com/

	Getting around the firewall
	Shell access
	Shell access on Windows
	Shell access on Mac/Linux
	Setting up the CS 211 development environment
	Basic shell navigation
	Creating new files
	Getting the files
	Using our build system
	Updating our code
	Conclusion
	Submission
	Useful links

