
Homework 5: Reversi

CS 211

Spring 2023

Code Due: May 18, 2023, 11:59 PM, Central Time
Self-Eval Due: May 21, 2023, 11:59 PM, Central Time
Partners: No; must be completed by yourself
Maximum allowed Gradescope submissions: 30 Contents

Purpose 1

Getting it 1

Specification 1

Generalization to smaller

sizes 2

Your implementation . . . 2

Helper type reference 3

Position sets 3

Moves and move maps . . 5

Players 6

The board 7

Design orientation 9

The model 9

The view 10

The controller 11

Implementation hints 11

Model factoring 11

Algorithm for computing

moves 12

The UI 14

Testing private members . 15

Which files should I

change? Which files

may I change? . . . 16

Deliverables & evaluation 17

Submission 18

Purpose

The goal is to get you writing more interesting algorithms and using
more interesting data types.

Getting it

Download the project ZIP file to your computer1, unzip it, and open

1 To complete this homework on your
own computer, you need a C++14
toolchain and the SDL2 libraries.
Follow these instructions to install the
software you need.

the resulting directory in CLion. (Be careful that you open the hw5

directory and not some sub- or superdirectory thereof. If you do,
CLion will create a bogus CMakeLists.txt that won’t be able to find
SDL2.)

Specification

The game Reversi is played by two players, Dark and Light, laying
dark- and light-colored tiles on an 8-by-8 board. The game proceeds
in two phases.

In the opening phase, the players alternate turns, with Dark going
first. In this phase, they may only play in the center four squares of
the board ((3, 3), (3, 4), (4, 3), and (4, 4) if 0-based). The opening
phase ends when those center four squares are occupied.

In the main phase, each move must capture at least one of the other
player’s tiles, as follows. The current player places a tile in an unoc-
cupied square so that it forms at least one straight line—horizontal,
vertical, or diagonal—with one or more of the other player’s tiles in
the middle and one of the current player’s tiles on the other end. Then
the other player’s tiles in the line(s) are flipped to the current player.
(See Figure 1 for some example moves.)

The players take turns unless one player cannot play, in which case
the other player may play again. The game is over when neither player
can play. The winner is the player with more tiles on the final board
(or it may be a tie).

https://nu-cs211.github.io/cs211-files/hw/hw5.zip
https://nu-cs211.github.io/cs211-files/toolchain_setup.html

homework 5: reversi 2

Generalization to smaller sizes

To facilitate testing, we generalize the rules of Reversi to allow boards
with dimensions down to 2-by-2, including non-square boards (e.g., 7-
by-4). To generalize the opening phase of the game to a w-by-h board,
we define the center four squares to be at positions (cx − 1, cy − 1),
(cx − 1, cy), (cx, cy − 1), and (cx, cy), where cx = bw/2c and cy =

bh/2c.
For your convenience, a rectangle containing these positions (which

you can iterate over) is returned by Board::center_positions() const.

Your implementation

To start the game, the user runs the reversi executable with either no
command-line arguments, or two arguments, the width and height of Command line arguments can

be passed in to the program by
clicking “Edit configurations...”
in the drop-down menu and
then entering two numbers
separated by a space in the
“Program arguments” box. For
example, you can enter “2 4” for
a 4x2 board. Then apply the
changes and run the program as
normal.

the board. If the width or height are out of range, or if some other
number of arguments is given, then the program exits with an error
message.

The user interface must make it possible to play the game using
either the mouse or the keyboard (or both, if you wish). The game
must allow the user to make all legal moves and no illegal moves. It
must display the state of the model so that the user can see which
squares are occupied by light tiles, which by dark tiles, and which by
neither. When the game is not over, it should display whose turn it is
and give some indication of which squares are valid to play in. For full
credit, it should also give feedback on which tiles will flip as a result of
each possible move. When the game ends, the UI must indicate which
player, if any, has won.

It should not be possible for the user to cause the game to crash via
any interaction with the UI.

homework 5: reversi 3

Helper type reference

To help define the model, we have provided several types to build
upon. We present these types in this section before discussing the
model itself in Section “The model”. The helper types are:

• A Position_set represents a set of game board positions. (See
Section “The Position_set class”.)

• Type Move represents a possible move as a pair of a single ge211::Posn<int>
in which a player can place a tile, and the Position_set of all po-
sitions gained by that move. (See Section “Type aliases Move and
Move_map”.)

• Type Move_map holds a collection of available Moves whose first
components are distinct, and which supports looking up Moves
by their first components. (This is the type of the next_moves_
member variable of the Model class that your operations need to
maintain.) (See Section “Type aliases Move and Move_map”.)

• Player is an enum class with three enumerators: dark, light,
and neither. (See Section “The Player enumeraton”.)

• Class Board represents the state of the board. (See Section “The
Board class”.)

The Position_set class

The Position_set class is used to represent a set of positionsand Positions are limited to those
whose coordinates are both
less than 8, which suffices for
Reversi.

offers a standard selection of set operations. Position_sets support
equality and stream insertion (printing), which may be helpful for
testing and debugging.

The full documentation may be found in the src/position_set.hxx

header, but the highlights are described here.

using value_type = ge211 ::Posn <int >;

Type alias for the type of values stored in a Position_set.

Position_set :: Position_set ();

Constructs the empty set of positions.

Position_set :: Position_set (
std :: initializer_list <value_type >);

homework 5: reversi 4

Constructs the set of positions listed, like so:

Position_set pset{
{2, 3}, {3, 2}, {4, 1}

};

bool Position_set :: empty () const ;

Returns whether this set is empty.

void Position_set :: clear ();

Removes all elements from this Position_set.

bool
Position_set :: operator [](value_type)const ;

Looks up the given position in the set, returning a bool indicating
whether it is present.

Position_set :: reference
Position_set :: operator [](value_type);

Looks up the given position (within the square brackets) in the set,
returning a reference-like object that can be assigned a bool to change
whether the position is in the set. For example:

Position_set pset;

// add {2, 3} to `pset `:
pset [{2, 3}] = true;

// remove {2, 3} from `pset `:
pset [{2, 3}] = false ;

Position_set &
Position_set :: operator |=(

Position_set);

Adds the positions in the passed in set to this set. Additionally,
Position_set supports the full complement of set operations (the
operations with the = store the result of the operation in the left
operand):

homework 5: reversi 5

• intersection: a & b and a &= b

• union: a | b and a |= b

• symmetric difference: a ∧ b and a ∧= b

• complement: ∼a

Note that set difference can be accomplished with intersection and
complement: a & ∼b.

Position_set :: iterator
Position_set :: begin () const ;

Position_set :: iterator
Position_set :: end () const ;

These functions return the iterators necessary to iterate over a
Position_set using a range-based for loop, like so:

for (ge211 ::Posn <int > pos : pset) {
...

}

Type aliases Move and Move_map

struct Move
{

ge211 ::Posn <int > const first;
Position_set second ;

};

The Move type (see src/move.hxx) is an instantiation of the standard
library’s std::pair template struct. It has two member variables,
first and second. The former contains the position of the move, and
the latter is the set of all positions gained by the move, including both
the move itself and any flips.

Moves support equality and stream insertion (printing), which may
be helpful for testing and debugging.

using Move_map =
std :: unordered_map <

ge211 ::Posn <int >,
Position_set

>;

https://en.cppreference.com/w/cpp/utility/pair

homework 5: reversi 6

Type Move_map (also in src/move.hxx) is an instantiation of the stan-
dard library’s class template std::unordered_mapwith ge211::Posn<int> Each key-value pair element in

the Move_map is of type Move.as the key type and Position_set as the value type. Move_maps sup-
port equality but not stream insertion.

All the std::unordered_map operations are available, but you will
mostly likely need only these three:

Position_set &
Move_map :: operator [](ge211 ::Posn <int >);

Type Move_map overloads the indexing operator (square brackets)
to take a ge211::Posn<int>. If the position is not already present
then it inserts the given position paired with an empty Position_set.
It then returns a reference to the Position_set, which allows the
caller to modify or assign it. Thus, we can associate a position pos
with a set of positions pset by indexing the move map with pos and
assigning pset to the result:

mmap[pos] = pset;

bool Move_map :: empty () const ;

Returns whether this move map is empty, meaning no positions have
been mapped to position sets.

void Move_map :: clear ();

Removes all moves from this move map.

The Player enumeraton

There are three Player values: Player::dark and Player::light
represent the two players, and Player::neither represents absence
of a player. Players support equality and stream insertion (printing),
which may be helpful for testing and debugging.

There is one operation you will need:

Player other_player (Player);

Returns the other player given the current player.

https://en.cppreference.com/w/cpp/container/unordered_map

homework 5: reversi 7

The Board class

The Board class stores the state of the Reversi board. It is, essentially,
an updatable mapping from in-bounds Board::Positions (an alias for
ge211::Posn<int>) to Players. Boards support equality and stream
insertion (printing), which may be helpful for testing and debugging.

The full documentation of the Board class is available in the sr-

c/board.hxx header file, but the highlights you are likely to want are
described here.

using Dimensions = ge211 ::Dims <int >;
using Position = ge211 ::Posn <int >;
using Rectangle = ge211 ::Rect <int >;

Aliases for the geometry types used by the Board class (as well as the
rest of the model.)

Board :: Dimensions
Board :: dimensions () const ;

Returns the dimensions of the board. (Note that Board::Dimensions
is a type alias for ge211::Dims<int>.)

Player
Board :: operator [](Position)
const ;

Returns the player at the given position.

Board :: reference
Board :: operator [](Position);

Returns a reference-like object that, when a Player is assigned to it,
stores that Player in the board at the given position. For example,
this statement stores Player::dark at board position (2, 3):

board [{2, 3}] = Player :: dark;

void
Board :: set_all (Position_set , Player);

Stores the given Player in the board at all the positions in the given
Position_set. For example, these statements store Player::light at
two board positions:

homework 5: reversi 8

Position_set pset {{2, 5}, {3, 4}};
board. set_all (pset , Player :: light);

size_t
Board :: count_player (Player) const ;

Returns the number of times the given player appears on the board.

Board :: Rectangle
Board :: all_positions () const ;

Returns a rectangle containing all of the board’s positions. Since
Board::Rectangles are iterable, this can be used to iterate over the
board’s positions:

for (auto pos : board. all_positions ()) {
...

}

Board :: Rectangle
Board :: center_positions () const ;

Returns a rectangle containing just the four center positions that are
playable in the opening phase. Since ge211::Rect<int>s are iterable,
this can be used to iterate over the four center positions:

for (auto pos : board. center_positions ()) {
...

}

static
std :: vector <Board :: Dimensions > const &
all_directions ();

Returns a (borrowed) std::vector containing the eight direction vec-
tors (as ge211::Dims<int>). The eight directions are all combinations
of −1, 0, and 1 except for the zero vector 〈0, 0〉. This can be used to
iterate over all possible line directions when evaluating a potential
move:

for (auto dim : Board :: all_directions ()) {
...

}

homework 5: reversi 9

Design orientation

In this section we describe the design of the three classes that you
have to complete.

The model

The Model class (src/model.{hxx,cxx}) encapsulates the state of the
game and its rules. In particular, it keeps track of:

• the current turn, if the game is ongoing (Player turn_),

• the winning player, if any (Player winner_),

• the state of the board (Board board_), and

• a cache of which moves are available to the current player (Move_map
next_moves_).

While it is possible to generate the available moves on demand given
the other three data members, this information is not cheap to com-
pute, and the view and controller will most likely need it much more
often than it changes. So it makes sense to compute the next possible
moves when the game starts and then after each turn, rather than
recomputing it whenever the UI wants to know which moves are valid.

In the Model class, we have defined a number of member functions
that you may want to call from the view, the controller, or elsewhere
in the model:

• Model::all_positions() const returns a ge211::Rectangle
that contains all positions in the board.

• Model::is_game_over() const returns a bool indicating whether
the game is over.

• Model::turn() const returns the current player, if any.

• Model::winner() const returns the winning player, if any.

• Model::operator[](Position) const returns the Player at the
given position on the board.

• Model::find_move(Position) const returns a pointer to the
Move that would result from playing at the given position, if al-
lowed, or nullptr if not allowed.

The last of these depends on the contents of next_moves_ being
correct. Ensuring that invariant is your job. In particular, there are
two members of the Model class that are incomplete:

homework 5: reversi 10

void
Model :: play_move (Model :: Position);

This function plays a move at the given position if allowed, or throws
an exception if disallowed. We have already provided code to check
the legality of the move for you and throw if necessary. Our starter
code leaves a pointer to the valid Move in a local variable, movep. Your
responsibility is to 1) actually execute the move by modifying the
board, 2) advance the turn—to the other player if they can move, or
back to the same player if the other player cannot move, or to game
over if neither player can move, and 3) leave next_moves_ in a correct
state.

Model :: Model(int width , int height);

This constructor initializes the model. We’ve provided you the mem-
ber initializer for the board, but you need to write the code for fill-
ing next_moves_ with the moves available to the first player on the
first turn. (This should happen via a private helper function that
Model::play_move calls as well.)

The view

The responsibility of the View class is to present the state of the model
in such a way that users can play the game. We have not specified
what the game should look like, other than that it must be playable
as described in Section “Your implementation”. You may emulate the
style of the diagrams in Figure 1 if you wish, or design something else.

We have provided you with a minimal View class in src/view.{hxx,cxx},
which you will have to complete to make the game playable. This
starter View class defines a single member variable, Model const&
model_. It defines one constructor, which initializes model_; you may
want to extend this constructor to initialize your sprites as well. Two
member functions, for determining the window title and dimensions,
are provided for you (though you may change them if you want to
determine these things differently).

There is one function for you to write: View::draw(ge211::Sprite_set&, Position).
This function is, of course, responsible for determining what appears
on the screen. We added a parameter to it, so that the controller can
communicate control state (such as the position of the mouse) to the
view.

homework 5: reversi 11

The controller

The responsibility of the Controller class is to receive input from the
user and decide what to do with it. We have not specified how control
should work, other than that the game must be playable as described
in Section “Your implementation”. You may provide mouse control,
keyboard control, or whatever usable interface you desire.

We have provided you with a minimal Controller class in src/con-

troller.{hxx,cxx}, which you will have to complete to make the game
playable. This starter Controller class defines two member variables
to hold the model and the view. It defines two constructors, each
of which allows specifying the model dimensions, and initializes the
model and the view. We have also overridden member functions draw,
initial_window_dimensions, and initial_window_title in order to
delegate those three responsibilities to the view.

You will need to add user-input handling to the controller by
overriding additional member functions of ge211::Abstract_game,
such as:

• on_mouse_down if you want to react to mouse clicks,

• on_mouse_move if you want to react to mouse motion, and

• on_key if you want to react to typing on the keyboard.

You will probably want to add at least one private member variable
to the Controller class to keep track of the UI state. For exam-
ple, if you want the view to indicate the current player’s available
moves and their consequences based on where the mouse is pointing,
then the controller needs to store the mouse position on each call to
on_mouse_move so that it can then pass it to the view when it calls
View::draw from Controller::draw.

Implementation hints

This section provides supplementary material to help you figure out
how to implement the specification.

Model factoring

Your main responsibility with respect to the model implementation is
to handle playing moves, and the most difficult part of that is comput-
ing the available moves to update next_moves_. In src/model.hxx we
have declared six private helper functions that you should implement
to break down this task. We strongly recommend that you implement
these first, as they will make the other functions more straightforward.
The private Model helpers are:

https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a44518135e411e35374f252d1c7d44e3e
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a157e919f4356a781039a12ed2dc269c4
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a5dd1fce58a747385e3372c62744933d7
https://tov.github.io/ge211/classge211_1_1_abstract__game.html
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#ae010e7d2f2f51229f45eb2046e1a5bde
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a945ea8bd2baaf4bc4d3f60d20276e56e
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a9a5c9f0cf8036232e45bfa1c5430f9e6
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#ae010e7d2f2f51229f45eb2046e1a5bde

homework 5: reversi 12

• Position_set find_flips_(Position, Dimensions) const takes
the position of a prospective move by the current player and a
direction to search in (as provided by Board::all_directions()).
It searches for a straight line of opposing player tiles bounded by
the given position at one end and an existing tile belonging to the
current player on the other end. It returns the set of those opposing
player positions (which will be empty if there is no such line).

This is a helper for evaluate_position_().

• Position_set evaluate_position_(Position) const takes the
position of a prospective move and returns a Position_set contain-
ing all positions that would be gained by the current player playing
in that position, if allowed (or the empty set if playing in the given
position is disallowed).

This is a helper for compute_next_moves_().

• void compute_next_moves_() clears out next_moves_ and then
regenerates it with all moves currently available to the current
player.

This is a helper for the Model(int, int) constructor and for
advance_turn_().

• bool advance_turn_() switches the turn to the other player,
regenerates next_moves_, and then returns whether any moves are
actually available to the new current player.

This is a helper for really_play_move_().

• void set_game_over_() makes the game over by setting the
current player to Player::neither and storing the winner, if any,
in winner_.

This is also a helper for really_play_move_().

• void really_play_move_(Move) executes the given move by
setting the appropriate positions on the board and then advancing
the turn or setting game over. It needs to try advancing the turn
twice—since if the other player cannot play then the current player
gets to play again. Only if neither player has any moves available is
the game over.

You’ll have to determine where calling this is useful.

Algorithm for computing moves

Computing next_moves_ requires a somewhat involved algorithm,
since it must evaluate every unoccupied board position, or just four
in the opening phase (compute_next_moves_); and to evaluate each

homework 5: reversi 13

position (evaluate_position_), it must check for “flippable lines” of
opposing player tiles in all eight directions (find_flips_).

Finding one line of flips

Given a starting, unoccupied position start and a direction dir to
search in, we can find a line of flippable positions as follows. Start
with an empty Position_set to hold the result, and begin checking
positions moving away from start: start + dir, start + 2 * dir,
and so on. At each position there are three possibilities:

• If we reach a position that would go off the board (check that first!)
or is unoccupied (i.e., no player is at that position) then there is no
flippable line to find, so the result is the empty set.

• If a position contains an opposing player tile then we add that
position to our result Position_set and move on to the next.

• If we reach a position containing the current player’s tile then we
return the Position_set that we’ve accumulated.

Evaluating a position

We evaluate a position pos as the set of all positions that the
current player would gain by playing there—or the empty Position_-
set if playing there is not allowed. First we check if it’s unoccupied,
since occupied positions are not playable and evaluate to the empty
set. Otherwise, we need to search for flippable lines in all eight di-
rections starting from pos (probably by iterating over the result of
Board::all_directions()), and union together the eight result-
ing Position_sets. (You can do this by starting with an empty
Position_set and then using the |= operator to union each result
of find_flips_ into it.) If the union of the sets is empty then posi-
tion pos is not playable for the current player and the result of the
evaluation is the empty set. Otherwise, we must add pos to the set of
positions before returning it, since pos will be gained by the potential
move as well.

Evaluating the whole board (as necessary)

Evaluating the whole board means first clearing next_moves_, then
checking for available moves and adding them to next_moves_.

Before evaluating every board position, we need to check whether
any of the four center positions (board_.center_positions()) are
unoccupied, which would indicate that we are still in the opening
phase of the game. Since playing in one of those positions would not
flip any other tiles, each unoccupied center position gets mapped to
the singleton set of itself:

homework 5: reversi 14

next_moves_ [pos] = {pos };

If, after adding any unoccupied center positions, next_moves_ is
non-empty, then we are still in the opening phase and should return
without checking the rest of the board.

Otherwise we are in the main phase, so we must evaluate each
position in the board and record each non-empty evaluation in next_-
moves_. In particular, if some position pos is a legal move that eval-
uates to some Position_set pset then we store this fact in next_-
moves_ like so:

next_moves_ [pos] = pset;

Positions that evaluate to the empty set must not be added to next_-
moves_, as that would cause play_move to consider them to be avail-
able moves.

The UI

The UI description in Section “Your implementation” imposes a
number of requirements on what the player can do. You are free to
implement these requirements however you like, but here is a list of
suggestions for how you could:

• Display the board as a grid of squares, with the Dark and Light
players’ tiles as slightly smaller black and white circles placed over
them. (To place one sprite atop another, you need to provide differ-
ent z values as a third argument to Sprite_set::add_sprite.)

• Allow the user to play a move by clicking in the desired square.
(If the user clicks in a disallowed square or after the game is over,
either don’t react or display an error indication.)

• Once the game is over, indicate the winner by rendering all non-
winning tiles in gray instead of black or white.

• Indicate the current turn (when the game isn’t over) by having an
image of the current player’s tile (or something similar?) follow the
mouse pointer.

(This requires adding the mouse position as a private member
variable in the Controller class so you can pass it to draw().)

• When the mouse points to a square in which the current player is
allowed to move, indicate the effect of moving in that position by
changing the color of the squares in the positions that would be
gained by the player. The view can easily discover this information
by calling Model::find_move with the logical (board) position of
the square that the mouse pointer currently points to.

https://tov.github.io/ge211/classge211_1_1_sprite__set.html#ad20a59df594c869b26e222da98c6161d

homework 5: reversi 15

(This also requires adding the mouse position as a private member
variable in the Controller class so you can pass it to draw().)

You should use the following helper functions defined in the View
class.

View :: Position
View :: board_to_screen (

Model :: Position logical)
const ;

Model :: Position
View :: screen_to_board (

View :: Position physical)
const ;

They should convert positions from logical to physical and back, where
a logical position is in rows/columns on the board and a physical
position is pixel x/y coordinates on the screen.

Testing private members

Given that the model’s move evaluation algorithm involves several
steps and nested loops, how can you test some smaller portions of it?
Thankfully, you are required to factor it into smaller, more testable
pieces via the helper functions. But these are private, which means
that your tests won’t be able to access them, right?

Not exactly. We declared a friend struct Test_access in the
Model class, which means that Model grants, to any members of a
struct called Test_access, access to its own private members. This is
there for the grading tests, but you can define a Test_access struct in
order to provide your tests with privileged access to the model as well.
You can also declare struct Test_access to be a friend of any other
classes that you like, in order to facilitate testing them as well.

For example, if you wanted your tests to be able to access the
board directly and to call the private find_flips_ helper, you define
struct Test_access as below. Then you could use it like the test
case below named “simple flips case”.

struct Test_access
{

Model& model;

Board& board ()
{

return model. board_ ;
}

homework 5: reversi 16

Position_set
find_flips (Model :: Position p,

Model :: Dimensions d)
{

return model. find_flips_ (p, d);
}

};

TEST_CASE (" simple flips case")
{

Model model;
Test_access t{model };

t.board ()[{2 , 2}] = Player :: dark;
t.board ()[{2 , 3}] = Player :: light;

Position_set f;

f = t. find_flips ({2, 4}, {0, 1});
CHECK (f.empty ());

f = t. find_flips ({2, 4}, {0, -1});
CHECK (f == Position_set {{2, 3}});

}

Which files should I change? Which files may I change?

It may be difficult figuring out what is necessary to change, what is
safe to change, and what will cause trouble with grading. This section
divides all the provided starter code files into categories based on how
you should change them.

• One file you definitely must change, but carefully:

src/model.cxx – in particular:

Do fill in the sections marked TODO in the Model(int, int)
constructor and play_move member function,

Do define any additional private helper functions you like, but
Don’t modify any of the existing, complete function

implementations.

• Five files you definitely must change, and may change however you
like:

homework 5: reversi 17

src/view.{hxx,cxx}

src/controller.{hxx,cxx}

test/model_test.cxx

• Eight files you must not change:

src/board.{hxx,cxx}

src/move.{hxx,cxx}

src/player.{hxx,cxx}

src/position_set.{hxx,cxx}

• Three files you may change at your discretion, but carefully:

src/model.hxx – in particular:

Do add any private members (most likely additional helper
functions) you want, but

Don’t alter the declarations of any public members, and
Don’t alter the definitions of private member variables turn_,

winner_, board_, and next_moves_.

src/reversi.cxx – unlikely, but:

Don’t change how command-line arguments are handled, but
Do change anything else, as you like.

CMakeLists.txt – unlikely, but:

Do add any new model .cxx files you create to the variable
MODEL_SRC, but

Don’t change anything else.

• Four files you may change, but probably don’t have reason to:

test/board_test.cxx

test/move_test.cxx

test/player_test.cxx

test/position_set_test.cxx

Deliverables & evaluation

For this homework you must:

1. Complete the two partially-implemented Model members (the two-
argument constructor and function play_move) and all the private
helper functions in src/model.cxx.

homework 5: reversi 18

2. Complete the design and implementation of the View and Controller
classes in src/{view,controller}.{hxx,cxx} so that the game is
playable.

3. Add more test cases to test/model_test.cxx in order to the test that
the model functions properly.

As usual, self evaluation will spot-check your test coverage by asking
for just a few particular test cases. You can’t anticipate what cases we
may ask about, so you should try to cover everything.

Your grade will be based on:

• the correctness of your Model implementation with respect to the
specification,

• the playability of your UI,

• the presence of sufficient test cases to ensure your model code’s
correctness, and

• adherence to the CS 211 Style Manual. (Do note that there are new
rules for C++ that didn’t apply in C.)

Submission

Homework submission and grading will use Gradescope. You must
include any files that you create or change. For this homework, that
will definitely include:

• src/model.cxx

• src/view.hxx

• src/view.cxx

• src/controller.hxx

• src/controller.cxx

• test/model_test.cxx

You must also include any other files you modified. If you add
any source files then it will includes those, as well as your updated
CMakeLists.txt. See Section “Which files should I change? Which files
may I change?” for a comprehensive list of which files you must and
may change.

Per the syllabus, if you engaged in arms-length collaboration on this
assignment, you must cite your sources. You may write citations either
in comments on the relevant code, or in a file named README.txt that

https://nu-cs211.github.io/cs211-files/style.html
https://nu-cs211.github.io/cs211-files/syllabus.pdf

homework 5: reversi 19

you submit along with your code. See the syllabus for definitions and
other details.

Submit your files by uploading them directly to the Gradescope
website. When you click on the assignment in Gradescope for the first
time, you will get a window where you can upload files. You can drag-
and-drop files or browse to select them. Make sure you include all the
necessary files in the src/ and test/ directories! Submitting extra files
is fine. To submit additional times, select the “Resubmit” button on
the bottom right.

https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Purpose
	Getting it
	Specification
	Helper type reference
	Design orientation
	Implementation hints
	Deliverables & evaluation
	Submission

