
Homework 4: Brick Out

CS 211

Spring 2023

Code Due: May 11, 2023, 11:59 PM, Central Time
Self-Eval Due: May 14, 2023, 11:59 PM, Central Time
Partners: No; must be completed by yourself
Maximum allowed Gradescope submissions: 30 Contents

Purpose 1

Getting it 1

Game description 1

Physics 2

Game configuration . . . 2

Design orientation 3

The model 3

The view 4

The controller 4

Implementation hints 5

The model: struct Ball
and friends 5

The model: struct Model 7

The view 8

The controller 9

Reference 9

The GE211 geometry types 9

Deliverables & evaluation 12

Submission 12

Purpose

The primary goal of this assignment is to get you programming in
C++ with member functions and std::vector. Secondarily, we want
to familiarize you with the mechanics of GE211.

Getting it

Download the project ZIP file to your computer1, unzip it, and open

1 To complete this homework on your
own computer, you need a C++14
toolchain and the SDL2 libraries.
Follow these instructions to install the
software you need.

the resulting directory in CLion. (Be careful that you open the hw4

directory and not some sub- or superdirectory thereof. If you do,
CLion will create a bogus CMakeLists.txt that won’t be able to find
SDL2.)

Game description

In this classic arcade game, the player seeks to destroy a field of bricks
in the top portion of the screen by hitting them with a ball, while
controlling a horizontally-moving paddle to prevent the ball from
reaching the bottom of the screen.

When the game starts, a grid of rectangular bricks appears in the
top portion of the screen, and the paddle, also a rectangle, appears at
the bottom of the screen. The paddle moves horizontally with the x

coordinate of the mouse pointer, but its y coordinate never changes.
Initially the ball is “dead”—rather then bouncing around, it sticks

to the paddle as the paddle follows the mouse. When the player
clicks the mouse or hits the space key, the ball is launched and travels
upward toward the bricks. It then proceeds to bounce off of bricks,
the paddle, and the top and sides of the screen, destroying each brick
that it collides with, until it reaches the bottom of the screen. At
that point the ball is again dead and stuck the paddle. No bricks are
restored, however, and the player may launch the ball again.

https://en.cppreference.com/w/cpp/container/vector
https://tov.github.io/ge211/
https://nu-cs211.github.io/cs211-files/hw/hw4.zip
https://nu-cs211.github.io/cs211-files/toolchain_setup.html

homework 4: brick out 2

Physics

Physics in the Brick Out world is highly idealized. For the purpose
of detecting collisions, we approximate the ball as its bounding box. The bounding box of a figure is

the smallest rectangle enclosing
it; for the ball it’s a square shar-
ing its center whose side length
is twice the radius of the ball.

The ball’s mass is insignificant compared to every object it meets, so
it rebounds fully and they never budge. Collisions with the top and
sides of the screen are perfectly elastic and perfectly conventional—the
top reflects vertically and the sides reflect horizontally. Collisions
with the paddle are also elastic, with the ball reflecting in the vertical
dimension and continuing in the horizontal. But collisions with bricks
are a bit weirder.

Upon striking (and destroying) a brick, the ball is reflected verti-
cally, regardless of which edge of the brick it contacts. In other words,
the y component of its velocity is negated and the x component is not.
In addition, the ball receives a random “boost” in the x dimension. In
particular, the horizontal component of its velocity is adjusted by the
addition of a random small number (balanced between negative and
positive to produce a random walk with constant expectation). The
potential range of that random number is determined by the game
configuration.

Game configuration

This diagram shows a 5-by-5 field of gray bricks (at the top), the
yellow paddle (at the bottom), and the red ball in its dead position:

Unlike the diagram above, in the default game configuration the
brick field is 10-by-10. In addition to the numbers of columns and
rows of bricks, the configuration lets you control:

• the dimensions of the screen;

• the distance from the top of the screen to the top of the brick field;

• the distance from the sides of the screen to the sides of the brick
field;

• the distance from the top of the screen to bottom of the brick field;

• the dimensions of the gaps between the bricks;

homework 4: brick out 3

• the distance from the bottom of the screen to the bottom of the
paddle;

• the dimensions of the paddle;

• the radius of the ball;

• the initial velocity of the ball once it’s launched from the paddle;
and

• the maximum absolute “boost” value for when the ball hits a brick.

From these properties the Game_config class computes the dimensions
of the bricks and the initial position of the paddle, which cannot be
adjusted independently.

You should test your code, both model and user interface, with
varying configurations. Not all combinations are sensible, but your
code should work correctly within a reasonable range.

Design orientation

The Brick Out game is composed of three major components:

• the model, which keeps track of the state of the game independent
of how the user interacts with it,

• the view, which shows information about the state of the model to
the user, and

• the controller, which coordinates the model’s (and sometimes
view’s) reactions to events (such as mouse motion or key presses).

The model

The model (in src/ball.{hxx,cxx} in src/model.{hxx,cxx}) represents
the game’s logical state and implements its rules in a user interface–
independent manner. For Brick Out, it keeps track of:

• the locations and sizes of all the bricks,

• the location and size of the paddle (the thing at the bottom that
you control),

• the state of the ball, including whether it’s in play, and its size,
location, and velocity, and

• a source of random numbers, which can be stubbed to return pre-
dictable values for testing.

homework 4: brick out 4

As far as operations, the model knows how to put a dead ball
back into play, how to move the paddle to a new position (bringing
a dead ball along with it), and how to update its own state for each
animation frame (typically 1/60 s, but it can vary).

Because the state and behavior of the ball account for much of
the complexity of the model, the ball is factored out into its own
struct Ball (in src/ball.{hxx,cxx}). It defines its own set of opera-
tions, mainly for detecting collisions with bricks, the paddle, and the
edges of the screen.

The model is also responsible for storing the game configuration pa-
rameters (e.g., the sizes of things such as bricks, the paddle, the mar-
gins, and the window), which are grouped into a struct Game_config
(in src/game_config.{hxx,cxx}). The game configuration is passed to
the Model constructor and is then fixed for the duration of the game.

The view

The view (in src/view.{hxx,cxx}) is responsible for producing output
for the user—in the case of GE211, this means drawing to a window on
the screen. The view does this by looking at the model (via a const&)
and placing sprites (graphical 2-D objects, shapes, or images) on the
screen.

The view’s state thus defines the sprites used to portray the game
entities (ball, paddle, bricks) on the screen. It declares two member
functons: a drawing operation whose job is to place those sprites
based on the state of the model (you’ll write this), and a simple
function to convey the game dimensions from the configuration to
GE211 (we wrote this).

The controller

The controller (in src/controller.{hxx,cxx}) owns the view and holds a
reference to the model, and otherwise has no state of its own. In general this ownership struc-

ture can vary.It defines three operations for reacting to user input: key presses,
mouse clicks, and mouse motion. When q is pressed, it causes the
game to exit. If the ball is dead when either the mouse is clicked or
spacebar is pressed, it causes the model to launch the ball. And when
the mouse moves, it causes the paddle (in the model) to follow it.

In the GE211 architecture, the framework only talks to the con-
troller, not the model and the view, so the controller is also re-
sponsible for mediating between the framework and the model and
view. It does this by defining three additional member functions
Controller::on_frame, Controller::draw, and Controller::initial_window_dimensions,
each which merely forwards to Model::on_frame, View::draw, and
View::initial_window_dimensions, respectively.

homework 4: brick out 5

Implementation hints

There is no specification in this document—instead, the functions
you need to implement are specified in the header files src/ball.hxx,
src/model.hxx, src/view.hxx, and src/controller.hxx, so you should read
those carefully. This section provides supplementary material to help
you figure out how to implement what the header comments specify.

The model: struct Ball and friends

The implementation of model logic related to the ball is in src/ball.cxx.
There are seven Ball member functions and two free functions (non-
member functions) for you to complete.

static ge211 ::Posn <float >
above_block (Block const &,

Game_config const &)

This function is a helper for Ball’s constructor that computes where
the ball should be when it’s dead—its bottom centered 1 pixel above
the top center of the paddle.

Given block (a ge211::Rect<int> representing the position and di-
mensions of the paddle), start at its top-left corner (Rect<int>::top_left()),
move to the right (Posn<int>::right_by()) by half the width of
block (Rect<int>::width), then move up (Posn<int>::up_by()) by
1 plus the radius of the ball (Game_config::ball_radius).

Depending on your implementation, you might find that you get a
conversion error the first time you write this code. The issue is that
each block has its coordinates specified as int values, but the ball
Position has coordinates specified as float values. You’ll need to
convert between the two! The easiest way to do this is to construction
a new Position with the coordinate values of the ge211::Posn<int>
from the block. Alternatively, the Posn::into<TYPE>() method will
do the job.

Ball :: top_left () const

Returns the position at the upper-left corner of the ball’s bounding
box. This is the position one ball radius to the left and one ball radius
above the center of the ball.

Ball :: hits_bottom (
Game_config const &) const

https://bit.ly/3jXFMEb
https://bit.ly/3mV6O0z
https://bit.ly/3jSpxIx
https://bit.ly/3jXC51h
https://bit.ly/2HZr0zw
https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html#a7d9d609c3d8adc2dc364590919b52b62

homework 4: brick out 6

The ball hits the bottom of the scene when the y coordinate of its
bottom exceeds the height of the scene.

Ball :: hits_top (Game_config const &) const

The ball hits the top of the scene when the y coordinate of its top is
less than 0. (Note that the parameter isn’t used in this case, but we
include it for symmetry.)

Ball :: hits_side (Game_config const &) const

The ball hits the side of the scene when either the x coordinate of its
left side is less than 0 or the x coordinate of its right side is greater
than the width of the scene.

Ball :: next(double dt) const

Within the members of an object, the keyword this is a pointer to
the current object. Therefore, this is a Ball const*, and you can
create a copy of a ball with the copy constructor. So to get a new A copy constructor takes in an

object of the same type and
copies its values to the current
object being created.

Ball object (named result) to return, you can write

Ball result (* this);

Ball :: hits_block (Block const &) const

As with the edge collision functions, we want to use the ball’s bound-
ing box, which is the square whose top is center.y - radius, whose
left is center.x - radius, whose bottom is center.y + radius, and
whose right is center.x + radius. We use the bounding box so that
we can check for the intersection of two rectangles, which is easier
than checking for the intersection of a rectangle and a circle.

One way to think of that is that the rectangles don’t intersect if
either of these is true:

• The right side of either rectangle is to the left of the left side of the
other.

• The bottom of either rectangle is above the top of the other.

Otherwise, they do.

Ball :: destroy_brick (
std :: vector <Block >&) const

homework 4: brick out 7

Once you’ve written Ball::hits_block, finding an element of bricks
that collides with this ball isn’t hard—use a for-each loop—but how
to remove it once you find it? The more obvious solution may be
to shift all the elements after it to the left, but that’s awkward, and
there’s a cleaner way when the order of the elements of the vector
doesn’t matter:

1. Replace the hit brick with the last brick in the vector (bricks.back())
by assigning over it. (If the hit brick is the last brick in the vector
then this step won’t do anything, but this algorithm will still work
without a special case.)

2. Now the last brick in the vector is redundant, so remove it using
std::vector::pop_back().

3. return true immediately after the pop_back(). The loop con-
dition won’t adjust to the diminished vector size, so if you keep
iterating after removing an element then you’ll go out of bounds.
One brick is enough.

operator ==(Ball const&, Ball const &)

This is how you will overload the == operator to check equality be-
tween two ball objects. It can be written as a four-way && expression.

The model: struct Model

The implementation of the remaining model logic is in src/model.cxx.
There are two Model member functions and one constructor for you to
complete.

Model :: Model(Game_config const &)

Constructs a Model from the given Game_config. Note that the
Game_config is passed by const& but Model saves its own copy of
it.

This much is done for you: the config, paddle, and ball member
variables are initialized in a member initializer list, not in the body of
the constructor:

• The paddle is initialized with its top-left at config.paddle_top_left_0()
and with dimensions config.paddle_dims.

• The ball is initialized with the state of the paddle and the game
configuration.

https://en.cppreference.com/w/cpp/container/vector/back
https://en.cppreference.com/w/cpp/container/vector/pop_back

homework 4: brick out 8

What you need to do: In the body of the constructor, iterate
through the positions of all the bricks (config.brick_rows * config.brick_cols
of them) and push_back each into the bricks vector. The details:

• Each brick should have dimensions config.brick_dims().

• The first (top-left–most) brick should have its top left at the posi-
tion {config.side_margin, config.top_margin}.

• You will need nested loops to create all the bricks in each row and
column, but note that the order in the vector doesn’t matter.

• The offset between each brick and the next is given by the dimen-
sions of each brick plus config.brick_spacing. Or in other words,
the x offset is config.brick_spacing.width + config.brick_dims().width,
and the y offset is likewise but with heights.

Model :: paddle_to (int x)

In addition to moving the paddle, this may need to move the ball. If
the ball isn’t live then then it needs to follow the paddle, which is best
done by constructing a new Ball and assigning it to ball.

Model :: on_frame (double dt)

And with each frame (typically 1/60 s), it asks the model to update
itself to reflect the passage of time.

The description in src/model.hxx is pretty detailed. You probably
want to call Ball::next(double) const at most twice: once specula-
tively as soon as you know that the ball is live, and once again at the
end, storing the result back to the ball for real that time.

When the ball destroys a brick, you will need to generate a random
boost. The model contains a data member, random_boost_source,
whose type is ge211::Random_source<float>, which can be used
the generate random floats. The Model constructor, which we’ve
defined for you, takes a Game_config const& config parameter and
initializes its random_boost_source member to generate random
values between -config.max_boost and config.max_boost. Thus,
you can generate a random boost from random_boost_source using
the member function Random_source<float>::next().

The view

The implementation of the view is in src/view.cxx. The View construc-
tor, which initializes its model reference and sprites, is already defined

https://bit.ly/360iIzH
https://bit.ly/3mVbiEr

homework 4: brick out 9

for you, as is one of the member functions. There’s one View member
function for you to complete:

View :: draw(ge211 :: Sprite_set &)

Use Sprite_set::add_sprite(Sprite&, Posn<int>) to add each
sprite to sprites. Note that add_sprite positions the sprite using
the top-left corner of the its bounding box, so you don’t want to
position a circle by its center.

The controller

The controller is implemented in src/controller.cxx. There are three
Controller member functions for you to complete:

Controller :: on_key (ge211 :: Key)

The starter code already quits on q. To make a dead ball start moving
on spacebar, you need to check for ge211::Key::code(’ ’) and call
model.launch() when you get it. (That’s a space character, not an
empty character.)

Controller :: on_mouse_up (
ge211 :: Mouse_button ,
ge211 ::Posn <int >)

Makes the ball live via Model::launch().

Controller :: on_mouse_move (
ge211 ::Posn <int >)

Informs the model of the mouse position (and thus the desired paddle
position) via Model::paddle_to(int).

Reference

The GE211 geometry types

The GE211 library defines three types for representing the geometry
of points and rectangles. You will need to use these types to calculate
the positions of game entities and place them on the screen, so read
on.

struct ge211 ::Posn <T>

https://bit.ly/3mPTZ7R

homework 4: brick out 10

For representing 2-D positions, either logical or on-screen pixels,
GE211 provides the Posn<T> struct. While the actual definition is
more complicated, the basic idea can be understood as:

struct ge211 ::Posn <float >
{

float x;
float y;

};

However, ge211::Posn is a struct template, which means that the
coordinate type isn’t fixed at float. You can make a Posn<double>
whose coordinates are doubles, a Posn<int> whose coordinates are
ints, and so on. It provides a variety of member functions, such as
Posn<int>::up_by(int) const and Posn<int>::down_right_by(Dims<int>) const,
for computing related positions.

struct ge211 ::Dims <T>

For representing the width and height of a 2-D objects (such as bound-
ing boxes), GE211 provides the Dims<T> struct template. As with
ge211::Posn, the real definition is a bit more complicated, but you
can think of it as:

struct ge211 ::Dims <float >
{

float width;
float height ;

};

Why do we need Dims if we have Posn? Aren’t these basically the
same thing? Yes, each is a pair of numbers, one with a horizontal
sense and the other vertical, but semantically they are different and
their operations differ. For example, it makes sense to add two Dimses,
or to multiply a Dims by a scalar, so the infix operators + and * are
overloaded with signatures such as

• Dims<T>::operator+(Dims<T>) const and

• Dims<T>::operator*(double) const.

But it doesn’t mean anything to add two Posns, or to scale a Posn.
So having separate types for Posn and Dims helps us keep the two
concepts precise and prevents at least some kinds of nonsense.

The algebra of positions and dimensions is a two dimensional gen-
eralization of the algebra of pointers and integer offsets (see Table 1),
which can help us understand what other operations are meaningful.
Like adding an integer to a pointer in order to offset the pointer, it

https://bit.ly/2I6H5n6
https://bit.ly/2I6H5n6
https://bit.ly/2HZr0zw
https://bit.ly/3jRQsUB
https://bit.ly/3mR8EzL
https://bit.ly/2I6H5n6
https://bit.ly/3mR8EzL
https://bit.ly/2I5mQ8Z
https://bit.ly/3jQp3CA

homework 4: brick out 11

makes sense to add a Dims to a Posn to get an offset Posn. And as the
difference between two pointers is an integer, the difference between
two Posns is a Dims.

Table 1: Affine spaces
general term memory time C++ STL GE211

point pointer time point iterator Posn<T>
displacement integer duration difference type Dims<T>
span array time span range Rect<T>

struct ge211 ::Rect <T>

In Brick Out, we use ge211::Rect<int>s to represent blocks (both
bricks and the paddle), so for convenience, src/ball.hxx typedefs
Block to mean ge211::Rect<int>.

A Rect is essentially a pairing of a Posn (its top left corner) with a
Dims. You can create one from those parts and project each part back
out. To create one you might use

static Rect <int >
Rect <int >:: from_top_left (

Posn <int >, // top left vertex
Dims <int >) // width and height

among other static factory functions. To project, you will want
member functions such as

• Dims<T> Rect<T>::dimensions() const and

• Posn<T> Rect<T>::top_left() const

among others.
You can also access the data members of a ge211::Rect directly,

but note that they don’t actually include a Rect and a Dims, but
rather both flattened together:

struct ge211 ::Rect <int >
{

int x;
int y;
int width;
int height ;

};

https://bit.ly/2TSzaMQ
https://bit.ly/388mh9s
https://bit.ly/388mh9s
https://bit.ly/3jXFMEb
https://bit.ly/2I6BRrw
https://bit.ly/3mV6O0z

homework 4: brick out 12

Deliverables & evaluation

For this homework you must:

1. Complete the seven unimplemented Ball member functions
and two free functions (above_block() and operator==(Ball
const&, Ball const&)) in src/ball.cxx.

2. Complete the unimplemented Model constructor and two member
functions in src/model.cxx.

3. Complete the one unimplemented View member function in sr-

c/view.cxx.

4. Complete the three unimplemented Controller member functions
in src/controller.cxx.

5. Add more test cases to test/ball_test.cxx and test/model_test.cxx in
order to the test the functions that you wrote.

We don’t require you to write automated tests for the controller
and view, but it might not be a bad idea to try.

As usual, self evaluation will spot-check your test coverage by asking
for just a few particular test cases. You certainly want to test each
significant event, such as the ball hitting the paddle or the ball falling
off the bottom of the screen. You can’t anticipate what other cases we
may ask about, so you should try to cover everything.

Your grade will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your model code’s
correctness, and

• adherence to the CS 211 Style Manual for C++ (linked here).

Submission

Homework submission and grading will use Gradescope. You must
include any files that you create or change. For this homework, that
will include src/ball.cxx, src/model.cxx, src/view.cxx, src/controller.cxx,
test/ball_test.cxx, and test/model_test.cxx. (You should not need to
submit a modified CMakeLists.txt and you must not modify any of the
.hxx files.)

Per the syllabus, if you engaged in arms-length collaboration
on this assignment, you must cite your sources. You may write ci-
tations either in comments on the relevant code, or in a file named

https://nu-cs211.github.io/cs211-files/cxxstyle.html
https://nu-cs211.github.io/cs211-files/syllabus.pdf

homework 4: brick out 13

README.txt that you submit along with your code. See the syllabus
for definitions and other details.

Submit your files by uploading them directly to the Gradescope
website. When you click on the assignment in Gradescope for the first
time, you will get a window where you can upload files. You can drag-
and-drop files or browse to select them. Make sure you include all the
necessary files in the src/ and test/ directories! Submitting extra files
is fine. To submit additional times, select the “Resubmit” button on
the bottom right.

https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Purpose
	Getting it
	Game description
	Design orientation
	Implementation hints
	Reference
	Deliverables & evaluation
	Submission

