
CS 211 Homework 3

Spring 2023

Part 1
Code Due: April 27, 2023, 11:59 PM, Central Time
Self-Eval Due: April 30, 2023, 11:59 PM, Central Time
Maximum allowed Gradescope submissions: 30

Part 2
Code Due: May 04, 2023, 11:59 PM, Central Time
Self-Eval Due: May 07, 2023, 11:59 PM, Central Time
Maximum allowed Gradescope submissions: 30

Contents

Code structure 3

Make targets 3

Specifications overview 3

Specification: The irv
program 4

Specification: Ballot li-

brary (Part 1) 4

Functions in src/ballot.c . 4

Ballot representation

invariant 7

Manually testing the

ballot library from

the irv program . . . 8

Specification: Ballot box

library (Part 2) 8

Functions in src/ballot_-
box.c 8

Ballot box representation 10

Iterating over a linked list 11

Hints 11

Ownership strategy 11

The IRV algorithm 12

Testing 13

Deliverables & evaluation 14

Submission 15

This assignment builds on HW 2 and is to be completed and sub-
mitted in two parts, with each part having its own Gradescope assign-
ment. Each part has its own self-evaluation and you may use your late
days for each part and submit each part at a penalty as if they were
separate assignments. Part 2 builds on part 1 and so you need to com-
plete part 1 in order to be able to implement and test part 2. All part
1 deliverables must be submitted by the last part 1 deadline (which
is the last day you can submit at a penalty) to get credit for those
portions. That is, if you miss the last part 1 deadline and complete
everything only in time for part 2, your grade for the assignment will
only be based on part 2.

See the end of the document for the deliverables for each part.

Advice for reading this document: This document has several
components that refer to each other and there several implementation
hints towards the end of the document that are referenced throughout
the descriptions of the specifications. Make sure to read through the
whole document once and absorb the contents so that you are aware
of all the information present, even if there are many parts you do not
understand as you are reading it. It is likely that your question will be
answered (even partially) later in the document. At that point, if you
are still unsure of something the assignment is asking, feel free to ask
course staff for clarification.

Purpose

The goal of this assignment is to solidify your C programming skills
before moving on to C++.

Login to the server of your choice and cd to the directory where you This homework assignment must
be completed on Linux by log-
ging into a Linux workstation.
Each time you login to work
on CS 211, you should run 211

to ensure your environment is
setup correctly. (If you get an
error saying that 211.h doesn’t
exist, that probably means you
forgot to run 211.)

Contents

keep your CS 211 work. Then unarchive the starter code, and change
into the project directory:

https://bit.ly/3c1qyui

cs 211 homework 3 2

% cd cs211
% tar -kxvf ~cs211/hw/hw3.tgz
...
% cd hw3

Preliminaries

If you have correctly downloaded and configured everything then the
project should build cleanly (although not all tests will pass):

% make
...
cc -o irv src/irv.o src/ballot.o src/ballot_box.o sr...
%

Background

“Instant-runoff voting (IRV),” according to Wikipedia,

is a type of preferential voting method used in single-seat elections

with more than two candidates. Instead of voting only for a single

candidate, voters in IRV elections can rank the candidates in order of

preference. Ballots are initially counted for each elector’s top choice,

losing candidates are eliminated, and ballots for losing candidates

are redistributed until one candidate is the top remaining choice of

a majority of the voters. When the field is reduced to two, it has

become an “instant runoff” that allows a comparison of the top two

candidates head-to-head.

For an example of running the IRV algorithm, consider an election
in which there are three candidates running and five voters. The
initial ballots are as follows:
1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

1. Borden
2. Campbell
3. Abbott

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

We count the first vote on each ballot, after which the vote counts
are 2 for Abbott, 2 for Campbell, and 1 for Borden. No one has an
outright majority, so the last-place candidate, Borden, is eliminated.
Thus, in the second round of counting, the ballots are:
1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

1. Borden
2. Campbell
3. Abbott

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

On the ballot where Borden was leading, now Campbell takes the
lead. We count the first remaining vote on each ballot, giving 3 to
Campbell and 2 to Abbott. Campbell has a majority, and is therefore
the winner.

https://en.wikipedia.org/wiki/Instant-runoff_voting

cs 211 homework 3 3

Given n candidates, the algorithm may take as many as n − 1 rounds
of counting and elimination to reach a winner.

Code structure

Your code will be divided into several .c files:

• Functions on ballots are declared in src/ballot.h, and their defini-
tions belong in src/ballot.c. Unit tests for these functions should be
written in test/test_ballot.c. These ballot and implementation tests
constitute part 1 of this assignment.

• Functions on collections of ballots, including the IRV algorithm,
are declared in src/ballot_box.h, and their definitions belong in
src/ballot_box.c. Unit tests for these functions should be written
in text/test_ballot_box.c. These ballot box implementation tests
constitute part 2 of this assignment.

• The main() function implementing the irv client program is al-
ready written for you in src/irv.c. You may however, edit this
function to do intermediate manual tests of your ballot library while
working on part 1.

The code in src/ballot.c and src/ballot_box.c depends on libvc. By
default, compile the program with our own shared library solution. If
you prefer, you can use your own libvc.c from Homework 2 by copying
it into the src/ directory. The build system will automatically use your
file if it finds it.

Make targets

The project provides a Makefile with several targets you can run your
program with:

Target test is the default, which
means you can run it by typ-
ing make alone, with no target
name.

target description

test builds everything & runs the tests * &

all builds everything, runs nothing&

test_ballot builds the ballot tests
test_ballot_box builds the ballot box tests
irv builds the irv program
clean removes all build products&

* default & phony

Specifications overview

The project comprises three functional components, which are speci-
fied in the next three sections. These sections describe the expected

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

cs 211 homework 3 4

functionality and also link to important hints related to itera-
tion, ownership, and testing later in the document. The irv

program contains the main() function and so this file uses the li-
braries described in the second and third sections. The ballot library
(src/ballot.c and src/ballot.h) stores and handles information about one
ballot. The ballot box library (src/ballot_box.c and src/ballot_box.h)
stores and handles information about a collection of multiple ballots.

The three functional components described in the following three
sections work together as follows: the irv program depends on the
ballot box library and calls functions within this library; the ballot
box library in turn depends on the ballot library and calls functions
within this ballot library as part of its own function implementations.

Specification: The irv program

The irv program, as shown in the margin to the right, reads bal-
% ./irv
Abbott
Borden
Campbell
%
Campbell
Abbott
Borden
%
Borden
Campbell
Abbott
%
Abbott
Borden
Campbell
%
Campbell
Abbott
Borden
^D
CAMPBELL
%

lots from the standard input, standardizes names to remove all non-
alphabetic chars and converts all chars to uppercase letters, runs the
IRV algorithm, and prints the name of the winner.

The only other thing that irv may print is an out-of-memory error
message if malloc fails.

The format of the input is as follows. Each candidate’s name
appears on its own line, with the candidates on each ballot listed in
order. Each ballot is terminated by a percent sign (%) on a line by
itself, except for the last ballot, which may be terminated by the end
of the input.

Like count from HW 2, the irv program is limited in how many
different candidates it can handle, and as before, the limit is defined
using a C preprocessor macro MAX_CANDIDATES in the src/libvc.h
header file. Similarly to HW 2, if you want to modify this value, you
need to pass in the change to make. For example, to test with three
candidates you would run:

% make test SIZE=3
%

If irv sees more different candidates than it can handle, it exits with
error code 3. If irv fails to allocate memory, it exits with a message
printed to stderr and an exit code of 1.

Specification: Ballot library (Part 1)

Functions in src/ballot.c

In this file, you will implement a ranked-choice ballot as a heap-
allocated struct containing an array of candidate names. At a high

cs 211 homework 3 5

level, when initially added to the ballot, names are active, but they
may be eliminated from the ballot as the IRV algorithm proceeds.

The header src/ballot.h defines one type [invariant hint»] , intended to
represent a single voter’s ranked-choice ballot.

typedef struct ballot * ballot_t ;

By this statement, ballot_t is now an alias for the struct ballot*
data type. This ballot_t type is abstract in the sense that other files
that include src/ballot.h will know that type ballot_t is a pointer to
some struct type, but they won’t know anything about the definition
of that struct. This means that they can create, manipulate, and
destroy struct ballot objects only via the functions also declared in
src/ballot.h.

We will refer to the object that a ballot_t points to as a ballot.
The src/ballot.h header declares eight functions for working with
ballots: two for managing their lifecycles, two for modifying them, two
for querying them, one for reading a ballot from an input stream, and
one for formatting a ballot on output stream. Additionally, it declares
a function for standardizing candidate names.

• ballot_t ballot_create(void) allocates a new, empty ballot
(i.e., the fields of the allocated ballot should represent an empty
ballot) on the heap and returns a pointer to it. Every successful call
to ballot_create() allocates a new object that must subsequently
be deallocated exactly once using ballot_destroy. [hint»]

Ownership: The caller takes ownership of the result.

Errors: Exits with error code 1 if memory cannot be allocated.
You can make use of the mallocb() helper function available to you
in src/helpers.c to allocate memory and handle errors accordingly.
(You may want to use this in other parts of your program too,
where applicable.)

• void ballot_destroy(ballot_t ballot) deallocates all memory
associated with ballot. ballot may be NULL, in which case this
function should do nothing (your code will need to check for this).

Ownership: Takes ownership of ballot and frees it.

Errors: If ballot has already been destroyed or wasn’t returned
by ballot_create() in the first place then this function has unde-
fined behavior.

• void ballot_insert(ballot_t ballot, char* name) standard-
izes name using the clean_name function (described below), adds it
to the first unused entry in the ballot, and marks it active. [hint»]

cs 211 homework 3 6

Ownership:

– Borrows ballot transiently. This means that the borrowing
is finished when ballot_insert
returns.

– Takes ownership of name, which means that 1) name must have
been allocated with malloc and owned by the caller prior to the
call, and 2) the caller cannot access name again after the call.

Errors: Exits with error code 3 if the ballot is full (i.e., adding
this name would exceed MAX_CANDIDATES).

• void ballot_eliminate(ballot_t ballot, const char* name) One important principle of
API design is that what can be
done can also be undone. The
presence of ballot_eliminate
without a ballot_reinstate
to reverse it violates this princi-
ple, but the algorithm doesn’t
require it, so you don’t need to
implement it.

marks candidate name, if present, as no longer active.

Ownership: Both arguments are borrowed transiently.

• const char* ballot_leader(ballot_t ballot) returns the first
still-active candidate, or NULL if no active candidates remain.

Ownership: The result is borrowed from the ballot argument
and is valid only as long as the argument is.

• void count_ballot(vote_count_t vc, ballot_t ballot)
counts a ballot into an existing vote_count_t vc passed in by
incrementing the count in the map of the leading (first active) can-
didate in ballot. If there is no leading candidate then this function
has no effect.

Ownership: Both arguments are borrowed transiently.

Errors: If there is no more room in the vote count map (meaning
vc_update returns NULL) then it exits with error code 4.

• ballot_t read_ballot(FILE* inf) returns a single ballot read In C, FILE* is the type for rep-
resenting an open file. To read a
line at a time from a FILE*, use
the lib211 function fread_line(3),
which is like read_line(3) but
takes a FILE* argument to read
from.

from input file handle inf or returns NULL if there is no input. In
particular, if the first time reading from inf in this function indi-
cates end-of-file, this function should return NULL. Otherwise, it
should build and return a ballot by reading one name per line until
reaching either end-of-file or a percent sign on a line by itself; it en-
sures that each candidate name is standardized using clean_name()
before storing it in the ballot.

Ownership:

– The argument is borrowed transiently.

– The caller takes ownership of the result and must deallocate it
with ballot_destroy when finished with it.

Errors:

– Exits with an error code 1 if memory cannot be allocated
(fread_line(3) does this automatically).

cs 211 homework 3 7

– Exits with error code 3 if the number of names read exceeds
MAX_CANDIDATES.

• void print_ballot(FILE* outf, ballot_t) prints a ballot The FILE type is declared in
<stdio.h>. A FILE* represent-
ing an open file on disk may
be obtained using the fopen(3)
function and released using the
fclose(3) function. The console
streams stdin, stdout, and
stderr are pre-opened FILE*s.

(name and active status of each entry) to the given file handle in a
human-readable format to help you with debugging. For example,
you can print each entry’s information to a separate line.

This function is implemented for you.

Ownership: Both arguments are borrowed transiently.

• void clean_name(char* name) [hint»] standardizes argument name
in-place by removing all non-alphabetic chars and converting all
lowercase letters to uppercase.

Ownership: The argument is borrowed transiently.

Implementation hint: This function is specified to transform a
string “in place,” which means that it doesn’t allocate, but modifies
the chars in the the string it is given. Such an approach was not
possible for expand_charseq because the string often gets longer.
But when all we want to do is filter and/or map chars one by one,
doing it in place is straightforward.

To do so, you need to track two positions in the same string, which Alternatively, you can use two
char*s (addresses in the string)
that both move forward, or one
fixed char* and two size_t off-
sets that move throughout the
string, although we recommend
the latter.

we will call the source and the destination. We consider each source
character in turn until the source position reaches the terminating
'\0'. To retain and map a source character, we convert it, store
the result at the destination, and then advance both positions. To
remove a character, we merely advance the source position. Notice
that as we remove chars, the destination position falls behind the
source position, but it can never get ahead, which means we are
never in danger of overwriting the source before we get there.

Converting a character should be done with the isalpha(3) and
toupper(3) functions found in the ctype.h library.

When the loop terminates, we must store a terminating '\0' at the
destination position of the string before returning.

Ballot representation invariant
[«ballot spec intro] [«ballot_create() spec] [«ballot_insert() spec]

Unlike vote_count_t, which was defined as a pointer to an array,
ballot_t is a pointer to a struct containing an array.

A ballot b contains b->length candidates in the first b->length
elements of the b->entries array, so that prefix of elements must be
initialized. For each entry i < b->length, b->entries[i].name is a
non-null pointer to an owned string that has been standardized so that

https://www.cplusplus.com/reference/cctype/

cs 211 homework 3 8

all of its chars are uppercase letters. The active field in each entry
indicates whether the associated candidate is still in the running or
has been eliminated.

The ballot_t type uses a different invariant than vote_count_t This means that iterating over
a ballot is simpler than iter-
ating over a vote count map,
because the loop condition only
needs one comparison—i <
ballot->length—instead of
two like the libvc functions did.

to keep track of how many entries it contains. Rather than storing
NULL pointers in the candidate names of all unused slots, the length
field stores the count of how many slots are in use. The remaining
MAX_CANDIDATES - length elements should be left uninitialized until
they are needed to store additional candidates.

Manually testing the ballot library from the irv program

The code in src/irv.c is only meant to interact with the ballot box
library which in turns interacts with the ballot library (details in the
next two sections). However, as you are working on part 1, you may
want to manually test your functions and behavior in src/ballot.c by
calling them from a client program with a main() function.

For the purposes of testing part 1 manually (separately from your
unit and integration tests), you may modify irv.c to comment out the
given code and you can add code that calls your ballot library func-
tions. You can then run the irv program to test out the functionality
you want. Make sure to comment out your code and uncomment the
original code once you are working on part 2 and plan to run the
intended irv program.

Specification: Ballot box library (Part 2)

Functions in src/ballot_box.c

In this file, you will implement a collection of owned ballots as a linked
list [hint»] . This collection, which we will call a ballot box, is the main
data structure on which the IRV algorithm, also defined in this file,
will operate.

The header src/ballot_box.h defines one type [hint»] , intended to
represent a whole ballot box.

typedef struct bb_node * ballot_box_t ;

This type is abstract in the sense that other files that include src/bal-
lot_box.h will know that type ballot_box_t is a pointer to some
struct type, but they won’t know anything about the definition of that
struct. This means that they can modify, query, and destroy ballot
box objects only via the functions also declared in src/ballot_box.h.
However, unlike the other abstract types we’ve implemented, the null
pointer is a valid ballot_box_t, representing the empty ballot box.

The src/ballot_box.h header declares six functions for working with

cs 211 homework 3 9

ballot boxes: one for managing their lifecycles, two for modifying
them, one for querying them, one for reading a ballot box from a file
or input stream, and the IRV algorithm itself.

• void bb_destroy(ballot_box_t bb) deallocates the memory
associated with a ballot box, including all of its ballots (which it
owns). bb may be null. [ownership hint»] [iteration hint»]

Ownership: Takes ownership of the argument in order to release
its resources.

• void bb_insert(ballot_box_t* bbp, ballot_t ballot) adds
a ballot to a ballot box at the front of the list. This function
takes a pointer to the ballot_box_t, or in other words, a struct
bb_node**, and updates it in place.
bbp is a pointer to the head of the linked list where the head is of
type ballot_box_t. To add a new ballot to the head of the linked
list, this function allocates space for a new balllot_box_t object
(i.e., pointer to a new node) and sets its ballot field to the new
ballot. This new ballot_box_t node object should now replace
the original head of the linked list by making bbp point to this new
ballot_box_t object. This new ballot_box_t’ next field should
then be set to the old linked list head.
Preconditions (these are assumed; you shouldn’t check for
them):

– bbp is non-null.
– *bbp is initialized (but may be null).

Ownership:

– Borrows bbp transiently, but takes ownership of the old val-
ues of *bbp, in the sense that any other references to *bbp are
invalidated after the call.

– Takes ownership of ballot; thus, the caller must own ballot
before the call, and must not access it again after bb_insert
returns.

Errors: Calls perror("bb_insert") and exit(1) on out-of-
memory (via mallocb).

• void bb_eliminate(ballot_box_t bb, const char* candidate)
eliminates all votes for the given candidate in the ballot box. [iteration hint»]

Ownership: Borrows both arguments transiently.

• vote_count_t bb_count(ballot_box_t bb) creates a new vote_count_t
and uses it to count each ballot’s leading candidate (i.e., the candi-
date returned by ballot_leader, if any).

cs 211 homework 3 10

Ownership:

– Borrows the argument transiently.
– The caller takes ownership of the vote count map result and

must release it with vc_destroy.

Errors:

– Exits with error code 4 if vc_create cannot allocate memory.
– Calls count_ballot, which exits with error code 4 if the vote

count map is full.

• ballot_box_t read_ballot_box(FILE* inf) [testing hint»] reads
ballots from the given file handle using read_ballot until there are
none left to read.
Precondition: inf must be open for reading, as by fopen(3). This
will be done for you.
Ownership:

– Borrows the argument transiently.
– The caller takes ownership of the result and must release it with

bb_destroy.

Errors: Calls read_ballot and bb_insert, which exit with a
non-zero error code if they cannot allocate memory.

• char* get_irv_winner(ballot_box_t bb) [hint»] runs the IRV
algorithm and returns the name of the winner to be owned by the
caller. The algorithm is described in detail in the hints section here.
Ownership:

– Borrows the argument transiently.
– The caller takes ownership of the result and must free it.

Errors: Returns NULL if there are no votes and thus no winner.
Exits with error code 1 if memory cannot be allocated. Using the
helper functions provided will exit correctly if necessary.

Ballot box representation [«spec]

We represent a ballot box as linked list of struct bb_nodes containing
owned ballot_ts:

struct bb_node
{

ballot_t ballot ;
struct bb_node * next;

};

cs 211 homework 3 11

Using a linked list allows us to expand smoothly to accomodate any
number of ballots (within the limits of memory) without either pre-
allocating an array to some limit or implementing dynamic array
growth.

Unlike the other pointer-to-struct types we have seen, ballot_box_t
uses the null pointer as a valid representation. In particular, NULL is Linked lists often use a null

pointer to represent the empty
list.

how we represent the empty ballot box (this empty ballot box is de-
fined as a constant variable named empty_ballot_box in ballot_box.c,
and we only allocate nodes when there are ballots to store.

When non-null, the head pointer of a ballot_box_t owns the
entire list—all of the ballots and all of the list nodes. This means
that bb_destroy must deallocate all of the ballots and all of the list
nodes. And this means that isn’t advisable for client code to hold onto
pointers to nodes deeper in the list.

Iterating over a linked list [«bb_destroy() spec] [«bb_eliminate() spec]

To iterate over a linked list you need a node pointer current to keep
track of your position in the list, starting at the head pointer (mean-
ing the value of the ballot_box_t, which is either null or points to
the first node). The loop termination condition is when current is
null. Otherise, current points to a node, which contains an ballot
(current->ballot) and a pointer to the next node. To advance along
the list, assign the pointer to the next node to current:

current = current ->next;

A special case of iterating over a linked list is deallocating the list,
in which case the assignment above does not suffice. In bb_destroy,
care must be taken to save each current->next in a temporary vari-
able before freeing each current.

Hints

In this section we provide suggestions, including descriptions of some
algorithms and more help interpreting the specification.

Ownership strategy [«bb_destroy() spec]

A ballot box owns all of its ballots, and the ballots, in turn, own all of
the candidate name strings. This implies that bb_destroy(bb) must
free all of bb’s nodes and call ballot_destroy on all of bb’s ballots;
and it implies that ballot_destroy(ballot) must in turn free all of
ballot’s candidate names before freeing ballot.

cs 211 homework 3 12

Unlike vc_update, which takes a borrowed string, ballot_insert
takes ownership of the string that it is passed. This makes sense be-
cause ballot_insert always (except in error cases) needs ownership
of the string, whereas vc_update only needs ownership when encoun-
tering a candidate name that is not yet in the given vote count map.
This contract has implications for ballot_insert’s caller: the caller
must pass a string that it owns (which implies heap allocation by the
caller this time). And because the caller gives up ownership, it must
not access or attempt to deallocate the string after ballot_insert
returns.

This ownership transfer also implies that ballot_insert never
needs to allocate.

Finally, the get_irv_winner function also has an ownership
situation you may find puzzling. When get_irv_winner returns
a string, it transfers ownership of the string to the caller and the
caller must free the string. Why? To implement the IRV algorithm,
get_irv_winner must create and destroy a vote count map for each
round of counting. In the last round of counting, the winner is the
candidate name returned by vc_max, which is a string borrowed from
the vote count map. Destroying the vote count map before returning
is get_irv_winner’s responsibility as owner, but once vc_destroy is
called, the old result of vc_max is no longer valid! Thus, once the win-
ner is determined, get_irv_winner must make a copy of the winner
string to return, and it must make that copy before it deallocates the This means copying the heap-

allocated string, not just alias-
ing it by copying the pointer.

vote count map.

The IRV algorithm [«spec]

The IRV algorithm takes a ballot box as input and returns the name
of the winner of the election. The algorithm proceeds in rounds as
follows:

• In each round, starting with an empty vote count map, we count
every ballot in the ballot box into the vote count map. This means
incrementing the count for the leading (first active) candidate on
each ballot.

• If one candidate has a majority, meaning more than half the total
cast votes in the current round, then that candidate is the winner.

• If no votes were cast then there is no winner, so per the spec the
result is NULL.

• Otherwise, the candidate with the fewest votes is eliminated from
the ballot box, and then we repeat this process for the next round.

cs 211 homework 3 13

Note that the above description of the algorithm does not describe
the necessary resource management, so it is up to you to combine the
algorithm description in this section with the discussion of ownership
in the previous section.

Note also that the algorithm as stated is ambiguous because it
doesn’t specify how to break ties for the fewest votes. But our par-
ticular specification of vc_min, which breaks ties for elimination by
returning the most recently added candidate, completely determines
all decisions, including the elimination step.

Testing [«read_ballot_box() spec]

You will need to test your code thoroughly, both to ensure its correct-
ness and for self evaluation.

File test/test_ballot.c contains one test case for some of the ballot
functions, which may help give you an idea how to use the abstraction
and test it further.

One important thing to test is the interaction between a ballot
and a vote count map as implemented by count_ballot. You should
complete function test_ballot_with_vc to test this scenario: Create
a ballot that initially ranks three candidates (henceforth A, B, and
C). Starting with a fresh vote count map, count the ballot once and
confirm one vote for A and none for the others. Count again and
confirm all the votes. Eliminate B, count again, and confirm that
A has gone to 3 while the others remain at zero. Then eliminate A,
count, and confirm a first vote for C. Eliminate C, so that the ballot
has no active candidate, and confirm that counting the ballot again
has no effect on the counts.

File test/test_ballot_box.c contains three test cases written using a
function check_election, which takes the winner and all ballots as ar-
guments, builds the ballot box, runs the IRV algorithm, and confirms
the result. You should probably add more such test cases, but note
that this is not enough to test your input routines read_ballot and
read_ballot_box. When called from irv.c, read_ballot_box (and
thus read_ballot are passed stdin, in order to read from the console.
But for testing, you may want to read from actual files. Additionally,
by reading entire files of input this way, you can test out much larger
ballots or ballot boxes in an easier way for the rest of your tests.

Here is a procedure to set up testing of the input routines on files:

1. Create a subdirectory Resources in your project directory at the
same level of src/ and test/. If you create additional files in

this directory, do not forget to
the submit them to Gradescope
too (see submission instruc-
tions)!

2. In the Resources directory, create files containing the text you want
the functions to read where the text looks exactly like input you

cs 211 homework 3 14

may enter manually if the program read everything from stdin.
Use a good naming scheme, with either names describing each
scenario (e.g., one_ballot_one_vote.in) or systematic names based
on the function to be tested and numbering (e.g., ballot_box_6.in).

3. Write a function in each test program (test_ballot.c and test_- If you run your test pro-
grams from the same direc-
tory that your Makefile is
in then you’ll be able to re-
fer to files from your code
using relative paths such as
"Resources/ballot_4.in" and
"Resources/ballot_box_6.in".

ballot_box.c that takes a filename as a const char*, opens the file
using fopen(3), reads the file using the read... function in the
library under test (read_ballot for testing the ballot library and
read_ballot_box for testing the ballot box library), closes the file
using fclose(3), and then returns the new object that was read.

4. Add tests that use the functions from step 3 to read the files from
step 2 and confirm that the results are as you expect. You can also
test individual ballot or ballot box functions on this “read-in” ballot
or ballot box object and check that the results are what you expect.

Deliverables & evaluation

For part 1, you must:

1. Complete the eight unimplemented ballot functions and clean_name
in src/ballot.c, as specified above.

2. Add more test cases to test/test_ballot.c in order to test the func-
tions that you wrote..

For part 2, you must:

1. Complete the five unimplemented ballot box functions and get_irv_winner
in src/ballot_box.c, as specified above.

2. Add more test cases to test/test_ballot_box.c in order to test the
functions that you wrote.

You will be required to fill out a separate self-evaluation for each
part separately. As usual, the self evaluation will spot-check your
test coverage by asking for just a few particular test cases. One of
those cases for part 1 is described in the Hints section. You can’t
anticipate what other cases we may ask about, so you should try to
cover everything.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness, and

• adherence to the CS 211 Style Manual.

https://nu-cs211.github.io/cs211-files/style.html

cs 211 homework 3 15

Submission

Homework submission and grading will use Gradescope. You must
include any files that you create or change. For this part 1 of this
homework, that will include src/ballot.c and test/test_ballot.c. For
part 2, that will include src/ballot_box.c and test/test_ballot_box.c in
addition to src/ballot.c. (You must not modify any other files except
when mentioned otherwise in the document.)

Per the syllabus, if you engaged in arms-length collaboration on this
assignment, you must cite your sources. You may write citations either
in comments on the relevant code, or in a file named README.txt that
you submit along with your code. See the syllabus for definitions and
other details.

Submit using the command-line tool submit211. You can run the
command with the --help flag to see more details. The tool will ask
you to log in with your Gradescope credentials, so make sure you’ve
created an account!

To submit the necessary files for this homework, you will run
something that looks like:

To submit the necessary files for part 1, you will run something that
looks like:

% submit211 submit --hw hw3-p1 src/ballot.c test/test_ballot.c

To submit the necessary files for part 2, you will run something
that looks like:

% submit211 submit --hw hw3-p2 src/ballot.c src/ballot_box.c test/test_ballot_box.c

Warning: if you made any tests that use files in Resources/, you
MUST upload them with the submit command as well. Otherwise
you won’t be able to reference them in self-eval questions and we won’t
be able to award you points for tests that rely on those resource files.

If you want to include your own src/libvc.c, be sure to include that
in the submission files for both parts as well.

Remember that those are relative paths to the files you want to
submit. So make sure to change them to make sense for whatever
directory you are running the command from. You can also add any
additional files you want to upload, like README.txt, to the end of
the command.

As with homework 2, some tests will be hidden to you and will
only become visible once the assignment closes. You may submit to
each part on Gradescope a maximum of 30 times each. Therefore, to
use your submissions carefully, you are encouraged to test locally as
thoroughly as possible.

https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Code structure
	Specifications overview
	Specification: The irv program
	Specification: Ballot library (Part 1)
	Specification: Ballot box library (Part 2)
	Hints
	Deliverables & evaluation
	Submission

