
CS 211 Homework 2

Spring 2023

Code Due: April 20, 2022, 11:59 PM, Central Time
Self-Eval Due: April 23, 2022, 11:59 PM, Central Time
Partners: No; must be completed by yourself

Purpose

The goal of this assignment is to get you programming with more
complex usages of memory, structs and arrays, and algorithms than
you have previously.

Preliminaries

Login to the server of your choice and cd to the directory where you

This homework assignment must
be completed on Linux by log-
ging into a Linux workstation.
Each time you login to work
on CS 211, you should run 211

to ensure your environment is
setup correctly. (If you get an
error saying that 211.h doesn’t
exist, that probably means you
forgot to run 211.)

Contents

Preliminaries 1

Introduction 1

Orientation 2

Make targets 2

Specifications 2

The count program 2

The vc library 4

Hints 7

Representation invariant . 7

Iterating over a vote

count map 7

Ownership strategy 7

Reference 8

Alignment using printf (3) 8

Running the program

with a different

MAX_CANDIDATES 8

Testing with automat-

ically generated

names 8

Deliverables & evaluation 9

Submission 10

keep your CS 211 work. Then unarchive the starter code, and change
into the project directory:

% cd cs211
% tar -kxvf ~cs211/hw/hw2.tgz
...
% cd hw2

If you have correctly downloaded and configured everything then
the project should build cleanly (although the existing tests may not
all pass):

% make
...
cc -o test_vc test/test_vc.o src/libvc.o -l211 -fsaniti...
%

Introduction

In this project, you will implement a library vc for counting votes and
a small client program count that exercises the library.

An important idea throughout this program is to adhere to the
specified ownership protocol for managing memory. In the library, you
will implement operations for an abstract type vote_count_t that
points to a mapping from candidate names to their vote counts. A
vote_count_t object owns the strings that hold the names of the
candidates, so whoever frees the vote_count_t object is responsible
for freeing its strings as well.

https://bit.ly/3c1qyui

cs 211 homework 2 2

Orientation

As in Homework 1, your code is divided into three .c files:

• Most significant functionality will be defined in the “vc library,”
src/libvc.c.

• Tests for those functions will be written in test/test_vc.c.

• The main() function that implements the count program will be
defined in src/count.c.

Function signatures for src/libvc.c are provided for you in src/libvc.h;
since the grading tests expect to interface with your code via this
header file, you must not modify src/libvc.h in any way. All of
your code will be written in the three .c files.

Make targets

The project also provides a Makefile with several targets you can run
depending on your goal:

Target test is the default, which
means you can run it by typ-
ing make alone, with no target
name.

target description

test builds everything & runs the tests * &

all builds everything, runs nothing&

test_vc builds the unit tests
count builds the count program
clean removes all build products&

* default & phony

Specifications

The project comprises two functional components, which are specified
in the next two subsections.

The count program

The count program [hint»] reads candidate names, one per line, from
the standard input. It counts the number of occurrences of each can-
didate name, and when the input ends, it prints a table of candidate
names and counts to the standard output, like so:

% ./count
kennedy
nixon
nixon
kennedy

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

cs 211 homework 2 3

kennedy
^D In the terminal, pressing

Control-D (only at the be-
ginning of a line) sends the
end-of-file signal.

kennedy 3
nixon 2

The count program is limited in how many different candidates
it can handle, and the limit is defined using a C preprocessor macro
MAX_CANDIDATES in the src/libvc.h header file. When count is given
more different candidates than it can handle, it begins dropping votes.
Each time it sees a candidate that it hasn’t seen before and doesn’t
have room for, it prints a message to stderr. At the end, if there You can print messages to

stderr using fprintf (3). The
first argument to the function
should be the word stderr, which
denotes that you want to print
to standard error, and the re-
maining arguments work just
like printf (3).

are any dropped votes, it prints the total count of dropped votes to
stderr before terminating with exit code 2.

So for example, if MAX_CANDIDATES were only 2, it would behave
like this:

% ./count
perot
bush
clinton
./count: vote dropped: clinton We use underlining to indicate

what the program prints to the
standard error.

clinton
./count: vote dropped: clinton
clinton
./count: vote dropped: clinton
bush
^D
perot 1
bush 2
./count: 3 vote(s) dropped
[2]% echo $status In fish, the special shell variable

$status contains the exit code
of the most recently run com-
mand. (Most other shells use $?
for the exit code.)

2
%

If the program fails to allocate memory, it exits with a message
printed to stderr and an exit code of 1.

Strategy for the count program [«spec]

The count program should start by allocating a vote count map
by calling one of the vc library functions, terminating with an error
message on stderr and exit code of 1 if allocation fails. (Use the
predefined OOM_MESSAGE as your format string.)

Next, it should to read a line at a time using read_line(3) until end-
of-file. Each string returned by read_line() is a candidate name and
should be counted in the vote count map, unless calling vc_update()
indicates that the vote count map is full. (Use DROP_MESSAGE to
format the required warning when dropping a vote.) read_line()

cs 211 homework 2 4

allocates memory using malloc() so you must call free on the result
of read_line when its no longer needed (e.g., some time before the
next line is read).

Once there are no more votes to count, it should print the vote
summary and deallocate the vote count map by calling one of the vc

library functions.
Finally, if any votes were dropped, print a final warning (use

FINAL_MESSAGE) before terminating with exit code 2. Of course, if
no votes were dropped, the exit code should be 0.

The vc library

The header src/libvc.h defines one type, intended to represent a map-
ping from candidate names to vote counts:

typedef struct vote_count * vote_count_t ;

Recall learning about the typedef keyword in class. From the above
statement, vote_count_t is an alias for struct vote_count*. This
vote_count_t type is abstract in the sense that other files that in-
clude src/libvc.h will know that type vote_count_t is a pointer to
some struct type, but they won’t know anything about the definition
of that struct. This means that they can create, manipulate, and de-
stroy struct vote_count objects only via the functions declared in
the same header.

We will refer to the object that a vote_count_t points to as a vote

count map. The src/libvc.h header declares eight functions for working
with vote count maps: two for managing their lifecycles (these are
implemented for you), one for modifying them, and five for querying
them. The requirements for each function may refer to different parts
of the Hints function towards the end of the document (these sections
are linked where relevant). The functions are:

• vote_count_t vc_create(void) allocates a new, empty vote
count map on the heap, initializes it [invariant hint»] , and returns a
pointer to it. Every successful call to vc_create() allocates a new
object that must subsequently be deallocated exactly once using
vc_destroy. We already implement this function for you.

Ownership: The caller takes ownership of the result.

Errors: Returns NULL if memory cannot be allocated.

• void vc_destroy(vote_count_t vc) deallocates all memory
associated with vc [ownership hint»] . vc may be NULL, in which case
this function does nothing. We already implement this function for
you.

Ownership: Takes ownership of vc.

cs 211 homework 2 5

Errors: If vc has already been destroyed or wasn’t returned by
vc_create() in the first place then this function has undefined
behavior.

• size_t* vc_update(vote_count_t vc, const char* name)
does not update a count. Rather, it returns a pointer to the
count for candidate name, so that the caller can use that pointer
to update the count. If name is already present in vc the returned
pointer will point to the existing count for candidate name; other-
wise, the next empty slot in the vc array should be set to contain
a copy of name and a count of 0 and the function should return a
pointer to this new count. Refer to the iterating hints towards the
end of the document for suggestions and requirements on iterating
through the map (linked here too). [iteration hint»] [ownership hint»]

Ownership:

– Borrows name transiently, which means that it does not store it
anywhere. (In other words, a name inserted into vc must still
be valid even after name is not.) Instead, it must copy name’s
contents.

– Borrows vc transiently.

– The returned pointer is borrowed from vc and is valid until vc is
destroyed.

Errors:

– Returns NULL if name is not present in vc and cannot be added
because vc is full.

– Prints a message to stderr and exits the program with code 1 if
we need to allocate a copy of name and allocation fails.

Strategy for vc_update

To help with writing this function, we have implemented one helper
function strdup_or_die for you in libvc.c that you can call within
your vc_update. This function clones a string onto the heap, prints The keyword static before

a function signature makes a
function definition local to the
.c file it is written in, so static
should be applied to all helper
functions.

a message to stderr and exits with code 1 if malloc() fails.

You must complete the following additional helper functions to
be called and used within the vc_update function (and perhaps
functions defined later):

// Returns a pointer to the first element of `vc `
// whose `candidate ` matches `name `, or NULL if not found.
static struct vote_count *
vc_find_name (vote_count_t vc , const char* name);

cs 211 homework 2 6

// Returns a pointer to the first element of `vc ` whose
// `candidate ` is NULL , or NULL it 's full.
static struct vote_count *
vc_find_empty (vote_count_t vc);

When checking if two strings
are equal in vc_find_name(),
we should not compare them
using == as that just compares
the addresses held in each string
variable (since string variable
names hold addresses) and not
the string contents themselves.
You should instead use str-
cmp(3) defined in the string.h
library to compare two strings.

You will likely use these helper functions to help with finding the
entry in the vote count map corresponding to name, finding the next
empty slot in the map if a new entry in the map needs to be added,
and copying name to belong to a new vc entry in the map if one
needs to be added.

• size_t vc_lookup(vote_count_t vc, const char* name) looks
up the count for candidate name; returns 0 if not found. You may
make use of the vc_find_name function described above within
vc_lookup. [iteration hint»]

Ownership: Borrows both arguments transiently.

• size_t vc_total(vote_count_t vc) returns the total number of
votes cast (not counting any dropped votes). [iteration hint»]

Ownership: Borrows vc transiently.

• const char* vc_max(vote_count_t vc) returns the name of the
candidate with the most (non-zero) votes. In case of a tie, returns
the candidate who was added to vc earlier.

Returns NULL if vc contains no candidates with more than zero
votes. [iteration hint»]

Ownership:

– Borrows vc transiently.

– The returned pointer is borrowed from vc and is valid until vc is
destroyed.

• const char* vc_min(vote_count_t vc) returns the name of the
candidate with the fewest (non-zero) votes. In case of a tie, returns
the candidate who was added to vc later.

Returns NULL if vc contains no candidates with more than zero
votes. [iteration hint»]

Ownership:

– Borrows vc transiently.

– The returned pointer is borrowed from vc and is valid until vc is
destroyed.

cs 211 homework 2 7

• void vc_print(vote_count_t vc) prints a summary of the vote
counts on stdout. The counts are printed one candidate per line
in the order they first were added. The candidate names are left-
aligned in a 20-character column, followed by a single space, and
then the counts right-aligned in a 9-character column. See hints
for suggestions on using printf to output the counts in the above
format. [printf(3) reference»] [iteration hint»]

Ownership: Borrows vc transiently.

Note that libvc is not responsible for maintaining any information
about dropped votes. That counting must be handled by the client
program.

Hints

In this section we provide suggestions and help interpreting the specifi-
cation.

Representation invariant [«vc_create() spec]

If there are n candidates mapped in vc then the candidate fields of To work properly, all of the
functions in src/libvc.c must
collaborate to maintain each
vote count map in a consistent
state.

the first n elements of vc must contain their names, and the remaining
candidate fields (if n < MAX_CANDIDATES) must be NULL. This is so
that you know when to stop when searching for a candidate or for a
free slot.

The first n count fields, corresponding to the n candidate names,
must contain those candidates’ counts. It does not matter what the
remaining (MAX_CANDIDATES − n) count fields contain (or even whether
they are initialized), since they do not store any information until
their corresponding candidate fields are non-NULL.

Iterating over a vote count map

Most of the functions in src/libvc.c need to iterate over the array [«vc_update() spec] [«vc_lookup() spec]

[«vc_total() spec] [«vc_max() spec]

[«vc_min() spec] [«vc_print() spec]
that their vote_count_t argument points to. Be careful, because
this iteration requires different termination conditions in different
places. In particular, it always needs to stop before MAX_CANDIDATES,
but often it is also necessary to stop when reaching a NULL candidate
name.

Ownership strategy [«vc_destroy() spec] [«vc_update() spec]

A vote count map owns the strings that store the candidate names,
but the vc_update() function merely borrows the name that it is
given. This has several implications:

cs 211 homework 2 8

• In order to store the name of a candidate that it has not yet seen,
the implementation of the vc_update() function needs to make its
own copy of the name parameter on the heap.

• Clients of vc_update() are free to deallocate or reuse the name
parameter that they pass to vc_update() as soon as vc_update()
returns.

• Properly deallocating the memory associated with a vote_count_t
(as in vc_destroy()) means deallocating all of the strings it owns.

Reference

Alignment using printf(3) [«vc_print() spec]

For printing the table of counts, you will want to use printf (3)’s
padding and alignment capabilities. In particular:

• A field may be padded to n characters by adding the number n

between the % and the type specifier (e.g., s, d, or zu). For example,
"%8d" formats an int using (at least) eight characters.

• By default, fields are padded with spaces on the left, in order to
right align them. Using a negative number will left align the field
instead. For example, "%-8d" will format ints left-aligned in an
eight-character column.

Running the program with a different MAX_CANDIDATES

If you want to compile and run your program with a different value of
MAX_CANDIDATES (e.g., 150), you can build and run the program with

make test SIZE =150

This command is also present on line 9 of the Makefile

Testing with automatically generated names

For writing tests to test libvc’s behavior when full, you will need to
generate MAX_CANDIDATES + 1 different candidate names. And your
tests should still work when MAX_CANDIDATES is redefined. So you need
a method to automatically generate name strings. In addition to the buffer to

format into, snprintf () takes
an upper limit on the number
of characters to store; an older
function, sprintf (3), does not
take such a limit. Why might
that be a bad idea? (Hint: it
might go past the end of the
array!)

The easiest way to do this is with snprintf (3). It’s a lot like
printf (), but while printf () prints a formatted string to stdout,
snprintf (3) takes a char* and writes a formatted string to this char
array passed in.

An easy way to use snprintf () is to first create a sufficiently large
char array as a local variable. Then, inside a loop keep track of the

cs 211 homework 2 9

number of iterations. You can write a string that contains the itera-
tion count to that array with snprintf () to generate a new candidate
name, and then call vc_update() to add them. You can reuse the
same char array for each call to vc_update().

Here is a barebones example of how to use snprintf () to test adding
many candidates to a vote count map:

vote_count_t vc_map =

char data [100];
for (int i = 0; i < MAX_CANDIDATES +1; i++) {

snprintf (data , 20, " Candidate %d", i);
// data now holds string " Candidate <i>"
vc_update (vc_map , data); // Use data as the name to insert

}

See the snprintf reference for more information.

Deliverables & evaluation

For this homework you must:

1. Implement the specification for the vc library in src/libvc.c along
with the two unimplemented helper functions.

2. Implement the specification for the count program in src/count.c.

3. Add more test cases to test/test_vc.c in order to test the eight
library functions (not the helper functions) defined in src/libvc.c.

The file test/test_vc.c contains two test cases in order to give you
an idea how to write them, but you need to add many more tests.
Try to cover all the possibilities, because for this assignment’s self
evaluation we will spot-check your test coverage by asking for just a
few particular test cases. You can’t anticipate which we’ll ask about,
so you should try to cover everything. Note that you should have test
cases for edge cases, even if the autograder has tests for them as well.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness, and

• adherence to the CS 211 Style Manual.

https://www.cplusplus.com/reference/cstdio/snprintf/
https://nu-cs211.github.io/cs211-files/cstyle.html

cs 211 homework 2 10

Submission

Homework submission and grading will use Gradescope. You must
include any files that you create or change. For this homework, that
will include src/libvc.c, src/count.c, and test/test_vc.c. (You must not
modify Makefile or src/libvc.h.)

Per the syllabus, if you engaged in arms-length collaboration on this
assignment, you must cite your sources. You may write citations either
in comments on the relevant code, or in a file named README.txt that
you submit along with your code. See the syllabus for definitions and
other details.

Submit using the command-line tool submit211. You can run the
command with the --help flag to see more details. The tool will ask
you to log in with your Gradescope credentials, so make sure you’ve
created an account!

To submit the necessary files for this homework, you will run
something that looks like:

% submit211 submit --hw hw2 src/libvc.c src/count.c test/test_vc.c

Remember that those are relative paths to the files you want to
submit. So make sure to change them to make sense for whatever
directory you are running the command from. You can also add any
additional files you want to upload, like README.txt, to the end of
the command.

Unlike for Homework 1, some of the test cases on Gradescope
(along with your final autograder score) are hidden to you and will
only become visible once the assignment closes. We will still allow
unlimited submissions to Gradescope for this homework.

https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf

	Preliminaries
	Introduction
	Orientation
	Specifications
	Hints
	Reference
	Deliverables & evaluation
	Submission

