
CS 211 Homework 1

Spring 2023

Code Due: April 13, 2023, 11:59 PM, Central Time
Self-Eval Due: April 16, 2023, 11:59 PM, Central Time
Partners: No; must be completed by yourself

Purpose

The goal of this assignment is to get you programming with strings,
iteration, and dynamic memory. Read through the requirements of
the assignment carefully and then make sure to read the “Algorithm
hints” section at the end of the document for additional guidelines on
implementing the various requirements.

Preliminaries

Login to the server of your choice and cd to the directory where you

This homework assignment must
be completed on Linux by log-
ging into a Linux workstation.
Each time you login to work
on CS 211, you should run 211

to ensure your environment is
setup correctly. (If you get an
error saying that 211.h doesn’t
exist, that probably means you
forgot to run 211.)

Contents

Orientation 2

Make targets 3

Specifications 3

Character sequences . . . 3

The translate library . . . 4

The tr program 6

Reference 6

Command-line arguments 6

Reading a line 7

Working with C strings . 7

Better testing assertions . 9

Algorithm hints 9

charseq_length() 9

expand_charseq() 10

translate_char() 11

translate() 11

Deliverables & evaluation 11

Submission 12

Gradescope Results 13

keep your CS 211 work. Then unarchive the starter code, and change
into the project directory:

% cd cs211
% tar -kxvf ~cs211/hw/hw1.tgz
...
% cd hw1

If you have correctly downloaded and configured everything then
the project should build cleanly (although several of the tests may not
pass because of the unimplemented code):

% make
...
cc -fsanitize=address,undefined -l211 -o test_translate...
%

Background

In this project, you will implement a clone of the standard Unix
program tr(1), which is a filter program that performs translitera-
tion. Given two equal-length sequences of characters, from and to,
it replaces all occurrences of characters appearing in from with the
character in the corresponding position in to.

The tr program takes the from and to character sequences as
command-line arguments. Once the program is run, it takes in a string
from user input, replaces the appropriate characters according to

https://bit.ly/3c1qyui
https://linux.die.net/man/1/tr

cs 211 homework 1 2

the from and to sequences, and prints out the result. In the simplest
case, the from and to sequences are strings of the same length. The
following shows an example of your tr program could work.

% ./tr abc xyz
a
x
bbbcd
yyyzd
tag the cat
txg the zxt
abracadabra
xyrxzxdxyrx
^D ^D means press Control-D.
% echo Hello, world. | ./tr e a When the | symbol is entered,

it means that the output of
the first command before the
| symbol gets fed in as user
input to the second command
after the | symbol. In this first
example, echo Hello, world.
outputs "Hello, world." and
so when the second command
./tr is run, this output string is
considered as the user input to
be translated.

Hallo, world.
% echo Hello, world. | ./tr elo 310
H3110, w0r1d.
% echo Hello, world. | ./tr ',. ' ___

Characters that have special
meaning for the shell, such as
space, !, *, ?, $, and \, need to
be quoted in arguments.

Hello__world_

tr also understands ranges of characters and some backslash escape
sequences:

% echo Hello, world. | ./tr a-z A-Z
HELLO, WORLD.
% echo Hello, world. | ./tr a-zA-Z. 'A-Za-z?'
hELLO, WORLD?
% echo Hello, world. | ./tr a-zA-Z n-za-mN-ZA-M
Uryyb, jbeyq.
% echo Hello, world. | ./tr a-zA-Z n-za-mN-ZA-M | ./tr
a-zA-Z n-za-mN-ZA-M
Hello, world.
% echo Hello, world. | ./tr ' ' '\n'
Hello,
world.
%

The above examples won’t work until you’ve finished the assign-
ment, but if you replace ./tr with just tr, you should get the

system’s /usr/bin/tr, which will do the same thing. Using the
system’s tr is a great tool for understanding the expected output in
most cases, for example, if you are trying to write tests for expected
behavior or when manually testing whether your program is working
as expected.

Orientation

Your code is divided into three .c files:

cs 211 homework 1 3

• Most significant functionality will be defined in the “translate
library,” src/translate.c.

• Tests for those functions will be written in test/test_translate.c.

• The main() function that implements the tr program will be
defined in src/tr.c.

Function signatures for src/translate.c are provided for you in src/trans-
late.h; since the grading tests expect to interface with your code via
this header file, you must not modify src/translate.h in any way.

All of your code will be written in the three .c files.

Make targets

The project also provides a Makefile with several targets which you can
enter after make:

Target test is the default, which
means you can run it by typ-
ing make alone, with no target
name.

target description

test builds everything & runs the tests * &

all builds everything, runs nothing&

test_translate builds the unit tests
tr builds the tr program
clean removes all build products&

* default & phony

Specifications

The project comprises two functional components, which are specified
in this section. First, though, we define charseqs (character sequences).

Character sequences

The tr program uses charseqs to specify which characters to replace
and what to replace them with. The C type of a charseq is just
char*—that is, a C string—but they can be represented in two forms
having different interpretations, each of which is used at different
stages of the program:

• A literal charseq is just a sequence of characters, each standing
for itself. For example, interpreted as a literal charseq, the string
"a-e" contains the three characters 'a', '-', and 'e' at indices 0, In C (but not C++) those lit-

erals don’t actually have type
char!—they have type int for
obscure historical reasons. That
is, 'A' is an alternative way of
writing the int value 65. Try
printing sizeof 'A' and see. . . .

1, and 2, respectively. In a literal charseq, no character has special
meaning.

• An unexpanded charseq may contain ranges, written “c-d”, and
escape sequences, written “\c”.

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html

cs 211 homework 1 4

– The range “c-d” stands for the interval of characters from 'c' to
'd', inclusive. (This means that if 'c' > 'd' then the range is
empty, and if 'c' == 'd' then the range contains only 'c'.)
Range bounds, both lower and upper, are always represented by
single characters. They are never the result of another range or
escape expansion.

– If the escape “\c” is valid C string literal escape sequence, then it We have provided you a function
mapping character 'c' to the
meaning of \c, so you don’t
have to figure that part out.

has the same meaning for tr as in C; otherwise it just stands for
character 'c' itself.

– Every other character stands for itself. In particular, a “-” char-
acter that is not part of a range stands for itself, as does “\”
character that is not followed by another character.

– In cases of ambiguity, the leftmost possible expansion takes
priority, and a range takes priority over a potential escape at the
same position.

Here is a table showing several unexpanded charseqs along with
their literal expansions, written as C string literals:

How could we figure out what
characters should appear in
these ranges? See the manual
page: man ascii.

unexpanded literal

"abc" "abc"
"a-e" "abcde"
"a-e_" "abcde_"
"a-df-i" "abcdfghi"
"-i" "-i"
"a-d-i" "abcd-i"
"\\t" (2 characters) "\t" (1 character)
"\\-_" (3 characters) "\\]^_" (4 characters)
"X-\\n" (4 characters) "XYZ[\\n" (6 characters)

The tr program takes charseqs in unexpanded form, and must expand
them to literal form before it can do its work.

The translate library

The translate library is responsible for expanding charseqs from un-
expanded to literal form, and for using a pair of literal charseqs to
translate a string. It provides a function for each of these purposes
that will be used in src/tr.c. Additionally, the header file (translate.h)
exposes two helper functions which you will implement in translate.c to
facilitate testing. See section "Algorithm hints" on page 9 for detailed
hints on how to implement each of the functions you are required to
write. src/translate.c defines four functions:

https://en.cppreference.com/w/c/language/escape

cs 211 homework 1 5

• Function expand_charseq(const char*) takes a charseq in unex-
panded form and expands it, returning it in literal form.

The returned charseq is allocated by malloc(3), which means that
the caller (the function that called expand_charseq) is responsi-
ble for deallocating it with free(3) when finished with it. While
you will need to implement the main expansion functionality of
expand_charseq, we already handle the memory allocation for you
and you will notice usages of malloc(3) and free(3) in the starter
code already.

Error case: If expand_charseq() is unable to allocate memory
then it returns the special pointer value NULL. We implement this
error case for you as well.

• Function charseq_length(const char*) is a helper to expand_-
charseq() that determines how long the literal result of expanding
its argument will be.

• Function translate(char* s, const char* from, const
char* to) takes a string to modify (s) and two literal charseqs
(from and to). Each character in string s that appears in charseq
from is replaced by the character at the same index in charseq to.

To be precise: For each index i in s, if there is some j such that
s[i] == from[j] (and there is no k < j such that s[i] ==
from[k]), then s[i] is replaced by to[j].

Undefined behavior: Function translate() has an unchecked

precondition, whose violation will result in undefined behavior. In A precondition of a function
is a condition that needs to be
true at the start of a function’s
execution for the function to ex-
ecute safely (avoiding undefined
behavior) and correctly

particular, for it to work properly, from must not be a longer string
than to. However, translate() should not check this condition,
as ensuring it is the caller’s responsibility.

• Function translate_char(char c, const char* from, const
char* to) is a helper to function translate(). It takes a char-
acter to translate (c) and two literal charseqs (from and to). It
returns the translation of character c as given by the two charseqs.

Undefined behavior: Function translate_char() has the same
unchecked precondition as function translate(), with the same
results if violated. (This is a natural consequence of translate()
calling translate_char().)

An additional unchecked precondition for all four of the above
functions is that all char*s that they are given as arguments must be
non-null pointers to '\0'-terminated character arrays—that is, valid
C strings. If this precondition is violated then the functions’ behaviors
are undefined. (This means that these functions should not check
whether their arguments are null.)

https://linux.die.net/man/3/malloc
https://linux.die.net/man/3/free
https://linux.die.net/man/3/malloc
https://linux.die.net/man/3/free

cs 211 homework 1 6

The tr program

The tr program must be run with two command-line arguments.
The tr program has three phases: first it validates and interpets its
arguments, then it transforms its input to its output, and then it
cleans up its resources.

We’ve provided you with the first check, for the correct number of
arguments passed to the program. This serves as an example of how
to use fprintf (3) and stderr(4) for printing error messages.

Next, expand_charseq() is called to expand both command-
line arguments argv[1] and argv[2] into literal charseqs. Since Two calls to expand_charseq()

mean both resulting literal
charseqs require two calls to
free() in order to clean up
their allocated memory at the
end

expand_charseq() returns NULL if it cannot allocate memory, you
need to NULL-check both results; if it fails, print the error message as
below (using OOM_MESSAGE and argv[0]), call free() on from and to,
and exit with error code 10.

tr: error: out of memory

If character sequence expansion succeeds but the charseqs, once
expanded, don’t have the same length, it is an error; your code should
print the specified error message (LENGTH_MESSAGE) to stderr (as
below), call free() on from and to, and exit with error code 2.

tr: error: lengths of FROM and TO differ

Now, if there are no errors then the program is ready to iterate
over the input lines until read_line() returns NULL, translating each
line and printing the result. This is also already implemented for you.
Since each input line read by read_line() is allocated by malloc(),
each line is freed with free() when it is done being used.

Now that argument checking has succeeded, tr begins taking in The examples in the Background

section involve sending your tr
program one line at a time. Be
sure to test it interactively, too,
to make sure it handles multiple
lines correctly:

% ./tr a-z A-Z
Be sure to test
BE SURE TO TEST
your program
YOUR PROGRAM
interactively.
INTERACTIVELY.
^D
%

strings to translate. For each line read from the standard input, it
translates the line according to the literal expansions of FROM and TO
and prints the result. When there is no more input to process, the
program terminates successfully.

Reference

Accepting command-line arguments

When running a C program from the command line, the user can
supply it with command-line arguments, which the program’s main()
function then receives as an array of strings. In particular, main() can
be declared to accept two function arguments, as follows:

int main(int argc , char* argv []);

cs 211 homework 1 7

Then argc will contain the number of command-line arguments (in-
cluding the name of the program itself in argv[0]), and argv will
contain the comnand line arguments themselves.

For example, if a C program is run like

% my_prog foo bar bazzz

then argc is 4 and argv is the array

{
" my_prog ",
"foo",
"bar",
"bazzz"

}.

Reading input a line at a time

The C programming language doesn’t provide an easy way to read C natively provides gets(3),
which is easy to use but inher-
ently unsafe, and fgets(3), which
can be used safely but requires
you to specify a limit on the
length of the line.

a line of input whose length is unknown, so we have provided you a
small library, lib211, on the Unix login machines. The library exports a
function read_line() for this purpose. Here is its signature:

char* read_line (void);

The read_line function returns a character array allocated by
malloc(3), which means that the caller is responsible for deallocating it
with free(3) when finished with it. See the next subsection for more on
this topic, and see the read_line(3) manual page on the lab machines
for information on the read_line function.

Working with C strings

When testing your functions, you might be tempted to write assertions
like this:

assert (expand_charseq ("a-e") == "abcde");

But there are three problems with this:

1. It leaks memory. The second and third prob-
lems here are also solved by
CHECK_STRING, which is de-
scribed in the next subsection.

2. It compares the addresses of the strings rather than the characters
in them.

3. In rare cases, it might cause undefined behavior.

It leaks memory because expand_charseq() allocates memory and
the code above doesn’t free it. To fix that, we need to store the result
of expand_charseq() in a variable, which lets us refer to it twice:

https://linux.die.net/man/3/gets
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/242.html
https://linux.die.net/man/3/fgets

cs 211 homework 1 8

char* actual_result = expand_charseq ("a-e");
assert (actual_result == "abcde");
free(actual_result);

However, this still won’t work, because when you use == to compare
pointers, it compares the addresses, not the pointed-to values. And the
address returned by expand_charseq() will never be the same as the
address of a string literal.

Instead, to compare strings, we need to use the strcmp(3)
function (from <string.h>), which compares them character by
character. You may expect, incorrectly, that strcmp() would return
true for equal strings and false for unequal strings, but actually it
does something more useful: strcmp(s1, s2) determines the lexico-
graphical ordering for s1 and s2. If s1 should come before s2 when Lexicographical order is a gen-

eralization of alphabetical order
to sequences of non-letters (or
more than just letters). strcmp()
compares the numeric values
of chars, which means that
'a' < 'b' and 'A' < 'B', but
also 'B' < 'a' and '$' < ','.

sorting then it returns a negative int; if s1 should come after s2 then
it returns a positive int. If they are equal, it returns 0. Thus we
should write:

char* actual_result = expand_charseq ("a-e");
assert (strcmp (actual_result , "abcde") == 0);
free(actual_result);

This almost works! In fact, it usually will work. But to be completely
correct, we need to deal with the possibility that expand_charseq()
fails to allocate memory and returns NULL. In that case, strcmp() will
deference NULL, which is undefined behavior. Thus, we need to ensure
that actual_result is not NULL before we try to use the string that it
points to:

char* actual_result = expand_charseq ("a-e");
assert (actual_result);
assert (strcmp (actual_result , "abcde") == 0);
free(actual_result);

Here are some more functions from <string.h> that you may find
useful:

char* strchr(const char* s, int c) Why does strchr() take an int
rather than a char? Many C
functions take a character as
type int for obscure historical
reasons.

Searches string s for the first occurrence of (char)c, returning a
pointer to the occurrence if found or NULL if not.

char* strcpy(char* dst, const char* src)
Copies string pointed to by src into string pointed to by dst
(which must have sufficient capacity, or you’ll get undefined
behavior).

size_t strlen(const char*)
Computes the length of a string (not including the '\0').

https://linux.die.net/man/3/strcmp
https://en.wikipedia.org/wiki/Lexicographical_order
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html

cs 211 homework 1 9

Better testing assertions

We have created a number of helpful functions for testing your code,
available in the lib211 library. They have names like CHECK() or
CHECK_INT() and function similarly to assertions: either the state-
ment is true or the test fails. Here’s what writing test assertions with
these macros looks like:

static void example_checks (void)
{ The difference between

CHECK(a == b); and
CHECK_INT(a, b); is that
the latter prints the values of a
and b when it fails, whereas the
former does not.

CHECK_INT (2 * 3, 6);
CHECK_SIZE (sizeof (double), 8);
CHECK_CHAR (toupper ('a'), 'A');
CHECK (islower ('a'));

}

The provided checks are summarized here:

Form . . . checks that . . .
CHECK_CHAR(x, y); x and y are equal chars
CHECK_INT(x, y); x and y are equal ints
CHECK_UINT(x, y); x and y are equal unsigned ints
CHECK_SIZE(x, y); x and y are equal size_ts
CHECK_DOUBLE(x, y); x and y are equal doubles
CHECK_STRING(x, y); x and y point to equal '\0'-terminated strings
CHECK_POINTER(x, y); x and y point to the same object
CHECK(x); x is true, non-zero, or non-null

Algorithm hints

In this section, we provide suggestions, such as algorithms, for writing
the necessary functions. These hints are given in what we expect will
be the best order of implementation. It’s a very good idea to test
each function as you write it, rather than testing them all at the end,
because you will find bugs sooner that way.

The charseq_length() function

The charseq_length() function scans its argument string (an un-
expanded character sequence) while counting how many characters
it will take when expanded. Thus, you need two variables: one to To keep track of a position in

a string, you can use a size_t
variable to hold the index.

count, and one to keep track of the position while scanning the string.
Start the count at 0 and the position at the beginning of the argu-
ment string (i.e., at 0). Then iterate through the sequence string and
evaluate the following conditions for each iteration:

cs 211 homework 1 10

• If the character at the current position is '\0', then you’ve reached
the end and should return the count.

• If the character at the next position is '-', and the character at
the position after that is not '\0', then you’ve found a range. If we This implies that a hyphen at

the beginning or end of the
string, or immediately following
the end of a character range, is
interpreted literally rather than
denoting a range.

call the character before the hyphen start and the character after
the hyphen end, then we can determine the length of the range by
comparing the two characters: If start > end then the range is
empty; otherwise the length of the range is end - start + 1. Add

Remember that chars are inte-
gers and so can be subtracted

this resulting length to the count, and then advance the current
position by 3 to get to the first character past the right side of the
range.

• If the character at the current position is '\\' (a single backslash), This case should be checked
after the range case, which im-
plies that the literal expansion
of unexpanded charseq “\-_” is
“\]^_”, not “-_”.

and the character at the next position is not '\0' then you have
found an escape sequence. Its expanded length is 1, so add that
much to the count, and advance the current position by 2 to get to
the first character after the escape sequence.

• Otherwise, the character at the current position will be copied as is,
so increment the count by 1 and advance the current position to the
next position in the string.

The expand_charseq() function

Like charseq_length(), the expand_charseq() function scans its
argument string (an unexpanded character sequence), but instead of
counting, it copies the characters into a fresh string, expanding ranges
and escape characters into their literal meanings.

The first thing it must do is allocate memory for its result. We This function is probably the
trickiest part of the whole
homework. One way to develop
your code would be to hold off
writing this function and move
forward, while temporarily con-
sidering all input charseqs to
be literal. It’s not hard to add
a call to expand_charseq() to
src/tr.c’s main() function once
you get it working.

have provided you code that calls charseq_length() to find out
how much memory is needed, allocates the memory, and checks that
the allocation succeeded. Then the algorithm works by scanning the
argument string while storing characters into the result string. To
do this, you will likely need two variables: one to keep track of your
position in the unexpanded character sequence being scanned (the
source); and one to keep track of your position in the result string
being filled in (the destination).

The control logic of the scanning-and-copying loop is the same as
in the charseq_length() function (including by iterating through the
source sequence), but the actions at each step differ:

• If the character at the current source position is '\0', then you’ve
reached the end. Don’t forget to store a '\0' at the destination
position (which should be the end of the result string) before return-
ing.

cs 211 homework 1 11

• If the character at the next source position is '-', and the char-
acter at the position after that is not '\0', then you’ve found a
range. If we call the character before the hyphen start and the
character after the hyphen end, then we can generate the range by
iteration, incrementing start until it passes end. That is, while
start <= end, we want to store start to the destination position,
advance the destination position, and increment start. Once we’ve To avoid undefined behavior

here, you should store start
and end as ints, not chars.
To understand why, consider
what would happen if end were
CHAR_MAX.

fully expanded the range, we advance the source position past it (by
adding 3).

• If the character at the current source position is '\\', and the char-
acter at the next source position is not '\0' then you have found
an escape sequence. Its expansion is given by interpret_escape(c)
(provided in src/translate.c), where c is the character following
the backlash. Store the resulting expansion to the destination po-
sition, advance the destination position, and advance the source
position past the escape sequence (by adding 2).

• Otherwise, the character at the current position stands for itself, so
store it at the current destination position and then advance both
the source and destination positions by 1.

The translate_char() function

The translate_char() function takes a character to translate (c) and
two literal charseqs (from and to). The idea is to scan charseq from
searching for c. If we find c at some index i then return to[i]. If we
get to the end of from without finding c then return c unchanged.

The translate() function

The translate() function takes a string to translate in place (s) and
two literal charseqs (from and to). The idea is to iterate through each
character in s, replacing each character with its translation according
to translate_char().

Deliverables & evaluation

For this homework you must:

1. Implement the specification for the translate library from the
previous section in src/translate.c.

2. Implement the specification for the tr program from the previous
section in src/tr.c.

3. Add more test cases to test/test_translate.c in order to test the four
functions that you defined in src/translate.c.

cs 211 homework 1 12

The file test/test_translate.c already contains two tests cases for each
of the four functions, and helper functions to facilitate testing for two
of them. Because the functions you are implementing are complex
and have many corner cases, you need to add many more tests for
each. Try to cover all the possibilities, because you will be required

to fill out a self-evaluation after you submit this assignment,
where we will spot-check your test coverage by asking for just a few
particular test cases. You can’t anticipate which we’ll ask about, so
you should try to cover everything.

Take a look at the existing tests to get an idea of what tests can
look like. You can also write tests whose inputs will cause the various
branches of a function (e.g., if/else statements, loops) to execute so
that your tests cover as many possibilities of code behavior as possible.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness (tested via the self-evaluation), and

• adherence to the CS 211 Style Manual (see manual here).

Submission

Homework submission and grading will use Gradescope. You must
include any files that you create or change. For this homework, that
will include src/translate.c, src/tr.c, and test/test_translate.c. (You
must not modify Makefile or src/translate.h.)

Per the syllabus, if you engaged in arms-length collaboration on this
assignment, you must cite your sources. You may write citations either
in comments on the relevant code, or in a file named README.txt that
you submit along with your code. See the syllabus for definitions and
other details.

Submit using the command-line tool submit211. You can run the
command with the --help flag to see more details. The tool will ask
you to log in with your Gradescope credentials, so make sure you’ve
created an account!

To submit the necessary files for this homework, you will run
something that looks like:

% submit211 submit --hw hw1 src/translate.c src/tr.c test/test_translate.c

Remember that those are relative paths to the files you want to
submit. So make sure to change them to make sense for whatever

https://nu-cs211.github.io/cs211-files/cstyle.html
https://nu-cs211.github.io/cs211-files/syllabus.pdf
https://nu-cs211.github.io/cs211-files/syllabus.pdf

cs 211 homework 1 13

directory you are running the command from. You can also add any
additional files you want to upload, like README.txt, to the end of
the command.

For this assignment, you will have unlimited submissions and all
tests are visible to you. In future assignments, you may have limited
submissions and not all tests will be visible to you to ensure your code
works on unseen cases.

Gradescope Results

Some characters in the autograder tests are non-printable characters.
In those cases, we instead represented the character as a hexadecimal
sequence. These can be found in the “Hex” column of the ASCII table.
For example: \x09 represents the ASCII value of 0x09, which is the
tab character. \x0A represents the ASCII value of 0x0A, which is the
new line character. \x7F represents the ASCII values of 0x7F, which is
the delete character. In each case, the hexadecimal sequence represents
a single, non-printable character, and a warning is added the line of
output, stating “(warning: translated to hexadecimal sequence)”.

	Orientation
	Specifications
	Reference
	Algorithm hints
	Deliverables & evaluation
	Submission

