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Administrivia

• Projects are due next week Tuesday!
• I’ll release an “autograder” on Gradescope in the next few days

• It will check that your submitted code compiles properly

• We’ll have lecture next week Tuesday as well
• Class wrapup lecture

• Overview of what we learned and what’s next
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Today’s Goals

• Understand concepts behind Version Control Systems
• Why are they important?

• How do we use them?

• Describe one specific Version Control System: Git
• How does Git work conceptually?

• How do we use Git?

• Where does Github fit into this?
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Guides for learning Git

• Understanding Git commits and branches
• https://learngitbranching.js.org/

• Remember git commands
• https://education.github.com/git-cheat-sheet-education.pdf

• Learning more about Git
• https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud

• https://git-scm.com/book/en/v2
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Simplest ideas of version control

• Undo/Redo in programs
• Keeps track of prior actions and lets you go back to them

• Manual file renaming
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Building a better system: backup naming

• Start with a system capable of doing the file rename for you
• When you choose to “commit” the file, the system makes a backup copy

• Backup copies are kept with metadata

• Examples:

• What time was this version saved

• Who made the changes to the file

• Message from the user about what changed

8



Need some way to “revert” to an old version

• Oh no! This most recent version broke something

• Change back to a previous version of the file
• Or maybe several versions ago

• Might also ask to see what changed since previous version
• One of those lines must be what broke it

• How we do this depends on the file
• Code: line-by-line comparison
• Word documents: more complicated…
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How do we survive tragic computer accidents?

• Need backups on another computer
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Improve reliability with cloud backups

• Sync files up to the cloud
• Includes all versions of all files

• Probably does some stuff to optimize space

• Only keep the changes, not the whole file

• Download files from the cloud
• Provides the most recent file (“Head”)

• Enables sharing files across multiple computers!

• Across one or multiple people
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Version control on a grocery list
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Cloud Server

• Eggs
• Apples
• Spindrift Soda

Version 2

• Eggs
• Apples

Version 1

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3



Working on local copies of files
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Cloud Server

• Eggs
• Apples
• Spindrift Soda

Version 2

• Eggs
• Apples

Version 1

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3

Branden’s Computer

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3

Vincent’s Computer

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3



Making a new version of a file
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Cloud Server

• Eggs
• Apples
• Spindrift Soda

Version 2

• Eggs
• Apples

Version 1

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3

Branden’s Computer

• Eggs
• Oranges
• Bread
• Spindrift Soda

Version 4

Vincent’s Computer

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3



Conflicts when editing files!
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Cloud Server

• Eggs
• Apples
• Spindrift Soda

Version 2

• Eggs
• Apples

Version 1

• Eggs
• Apples
• Bread
• Spindrift Soda

Version 3

Branden’s Computer

• Eggs
• Oranges
• Bread
• Spindrift Soda

Version 4

Vincent’s Computer

• Eggs
• Apples
• LaCroix

Version 4



Problem: simultaneous edits

• Multiple editors can lead to file conflicts!

• Whoever commits first wins, loser has to handle the problem

• How does the system handle “merging” the files?
• Sometimes just ask the human to figure it out

• Sometimes realize that changes are to different parts of the file and just 
apply both
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Fundamental version control operations

• Commit file(s)
• Save a new version of them

• Revert file(s)
• Return to a previous version of them

• Compare file(s) across version

• Push file(s) to a server

• Pull file(s) from a server

• Merge changes to a file and handle conflicts
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Version Control Systems are essential

• Not just for software, any files!
• Code

• Documents

• Data files

• Lecture slides

• Often designed with source code in mind
• Work particularly well on human-readable text files

• Comparisons can happen line-by-line (diff)

• Text is easily compressed for transfer and storage
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Version control terminology

• Repository (a.k.a. repo)
• Holds all of the versions of all of the files for a project

• You commit files to a repo

• And push to it, if it’s on a different computer

• Local versions of files are known as the “Working Copy”
• You can edit these files and then commit them to the repo

• The most recent version of a file is known as the “Head”
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Older systems: Centralized version control

• Local computers only ever have a working copy
• Must request version information from repo on a server

21



Centralized version control systems

• Revision Control System (RCS), 1982
• Basic idea of versioning for single files

• Concurrent Versions System (CVS), 1990
• Expands version to an entire project

• Subversion (SVN), 2000
• A “Commit” includes changes across multiple files

• Often multiple source/header files might be changed together!

• Ensures atomic changes to the repo

22

2nd

Generation

1st

Generation



Modern systems: Distributed version control

• Local computers have their own copy of the repository
• Along with the working copy that users directly edit
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Distributed version control systems

• Bazaar (bzr), 2005
• No longer developed

• Mercurial (hg), 2005
• Still developed, not widely used

• Git (git), 2005
• Most popular version control system

• All provide methods for enabling distributed version control
• Changes can be made and tracked locally

• Sets of changes can be sent to others as needed

• Often to a central shared server
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Sidebar: what happened in 2005?

• Bazaar (bzr), 2005

• Mercurial (hg), 2005

• Git (git), 2005

• Bitkeeper, a proprietary distributed version control system decided 
to end free access for open-source projects
• Including Linux!

• Led to simultaneous development of new systems

• And the death of Bitkeeper
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Break + xkcd
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Commits are the units of change in Git

• A Commit contains
• File modifications

• Timestamps

• Author of commit

• Commit message

• Parent of Commit

• Git commits each have a name
• Example: 42e2e5af9d49de268cd1fda3587788da4ace418a

• 160-bit SHA1 hash of the commit data (guaranteed unique)

• Usually referred to by first 7 digits (268 million choices, likely unique)
• Example: 42e2e5a
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Every commit has a parent

• Simplest structure of commits can form a sort of linked-list
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Head



The commit history can branch

• Multiple commits can have the same parent

• Branching intentionally forms a new path for commits
• Starts at a parent from the main “branch”

• Continues on separately from there

• Often used for development of new features

• Original code path is known as Main
• Occasionally referred to as “master” in legacy projects
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Some parents have multiple children

• Simplest structure of commits can form a sort of linked-list

• With branches, commits can form a tree structure
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Branches may later merge back into Main

• Combining two branches requires a “merge” operation
• Might include conflicts if both branches modify a file!

• Git is pretty good at automatically resolving conflicts

• Unless the two branches both modify the same line of code

• Merge commit gets added to list the multiple parent commits

• There is an alternative: a “rebase” operation
• Change branch’s parent to the current head of Main

• Probably works as long as nothing major has changed
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Git’s true nature is a graph structure

• Simplest structure of commits can form a sort of linked-list

• With branches, commits can form a tree structure

• Reality of Git: Directed, acyclical graph
• Each commit has one or more parents

• There are no cycles (parents that are children of themselves)
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Tags let you refer to specific commits from repo’s history

• Git history can start to get rather complicated
• What if you want to point to something other than the Head of Main?

• Tags are alternative names given to specified commits
• Can be reverted to

• Can be compared against

• Usually for major versions
of your project
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Example commit networks

• https://github.com/tov/ge211/network

• https://github.com/tock/tock/network
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Git is a distributed version control system

• There will be one (or more!) server repositories

• Each user will also have their own local repository clone
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Git splits the local computer into several parts 

• Local computer repo
• A copy of the repo from the cloud

• Might have various local commits/branches that aren’t on the cloud
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Git splits the local computer into several parts 

• Staging Area
• Where files are held that are ready to be committed

• User selects files that are ready to commit and first adds them to staging 
area
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Git splits the local computer into several parts 

• Working Directory
• Files actually in use on the local computer

• Initially matches a commit in the repo
• Might include local edits that haven’t been staged
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Git commands modify files in different areas
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Git commands modify files in different areas
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Git commands modify files in different areas
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Git commands modify files in different areas

44

Cloud 
Server 
Repo

Local 
Computer 

Repo

Staging 
Area

Working 
Directory

git pull

git push



Keeping your file revisions safe

• Many of these commands will fail rather than overwrite changes in 
your working directory or staging area

• Exception: git restore will overwrite whatever is in your 
Working Directory with the version from the Staging Area
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Other important commands

• git clone

• Makes a local repo that’s a copy of some remote server repo

• git status

• Lists all modified Working Directory files

• Lists all files currently in the Staging Area

• git diff

• Lists all modifications from the Staging Area for all files

• git diff FILE lists differences for a single file
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Other important commands

• git branch

• Creates a new branch with a parent of the current commit

• git checkout

• Changes which commit or branch is the current one

• git log

• Lists commit history previous to the current commit

• git log -N lists details from the last N commits
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Git demo

• https://github.com/brghena/git-example

• Clone the repo
• Check the log of commits
• Diff what changed in those commits

• Make some modifications
• Demonstrate adding and restoring

• Commit files

• Push changes
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Break + Guides for learning Git

• Understanding Git commits and branches
• https://learngitbranching.js.org/

• Remember git commands
• https://education.github.com/git-cheat-sheet-education.pdf

• Learning more about Git
• https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud

• https://git-scm.com/book/en/v2
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What is Github?

• A website that hosts remote repos
• Can be the one shared cloud repo that everyone pulls from and pushes to
• Could just be a copy of that repo for public access

• There are many websites that provide this
• Github
• Bitbucket
• Gitlab

• Often provide additional features as well
• Viewing history of the repo in a GUI
• Managing community input about a project
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Public and Private Repos

• A repo hosted by Github can be Public or Private
• Public repos are accessible by anyone

• Private repos are accessible by only specified users

• Generally, want to make repos Public if possible
• That’s how you share neat work with others and build off of their work

• Specifically, make sure any class files are in Private repos
• Otherwise, you could be accused of academic dishonesty
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Pull Requests

• Pull Requests are a feature of hosting websites
• Literally: a request for the remote repo to pull from your copy

• Repo maintainers can review pull requests, comment on them, 
make changes, and eventually pull them to add the commits to 
their project

• These are how you contribute to open source projects
1. Copy their repo

2. Make changes to it

3. Pull request so they can get your changes
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Example Pull 
Request

• Adds a commit 
and explains 
why it is useful

• Maintainer 
adds their own 
commit and 
then merges
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Github also hosts releases

• A release is
• A tagged commit

• Plus the built files that you want 
to distribute

• Users can clone the repo and 
checkout the code for that 
particular release

• Or, they can just download the 
pre-compiled files
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Pull often

• Especially when working on group projects
• Don’t want to be working with old versions of the files

• Might end up fixing the same bug someone else already did

• Helps to avoid conflicts
• If you’re working on the most up-to-date version of a file, you’ll only 

conflict if someone else modifies it while you do
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Commits should be a sensible unit

• Commits should include every file related to a change
• And should NOT included files with unrelated changes

• The goal is that any commit is valid and compiles
• Otherwise collaborators will get upset when they pull…

• Advanced users can re-write commits to combine or split them 
allowing them to fix this later
• Git has all kinds of crazy features for rewriting local history before sending 

up to the remote repo
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Don’t commit generated files

• Source code and build system should be committed

• Built artifacts should not be committed
• .o files

• Executables

• Any user can regenerate them whenever they are needed

• Non-text files don’t play well with version control

• Can only detect if anything changed, not what

• Often hard to compress
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Use .gitignore files

• Enable you to list which files should NEVER be committed
• Example from one of my repos:

• build/

• *.pdf

• *.tgz

• .DS_Store

• *~

• .idea/

• Definitely use these to keep accidents from happening
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Don’t force anything

• If the version control system doesn’t let you do something, there’s 
usually a good reason

• Example: you cannot push commits that don’t align with the 
history of the branch in the remote repo
• Because that would mess things up for anyone else using it

• If you know that no one else is using it, then you can force push to 
overwrite the old commits with the new ones
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