Lecture 17
RAII & Memory Management

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Fall 2021

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)

Northwestern



Administrivia

* Project specifications due today
» Each group gets assigned a shepherd

« Shepherd will provide feedback on your specification items this week

 In the meantime: get started on code now!
« Get little bits of functionality working this week

« Make sure you’ve made significant progress before Thanksgiving break



Lecture plan from here

* Thursday 11/18
« More GE211 examples: finish up before + animation

» Tuesday 11/23
* Bonus lecture: Version control and Git

» Tuesday 11/30
« C and C++ wrapup

* Thursday 12/2
» Final project demos for anyone interested



Today’s Goals

 Consider the RAII programming idiom:
(Resource Acquisition Is Initialization)

« Understand how it is making development easier in C++

* Discuss C++ memory management
» What exists and how it works

« How to use Smart Pointers to make it easy too



Outline

« C++ Strings

* RAII

« C++ Memory Management

* Smart Pointers




Strings in C++

 Everything you wanted from C strings and didn’t get

#include <string>

std::string sl1 = “Test”;
sl += Y String”;
s1[0] = 'B’;

std::cout << sl << “\n”; // prints “Best String”



C++ string operations

 [terators

* Including reverse
and constant

* Sizing
* Characters and
memory

e Access to
characters

Iterators:

begin

end
rbegin
rend
cbegin &
cend &
crbegin =

crend &

Capacity:

size
length
max_size
resize
capacity
Feserve
clear

empty
shrink_to_fit

Element access:

operator[]
at
back =

front &t

https://www.cplusplus.com/reference/string/string/

Return iterator to beginning (public member function )

Return iterator to end (public member function )

Return reverse iterator to reverse beginning (public member function )
Return reverse iterator to reverse end (public member function )
Return const_iterator to beginning {public member function )

Return const_iterator to end {public member function )

Return const_reverse_iterator to reverse beginning (public member function )
Return const_reverse_iterator to reverse end {public member function )

Return length of string (public member function )

Return length of string (public member function )

Return maximum size of string (public member function )
Resize string {public member function )

Return size of allocated storage (public member function )
Request a change in capacity (public member function )
Clear string (public member function )

Test if string is empty {(public member function )

Shrink to fit (public member function )

Get character of string (public member function )
Get character in string (public member function )
Access last character (public member function )

Access first character (public member function )


https://www.cplusplus.com/reference/string/string/

C++ string operations

* Modification of
strings
* Add or remove
from them

» Operations
 Get C string from
std::string
* Find
 Substring
« Compare

Modifiers:
operator+=
append
push_back
assign
insert
erase
replace
swap

pop_back &

String operations:
c_str
data
get_allocator
copy
find
rfind
find_first_of
find_last_of
find_first_not_of
find_last_not_of
substr

compare

https://www.cplusplus.com/reference/string/string/

Append to string (public member function )

Append to string (public member function )

Append character to string (public member function )
Assign content to string (public member function )
Insert into string {public member function )

Erase characters from string {public member function )
Replace portion of string {public member function )
Swap string values (public member function )

Delete last character {public member function )

Get C string equivalent {public member function )

Get string data (public member function )

Get allocator {public member function )

Copy sequence of characters from string {public member function )
Find content in string (public member function )

Find last occurrence of content in string {public member function )
Find character in string (public member function )

Find character in string from the end (public member function )
Find absence of character in string (public member function )

Find non-matching character in string from the end {public member function )
Generate substring (public member function )

Compare strings {public member function )


https://www.cplusplus.com/reference/string/string/

Strings with different character sizes

« All are actually implementations of the generic std: :basic string

« 16-bit “wide"” characters
» Strings of 8-bit, 16-bit, or 32-bit characters

Several typedefs for common character types are provided:

Defined in header <string=

Type
std:
std:
std:
std:

std:

:string
:wstring
ru8string (C++20)
:ulbstring (C++11)

:u32string (C++11)

Definition
std:
std:
std:
std:
std:

:basic_string<char>

:basic_string<wchar_t>
:basic_string<char8_ t>
:basic_string<charl6_t>

:basic_string<char32_ t>

« UTF-8 mostly works with std::string by default
« Some helper functions won't work properly though...
« Needs additional libraries for many functions



Outline

e C++ Strings

* RAIL

« C++ Memory Management

* Smart Pointers




RAII-structured libraries enable simple dynamic memory

e std::vector, std::string, and other library containers must use
dynamic memory internally
« But we never have to call vector.destroy () or free (string)

* What makes memory management so automatic in C++?

* Programming paradigm: RAII
« Resource Acquisition Is Initialization
» Basic idea:
« Wrap resources in an object
* Allocate when you initialize and deallocate when destructed

11



What is a “resource”?

 Abstractly:
« Something you need to get your computation done,
« That you can run out of,
* S0 you need to keep track of what you're using and release what you aren't

 Concretely:
« Memory!
 File handles
* Network sockets
« Database sessions
 Acquired /ocks (concurrent programming)

12



The problem: leaking resources

#include <cstdio >

void handle file(std:: string consté& name)
FILE *f = fopen(name.c str(), "r");

// various code here using the file

} Didn't close the file!
There’s a resource leak!!

{

13



The problem: leaking resources
#include <cstdio >

void handle file(std:: string consté& name)
FILE *f = fopen(name.c str(), "xr");

// various code here using the file
if (some error occurred) { return; |}

// various more code using the file

fclose (f); What's wrong here?

{

14



The problem: leaking resources
#include <cstdio >

void handle file(std:: string consté& name) {
FILE *f = fopen(name.c str(), "xr");

// various code here using the file
if (some error occurred) { return; |}

// various more code using the file

fclose(f); More common cause: early returns
Always beware when code returns early

15



Exceptions make early returns even worse

void helper () {
if (some problem detected) {throw std::runtime error (“Oops”);}

// various code here using the file

J

void handle file(std:: string const& name) {
FILE *f = fopen(name.c str (), "r");

// various code here using the file
helper(); // might throw an exception never “return”
// various more code using the file

fclose ()7 Can't clean up here without try/catch

everywhere

16



C++ solution: Resource Acquisition Is Initialization

* Never open/close or free/allocate manually

» Instead make a class
 Allocate in the constructor
« Programmer calls this when initializing the object variable

 Deallocate in the destructor
» Automatically occurs. Programmer doesn’t have to do anything!

17



Destructors
« Same concept as constructors: used to clean up an object

« Automatically called when the object goes out of scope
« Note: you never call the destructor yourself!

« Handles any cleanup, including freeing necessary resources

std::1fstream::~1fstream() {
// close the file here

18



Destructors allow resources to automatically be cleaned up

#include <fstream>

void handle file(std:: string consté& name) |

std:: 1fstream f (name , "r");
// do stuff with the file

} // f.~ifstream() happens automatically here

19



Destructors allow resources to automatically be cleaned up

#include <fstream>

void handle file(std:: string consté& name) |

std:: 1fstream f (name , "r");

// do stuff with the file.
// Possibly return or throw exceptions!

} // f.~ifstream() happens here regardless

The destructor is guaranteed to run.
Even if there is an exception!

20



Break + What might the std::string implementation look like?

class Owned string ({
public:
Owned string (); // empty string
Owned string(const char* cstr); // allocates memory

~Owned string (); // frees memory
private:
std:: size t size ; // logical size of string

std:: size t capacity ; // allocated size of "data
char *data ; // ptr to char array (or null)

b s

21



Outline

e C++ Strings

» RAII

 C++ Memory Management

* Smart Pointers




C++ memory management

 In C, dynamic memory was very important for making any realistic
program that responds to user input

« In C++, because of RAII concepts and the Standard Template
Library, we haven’t had to manually use dynamic memory at all!
 But it is still there, happening

 And we could harness it ourselves if we need to

23



Reminder: C memory allocation
vold* malloc(slze t size)
« Requests size bytes of memory from the heap

« Returns a pointer to this new object
« Not associated with any variable (sort of like string literals)
« It has no value by default

« The object persists until it is manually deallocated
 Deallocated through a call to free ()

24



C++ memory allocation

* Allocate with the new keyword and a type

* No need to specify number of bytes anymore
« Works for primitive types and for objects

« Examples:
* 1nt* value ptr = new 1int;
* Posn<int>* p = new Posn<int>;

 Deallocate with the delete keyword and the pointer
« Example: delete p;

« Warning: never mix-and-match malloc()/free() with new/delete
« UNDEFINED BEHAVIOR (free() doesn’t call destructor!!)

25



Dynamic arrays in C++

 For new, add the size of the array after the type
int* data = new 1nt[10];

* For delete, must instead use delete[]
« Important: Must remember this or UNDEFINED BEHAVIOR &)

« Reason:
« delete calls the destructor and then frees the memory

 delete ] iteratively calls destructors and then frees the memory

« delete[] couldhave worked for everything, but it would be less efficient

26



Dynamic arrays in C++

« delete calls the destructor and then frees .
 delete ] iteratively calls destructors and then frees the memory

« delete[] couldhave worked for everything, but it would be less efficient

27



C dynamic memory vs C++ dynamic memory

malloc () new
What is it? a function an operator or keyword
How often used (in C)? often never
sometimes
How often used (in C++)? rarely (often, but by a library without the
dev knowing)
Allocated memory for anything arrays, structs, objects, primitives
avoid* appropriate pointer type

Returns

(should be cast)

(doesn’t need a cast)

When out of memory

returns NULL

throws an exception

Deallocating

free ()

deleteordelete ]

28




Null pointers in C

« While NULL still works (legacy from C), there’s a better way

 nullptr is the preferred literal
« Same meaning as NULL, but its type is explicitly T* for anytype T
» Still converts to 0 when needed

« C++ example:
vold print (int* value ptr);
vold print (int value);

print (NULL); // calls print for type int @E
print (nullptr); // calls print for type int* §3

29



Outline

e C++ Strings

» RAII

« C++ Memory Management

« Smart Pointers




Using dynamic memory in a class

 Constructor will call new to allocate memory for some data
member

 Destructor will call delete to free the memory when the object
goes out of scope

» Observation:

« Memory is manually created and initialized to values
 But deletion is almost always just calling delete

* We could use RAII to do this for us

31



C++ Smart Pointers

» A smart pointer is an object that stores a pointer to a heap-
allocated object

« Behaves just like a normal C++ pointer by overloading *, ->, [], etc.

« Smart pointers do the memory management for you

« Automatically deletes the pointed-to object if the smart pointer goes out of
scope

« I.e,, if the memory would leak, it is instead freed

« Smart pointers are the modern C++ way to do dynamic memory

32



Unique pointer (unique_ptr)

 Takes ownership of a pointer
* Allows access to the value pointed to

» Invokes delete automatically
« Either when the unique ptr goes out of scope via the destructor
« Or when the owned pointer is overwritten

#finclude <memory>

std: :unique ptr<char> letter ptr(new char(‘a’));

char letter = *letter ptr; // sets letter to ‘a’

33



Smart pointers are automatically freed

#include <memory>

void handle memory () {

std::unique ptr<double> d(new double (3.7));

// do stuff with the pointer
// Possibly return or throw exceptions!

} // memory 1s freed here regardless

The destructor is guaranteed to run.
Even if there is an exception!

34



Unique_ptr ownership rules

« Matches the ownership rules we discussed previously
« There is only one single owner of a unique_ptr
« Which in turn owns the memory

« Cannot be copied

std::unique ptr<int> x(new int(5)); // OK

std::unique ptr<int> y(x); // Fails, no copy constructor
std::unique ptr<int> z; // OK, holds nullptr

z = x; // Fails, no assignment operator

« Ownership can be transferred if needed

* release() gives up ownership of the pointer
* reset() deletes the current pointer (if any) and stores a new one

35



Unique_ptr and arrays

 Unique_ptr can store arrays as well
« Will call delete[] on destruction

int main ()
std::unique ptr<int[]> x(new 1nt[5]);

x[0] =
x[1] =

return

1;
2;

0;

{

// memory will be freed automatically

36



Shared pointers (shared_ptr)

» Similar to a unique ptr, except that there can be multiple
owners
« Different ownership policy

 Tracks the number of owners to decide when to free
« Copy/assign operators do work and increment nhumber of owners
« Destructor decrements number of owners
* Frees memory if number of owners hits zero

« Technique is known as “reference counting”
- Higher overhead than a unique ptr has: slower to use

37



Main takeaways

» Smart pointers are how memory is managed in modern C++
» Still have to use new operator, but never need to delete

* unique ptr automatically manages ownership rules for us

« Ensures that there is only one owner at a time
« Ensure that memory is properly freed if there would be no owner

38



Outline

e C++ Strings

* RAII

« C++ Memory Management

* Smart Pointers




