
Lecture 17
RAII & Memory Management

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)



Administrivia

• Project specifications due today
• Each group gets assigned a shepherd

• Shepherd will provide feedback on your specification items this week

• In the meantime: get started on code now!
• Get little bits of functionality working this week

• Make sure you’ve made significant progress before Thanksgiving break

2



Lecture plan from here

• Thursday 11/18
• More GE211 examples: finish up before + animation

• Tuesday 11/23
• Bonus lecture: Version control and Git

• Tuesday 11/30
• C and C++ wrapup

• Thursday 12/2
• Final project demos for anyone interested

3



Today’s Goals

• Consider the RAII programming idiom:
(Resource Acquisition Is Initialization)

• Understand how it is making development easier in C++

• Discuss C++ memory management
• What exists and how it works

• How to use Smart Pointers to make it easy too

4



5

• C++ Strings

• RAII

• C++ Memory Management

• Smart Pointers

Outline



Strings in C++

• Everything you wanted from C strings and didn’t get

#include <string>

std::string s1 = “Test”;

s1 += “ String”;

s1[0] = ‘B’;

std::cout << s1 << “\n”; // prints “Best String”

6



C++ string operations

• Iterators
• Including reverse 

and constant

• Sizing
• Characters and 

memory

• Access to 
characters

7https://www.cplusplus.com/reference/string/string/

https://www.cplusplus.com/reference/string/string/


C++ string operations

• Modification of 
strings
• Add or remove

from them

• Operations
• Get C string from 

std::string

• Find

• Substring

• Compare

8https://www.cplusplus.com/reference/string/string/

https://www.cplusplus.com/reference/string/string/


Strings with different character sizes

• All are actually implementations of the generic std::basic_string
• 16-bit “wide” characters

• Strings of 8-bit, 16-bit, or 32-bit characters

• UTF-8 mostly works with std::string by default
• Some helper functions won’t work properly though…

• Needs additional libraries for many functions
9



10

• C++ Strings

• RAII

• C++ Memory Management

• Smart Pointers

Outline



RAII-structured libraries enable simple dynamic memory

• std::vector, std::string, and other library containers must use 
dynamic memory internally
• But we never have to call vector.destroy() or free(string)

• What makes memory management so automatic in C++?

• Programming paradigm: RAII
• Resource Acquisition Is Initialization

• Basic idea:

• Wrap resources in an object

• Allocate when you initialize and deallocate when destructed

11



What is a “resource”?

• Abstractly:
• Something you need to get your computation done,

• That you can run out of,

• So you need to keep track of what you’re using and release what you aren’t

• Concretely:
• Memory!

• File handles

• Network sockets

• Database sessions

• Acquired locks (concurrent programming)

12



The problem: leaking resources

#include <cstdio >

void handle_file(std:: string const& name) {

FILE *f = fopen(name.c_str(), "r");

// various code here using the file

}

13

Didn’t close the file!
There’s a resource leak!!



The problem: leaking resources

#include <cstdio >

void handle_file(std:: string const& name) {

FILE *f = fopen(name.c_str(), "r");

// various code here using the file

if (some error occurred) { return; }

// various more code using the file

fclose(f);

}

14

What’s wrong here?



The problem: leaking resources

#include <cstdio >

void handle_file(std:: string const& name) {

FILE *f = fopen(name.c_str(), "r");

// various code here using the file

if (some error occurred) { return; }

// various more code using the file

fclose(f);

}

15

More common cause: early returns
Always beware when code returns early



Exceptions make early returns even worse

void helper() {
if (some problem detected){throw std::runtime_error(“Oops”);}

// various code here using the file
}

void handle_file(std:: string const& name) {
FILE *f = fopen(name.c_str(), "r");

// various code here using the file

helper(); // might throw an exception never “return”

// various more code using the file

fclose(f);
}

16

Can’t clean up here without try/catch 
everywhere



C++ solution: Resource Acquisition Is Initialization

• Never open/close or free/allocate manually

• Instead make a class
• Allocate in the constructor

• Programmer calls this when initializing the object variable

• Deallocate in the destructor

• Automatically occurs. Programmer doesn’t have to do anything!

17



Destructors

• Same concept as constructors: used to clean up an object
• Automatically called when the object goes out of scope

• Note: you never call the destructor yourself!

• Handles any cleanup, including freeing necessary resources

std::ifstream::~ifstream() {

// close the file here

}

18



Destructors allow resources to automatically be cleaned up

#include <fstream>

void handle_file(std:: string const& name) {

std:: ifstream f(name , "r");

// do stuff with the file

} // f.~ifstream() happens automatically here

19



Destructors allow resources to automatically be cleaned up

#include <fstream>

void handle_file(std:: string const& name) {

std:: ifstream f(name , "r");

// do stuff with the file.

// Possibly return or throw exceptions!

} // f.~ifstream() happens here regardless

20

The destructor is guaranteed to run.
Even if there is an exception!



Break + What might the std::string implementation look like?

class Owned_string {

public:

Owned_string (); // empty string

Owned_string(const char* cstr); // allocates memory

~Owned_string (); // frees memory

private:

std:: size_t size_; // logical size of string

std:: size_t capacity_; // allocated size of `data_`

char *data_; // ptr to char array (or null)

};

21



22

• C++ Strings

• RAII

• C++ Memory Management

• Smart Pointers

Outline



C++ memory management

• In C, dynamic memory was very important for making any realistic 
program that responds to user input

• In C++, because of RAII concepts and the Standard Template 
Library, we haven’t had to manually use dynamic memory at all!
• But it is still there, happening

• And we could harness it ourselves if we need to

23



Reminder: C memory allocation

void* malloc(size_t size)

• Requests size bytes of memory from the heap

• Returns a pointer to this new object

• Not associated with any variable (sort of like string literals)

• It has no value by default

• The object persists until it is manually deallocated

• Deallocated through a call to free()

24



C++ memory allocation

• Allocate with the new keyword and a type
• No need to specify number of bytes anymore
• Works for primitive types and for objects

• Examples:
• int* value_ptr = new int;

• Posn<int>* p = new Posn<int>;

• Deallocate with the delete keyword and the pointer
• Example: delete p;

• Warning: never mix-and-match malloc()/free() with new/delete
• UNDEFINED BEHAVIOR (free() doesn’t call destructor!!)

25



Dynamic arrays in C++

• For new, add the size of the array after the type
int* data = new int[10];

• For delete, must instead use delete[]
• Important: Must remember this or UNDEFINED BEHAVIOR 😭

• Reason:

• delete calls the destructor and then frees the memory

• delete[] iteratively calls destructors and then frees the memory

• delete[] could have worked for everything, but it would be less efficient

26



Dynamic arrays in C++

• For new, add the size of the array after the type
int* data = new int[10];

• For delete, must instead use delete[]
• Important: Must remember this or UNDEFINED BEHAVIOR 😭

• Reason:

• delete calls the destructor and then frees the memory

• delete[] iteratively calls destructors and then frees the memory

• delete[] could have worked for everything, but it would be less efficient

27



C dynamic memory vs C++ dynamic memory

28

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely
sometimes

(often, but by a library without the 
dev knowing)

Allocated memory for anything arrays, structs, objects, primitives

Returns
a void*

(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]



Null pointers in C

• While NULL still works (legacy from C), there’s a better way

• nullptr is the preferred literal
• Same meaning as NULL, but its type is explicitly T* for any type T
• Still converts to 0 when needed

• C++ example:
void print(int* value_ptr);

void print(int value);

print(NULL); // calls print for type int 😱
print(nullptr); // calls print for type int* 😎

29



30

• C++ Strings

• RAII

• C++ Memory Management

• Smart Pointers

Outline



Using dynamic memory in a class

• Constructor will call new to allocate memory for some data 
member

• Destructor will call delete to free the memory when the object 
goes out of scope

• Observation:
• Memory is manually created and initialized to values

• But deletion is almost always just calling delete

• We could use RAII to do this for us

31



C++ Smart Pointers

• A smart pointer is an object that stores a pointer to a heap-
allocated object
• Behaves just like a normal C++ pointer by overloading *, ->, [], etc.

• Smart pointers do the memory management for you
• Automatically deletes the pointed-to object if the smart pointer goes out of 

scope

• I.e., if the memory would leak, it is instead freed

• Smart pointers are the modern C++ way to do dynamic memory

32



Unique pointer (unique_ptr)

• Takes ownership of a pointer

• Allows access to the value pointed to

• Invokes delete automatically
• Either when the unique_ptr goes out of scope via the destructor

• Or when the owned pointer is overwritten

#include <memory>

std::unique_ptr<char> letter_ptr(new char(‘a’));

char letter = *letter_ptr; // sets letter to ‘a’

33



Smart pointers are automatically freed

#include <memory>

void handle_memory() {

std::unique_ptr<double> d(new double(3.7));

// do stuff with the pointer

// Possibly return or throw exceptions!

} // memory is freed here regardless

34

The destructor is guaranteed to run.
Even if there is an exception!



Unique_ptr ownership rules

• Matches the ownership rules we discussed previously
• There is only one single owner of a unique_ptr

• Which in turn owns the memory

• Cannot be copied
std::unique_ptr<int> x(new int(5)); // OK

std::unique_ptr<int> y(x); // Fails, no copy constructor

std::unique_ptr<int> z; // OK, holds nullptr

z = x; // Fails, no assignment operator

• Ownership can be transferred if needed
• release() gives up ownership of the pointer
• reset() deletes the current pointer (if any) and stores a new one

35



Unique_ptr and arrays

• unique_ptr can store arrays as well
• Will call delete[] on destruction

int main() {

std::unique_ptr<int[]> x(new int[5]);

x[0] = 1;

x[1] = 2;

return 0; // memory will be freed automatically

}

36



Shared pointers (shared_ptr)

• Similar to a unique_ptr, except that there can be multiple 
owners
• Different ownership policy

• Tracks the number of owners to decide when to free
• Copy/assign operators do work and increment number of owners

• Destructor decrements number of owners

• Frees memory if number of owners hits zero

• Technique is known as “reference counting”
• Higher overhead than a unique_ptr has: slower to use

37



Main takeaways

• Smart pointers are how memory is managed in modern C++
• Still have to use new operator, but never need to delete

• unique_ptr automatically manages ownership rules for us
• Ensures that there is only one owner at a time

• Ensure that memory is properly freed if there would be no owner

38



39

• C++ Strings

• RAII

• C++ Memory Management

• Smart Pointers

Outline


