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Administrivia

• Homework 6 due Thursday
• Remember that this is the last one

• Slip days aren’t applicable to final project

• Final project starting!
• Proposals are due Friday

• More details right now!
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Today’s Goals

• Explain the what, why, and how of final projects

• Explore GE211 functionality not used in the homeworks

• Demonstrate some additional games you’ll get as sample code

• Practice the creation of a GE211 game
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Getting the code for today

• Download code in a zip files from here:
https://nu-cs211.github.io/cs211-files/hw/project_demos.zip
https://nu-cs211.github.io/cs211-files/lec/15_finalProject.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt
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Goals of the Final Project

• Focus on something that interests you
• Pick anything you like (that’s the right difficulty)

• Chance to apply creativity and make something fun

• Program without safety rails or constraints
• Starter code is very minimal

• No specification with required functions to implement

• You get to design how the code works

• You can base your design off examples though!
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Timeline

• https://nu-cs211.github.io/cs211-files/hw/final_project.pdf

• Friday, November 12 - Proposal
• This week! (but only requires a one-sentence proposal)

• Tuesday, November 16 - Specification
• Next week

• Tuesday, November 30 - Code due
• 2.5 weeks after homework 6 is due!

• Thursday, December 2 - Evaluation guide
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Making proposals

• Something that interests you
• Games are most common
• I’ll let you know if it’s too easy or too complicated

• Good sources of inspiration
• Classic arcade games
• 2D mobile games
• Board games

• Common problematic submissions
• Snake game, Space Invaders
• Any of the demo games: Keyracer, Bejewled, Asteroids
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Making specifications

• List of 10-12 functionalities that your project will have
• This is where difficulty is really decided

• Grade is determined by whether you meet the specification you create

• This is an iterative process
• Submit spec items

• Hear back from shepherd about what’s good and bad

• Make updates and repeat

• Goal:

• Difficult enough to help you learn

• Easy enough to complete
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How to get started

1. Find the homework/demo that’s closest to what you want to 
make
• Real-time versus non-real time usually

• Use as a reference while creating your own functions

2. Start with the model
• Make the simplest version of the game

3. Then add View and Controller so you can play it

4. Then go back to model and add features
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Remember that simpler is often better

• If you’re making a board game, you could take all of board.cxx 
and board.hxx and reuse it in your project
• But it’s complicated and you’ll likely have to adjust some things for your 

game

• Might be the simplest path or might not be

• Alternative options
• std::vector<Posn>

• std::unordered_map<Player, std::vector<Posn>>
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GE211 you’ve already used

• Abstract game class
• draw(), on_frame()

• Events
• Mouse and keys

• Includes keyboard keys such as shift, ctrl, alt, and arrow keys

• Geometry
• Posn, Rect, Dim

• Basic sprites
• Rectangles and Circles of multiple colors
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Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer
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Resources files

• Add a Resources/ directory to the project root
• next to src/ and test/

• Put files into it that you want your game to access while running
• Configurations

• Level layouts

• Images

• Audio files
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Accessing Resource files

• ge211::open_resource_file(std::string const& filename)
• https://tov.github.io/ge211/namespacege211.html#a2dadd7cd96f1642d432e9d63de63f00c

• Finds the filename specified and opens it for you
• Don’t specify Resources/, just the filename

• Returns an std::ifstream

• Access the data within the std::ifstream with >>
• Just like stdin

• Submitting Resources files:
• Autograder puts everything that’s not *.cxx or *.hxx into Resources/
• Note: test*.cxx and *test.cxx go into test/
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Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer
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Audio in GE211

• One Mixer controls all sounds for the game
• https://tov.github.io/ge211/classge211_1_1audio_1_1_mixer.html

• Can continuously play one Music_track (background music)
• https://tov.github.io/ge211/classge211_1_1audio_1_1_music__track.html

• play, pause, resume, rewind, set_volume

• Can play short Sound_effects
• https://tov.github.io/ge211/classge211_1_1audio_1_1_sound__effect.html

• play, pause_all, resume_all

• Can support several sound effects at once
• Hardware dependent
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Using audio

• How to get access to the mixer
• Call mixer() inside the Controller

• (Actually inside whatever inherits from Abstract_game)

• How to get a Music_track or Sound_effect
• Call constructor with a filename string

• Name of a file in Resources/

• WAV, MP3, FLAC, MID, ABC, OGG, etc.

• Various sound effects and music can be found online
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Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites
• Text Sprites
• Image Sprites

• Sprite Manipulations

• Timer
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Text Sprites

• Creates a sprite out of a string of text
• Text, Color, and Font are configurable through a Builder

• Placed on screen in draw() just like any other sprite

• A little bit of work to manipulate though

• Text sprite can be reconfigured as needed
• https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite.html

• First use a Builder to create the text
• https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite_1_1_builder.html

• Then call reconfigure() with the Builder as the argument
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Text sprite example

• Keep sprites and fonts as private members of View
unsigned int score;

ge211::Posn<int> score_position;

ge211::Font sans18{“sans.ttf”, 18};

ge211::Text_sprite score_sprite;

• In draw(), reconfigure the string as needed
ge211::Text_sprite::Builder current_score(sans18);

current_score << score;

score_sprite.reconfigure(current_score);

set.add_sprite(score_sprite, score_position);
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Image Sprite

• Image_sprite(std::string const& filename)

• Creates a sprite out of a given image

• Uses the image’s dimensions in pixels

• Filename comes from Resources/
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Additional GE211 Features

• Resources files
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• Advanced Sprites
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Applying Transforms to sprites

• What if your image sprite is larger than you want?

• Or if you want to rotate a sprite

• Transforms!
• https://tov.github.io/ge211/classge211_1_1geometry_1_1_transform.html

• Enable rotation, scaling, and flipping sprites

• Passed in as an alternative final argument to draw()
• https://tov.github.io/ge211/classge211_1_1_sprite__set.html#ad20a59df594c869b26e222da98c6161d
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Additional GE211 Features

• Resources files

• Audio

• Advanced Sprites

• Sprite Manipulations

• Timer
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Timers allow durations to be tracked

• Create a Timer() and start it
• Later check it and you can see how long it was running

• Allows you to determine how long some player action took

• Timer class
• https://tov.github.io/ge211/classge211_1_1time_1_1_timer.html

• Returns a Duration

• https://tov.github.io/ge211/classge211_1_1time_1_1_duration.html

• Which you can request time from in seconds or milliseconds
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Break + Question

• There’s an easier way to track time and perform actions after a 
certain amount of time has passed

• How would we use on_frame(double dt) to do so?
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Break + Question

• There’s an easier way to track time and perform actions after a 
certain amount of time has passed

• How would we use on_frame(double dt) to do so?

• dt is in units of seconds

• Usually 1/60th of a second

• Keep a local variable that you add dt to each time on_frame() is called

• Reset the variable to zero whenever you need to start counting

• If variable is greater than some amount, trigger action
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Keyracer

• Practice typing words under time pressure

• Loads information from a Resource file containing all English words
• load_dictionary() in controller.cxx

• As you’ll see, this dictionary is a bit dubious…

• Timer bar counts down until you’ve “missed” the letter
• Also miss if you hit the wrong key

• Counts down time in on_frame()

• Uses a Transform to scale the timer bar
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Bejeweled

• Align groups of colored circles in a grid to score them
• Makes the group disappear, scoring points

• More colored circles fall down from the top

• Uses background music (optionally) and sound effects
• Sound effects play when scoring or when an invalid move is made

• “Animates” steps when scoring
• Circles disappear from the screen over several frames

• Then circles fall down from top over several frames
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Asteroids

• Avoid or shoot asteroids in a spaceship that has momentum
• Asteroids that are shot break into multiple smaller pieces
• Ship gains or loses velocity as you hold arrow keys

• Uses image sprites for objects in the game

• Objects rotate in addition to moving
• on_frame() updates position, velocity, rotation, and angular velocity
• draw() applies Transforms to objects

• Place at position, Rotate to rotation, Scale based on mass

• Tracks key down/up to start and stop actions
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Getting demo code

• https://nu-cs211.github.io/cs211-files/hw/project_demos.zip

• Includes three separate projects
• Keyracer

• Bejeweled

• Asteroids
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Break + Request

• Let me know!
• Either after class or on Campuswire

• We have time to build a few game examples together in class
• Today we’re going to demonstrate:

• Image sprites

• Moving sprites around the screen

• Text sprites
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Plan for game

• Image sprite that represents a character in the game
• Moves towards a given position at a set velocity

• Text sprite to explain what position is being moved to

• Each character keeps a list of positions to move to
• Moves towards the first position until it reaches it

• Then starts moving towards the next position

• Add to list of positions with mouse clicks
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Initial Character class

• Data members
• Image_sprite sprite_

• Posn<float> position_

• Interface
• Constructor (from string for filename)

• Getters/Setters for data members
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Drawing the sprite

• Add sprite image to Resources/

• Add character to Model as a private member
• Probably a std::vector of characters

• Add getter to allow View to access characters vector

• Update View to iterate through the characters and draw each one
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Add motion to Character class

• Data members
• Image_sprite sprite_

• Posn<float> position_

• float velocity_

• Posn<float> destination_

• Interface
• Constructor (from string for filename)

• Getters/Setters for data members

• update(double dt) called from on_frame()

• distance_to_position_() helper function
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Making the sprites move

• Add initial destinations upon creation in the Model

• Add on_frame() function to Controller and Model
• Call Model’s on_frame()

• Then call each character’s on_frame()
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Add a text sprite to explain each character’s movement

• View gets new private members
• ge211::Text_sprite explanation_

• ge211::Font sans28_

• Build output string in draw()
• Create an Image_sprite::Builder

• Set a font and a Color

• Set the string to be displayed based on the character

• Reconfigure the Image_sprite

• Add the sprite so it appears
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Upgrade characters to hold a list of destinations

• Probably want to use an std::queue
• push() positions to the end of the queue

• pop() positions from the front of the queue

• Change to the next destination after we reach it
• Occurs in on_frame()

• Make sure the initial destination is the initial position
• Or we’ll start moving somewhere right away
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Use mouse clicks to specify waypoints for a character

• Respond to mouse clicks in the Controller
• Forward click to the model to act upon

• Model uses mouse click to add destination for first character
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