
Lecture 12
Object Oriented Programming

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov, Clayton Price (Missouri S&T), Hal Perkins (University of Washington)

Administrivia

• Sorry Lab5 has taken so long to post!
• It is now up

• Due on Monday

• The assessment will be added after class

• Make sure to try it ASAP so you can get CLion setup and working

• Homework 5 should be up late tonight
• Autograder might not be ready until tomorrow evening

2

Today’s Goals

• Introduce Classes and Objects in C++
• Why are they an important concept?

• How do we use them?

• Understand special functions useful for objects
• Constructors

• Overloaded operators

• Walk through GE211 to discuss how it works

3

Getting the code for today

• Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/12_objects.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

• Details on CLion in Lab05

4

https://nu-cs211.github.io/cs211-files/lec/12_objects.zip

5

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

Object Oriented Programming

• Basic idea
• Combine data and code that modifies the data together

• In code this takes the form of structs (or classes)
• Which contain various fields (data)

• And have various methods (functions)

• When you create one of these, you’re create an “object”
• Unit of data and interaction

• Big chunk of memory that holds all the fields

• But also with functions that you can run on it

6

How we handled this idea in C

• Created a file for dealing with a single “object”
• i.e. a ballot_t

• Functions inside the file operate on that object
• Each function takes a ballot_t as the first argument

• Functions are named ballot_<action>()

• ballot_create, ballot_destroy, ballot_count, etc.

• All access to the data must go through the functions
• Other files couldn’t access the ballot fields directly

• Otherwise they could screw up the rules of the ballot_t

7

What would a ballot_t look like in C++?

• Create a ballot struct
• With length and entries fields just like the C version

• Add functions to the struct
• (Couldn’t do this in C)

• Each function will modify the struct it’s called on

8

Why do this?

• Keep concepts located together
• One object for VC, one for ballot, one for ballot_box

• Could have written it all as one big thing

• But it would be easy to get lost in the complexity

• Separating things into smaller parts meant each was easier to write

• Access control
• Later, we’ll see that there are ways to control which data/functions can be

publicly accessed versus privately accessed

• Often there are public functions but private data

9

An example object: vector

• Each vector you create is an object

• It has data
• The values you put in it

• Also a length

• It also has methods (functions)
• vec.size(), vec.push_back(), vec.pop_back(), etc.

• Data is only accessible through methods

10

11

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

Implementing member functions

struct Position {

double x;

double y;

void print();

};

void Position::Print() {

std::cout << “{“ << x << “ , “ << y << “ }\n”;

}

12

src/position.hxx
src/position.cxx

Accessing data members in member functions

• Within member functions, you can just use the name of any data
member
• Make sure not to make local variables with the same name as data

members!!

• The this pointer can also be used inside member functions
• It’s a pointer to the object itself

• this->member can access the data member directly

• Means the same thing as just member generally

13

Live coding example: positions

• Data
• Doubles for x and y coordinate

• Methods
• print()

• set_location()

• distance_to()

14

src/position.hxx
src/position.cxx

const is used everywhere in C++

• const keyword means that the thing cannot be modified
• Used significantly more in C++ than it was in C
• Signals intent to the compiler to keep you from making mistakes!

• const int x = 0;

• Integer x cannot be modified

• const int& x = y;

• int const& x = y;

• Reference to an int now named x. x cannot be modified

• These two are identical! Either way is fine

• print() const;

• There will be a print() member function doesn’t modify its object

15

Code organization

• Header files (.hxx)
• struct definitions, including member functions

• You can inline simple one-liner functions in the definition

• Source files (.cxx)
• Implementations of member functions

• Usually a set of cxx/hxx files for each struct/class you make
• Classes are nearly the same as structs, we’ll talk about them next week

16

Break + Open Question

• How would you have written libvc using C++ objects?

17

Break + Open Question

• How would you have written libvc using C++ objects?

• Add the vc_ functions to the struct vote_count

• Maybe make a few operators to make your life easier

18

19

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

Contructors initialize newly-created objects

• Written with the class name as the method name, no return value!

Position(double x, double y);

• Allow us to define how data is initialized
• Might use inputs as values for some data members

• Might give default values to some data members

• Might do some computation to decide what data members should be

• Any and all of the above

20

Default constructor

• If you do not create a constructor, C++ will attempt a default
• Leave all basic types initialized

• Call the default constructor on all data members that are objects

• This is how we’ve been using Position so far

• C++ notation
• Basic data types: plain old data (POD)

• Object data types: non-POD

21

Writing our own constructor

struct Position {

double x;

double y;

Position(double in_x, double in_y);

}

Position::Position(double in_x, double in_y) {

x = in_x;

y = in_y;

}

22

Note: doesn’t return void

Has no return at all!

src/position.hxx
src/position.cxx

Initialization lists

• C++ lets you optionally declare an initialization list as part of your
constructor definition
• Lists fields and initializes them, one-by-one

• MUST be in same order as the data members are in the struct

Position::Position(double in_x, double in_y)

: x(in_x),

y(in_y)

{ } // must have function body, even if empty

23

Initialization lists

• Always write initializer lists for constructors
• Nearly identical to doing it manually

• But that nearly can really hurt

• Examples:
• Data members that don’t have a default constructor need to be created in

the initializer list

• Data members that are references can never be NULL, so they don’t have
a default! But the initializer list can still set them

24

Must use exclusively default constructors or defined ones

• Once you create a single constructor, C++ will no longer allow
default ones
• So if you want more options, you’ll need to make them!

• Remember: C++ allows multiple functions with the same name, as
long as their input arguments are different
• We can create multiple constructors!

25

Multiple constructors make objects easier to use

• Default constructor
Position::Position()

: x(0),

y(0)

{ }

• Constructor with arguments
Position::Position(double in_x, double in_y)

: x(in_x),

y(in_y)

{ }

26

src/position.hxx
src/position.cxx

Copy constructor

• Makes a copy of an existing object

Position::Position(const Position& orig)

: x(orig.x),
y(orig.y)

{ }

• Can be called automatically or used via assignment
Position x;

Position y(x);

Position z = x;

27

src/position.hxx
src/position.cxx

When do copies happen?

• The copy constructor is invoked if:

1. You initialize an object from
another object of the same type

2. You pass a non-reference object as
a value parameter to a function

3. You return a non-reference object
value from a function

28

void foo(Position x) { ... }

Position y; // default constructor

foo(y); // copy constructor

Position x; // default constructor

Position y(x); // copy constructor

Position z = y;// copy constructor

Position foo() {

Position y; // default constructor

return y; // copy constructor

}

Destructors

• Same concept as constructors: used to clean up an object
• Automatically called when the object goes out of scope

• Note: you never call the destructor yourself!

• Handles any cleanup, including freeing necessary resources

Position::~Position() {

// nothing to clean here since we don’t use

// dynamic memory

}

29

src/position.hxx
src/position.cxx

30

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

Defining operators for our objects

• One strength of C++ is that we can define how normal operators
work on our objects
• +, -, +=, ==, <<, etc.

• Most of these are not defined for you
• How would the compiler know what they mean for a Position?

• An exception is assignment (=), which is defined as a copy of all fields

• We can implement the operators ourselves though!

• Can be implemented as standalone functions or member functions

31

Example overloaded operator

Standalone (normal) function

bool operator==(Position const& lhs, Position const& rhs){

return (lhs.x == rhs.x) && (lhs.y == rhs.y);

}

Member function (assumes the first argument is *this)

bool Position::operator==(Position const& rhs) const{

return (x == rhs.x) && (y == rhs.y);

}

Either is fine, but can’t do both! That would be a duplicate function

32

Note: lhs - left-hand side, rhs - right-hand side

src/position.hxx
src/position.cxx

What might we want to do with our positions?

• Compare them
• bool operator==(T const& lhs, T const& rhs)

• Add them
• T operator+(T const& lhs, T const& rhs)

• T& operator+=(T& lhs, T const& rhs)

• Print them through std::cout (which is type std::ostream)
• std::ostream&
operator<<(std::ostream& os, T const& value)

• Note: cannot be a member function because Position is not the lhs

33

https://gist.github.com/beached/38a4ae52fcadfab68cb6de05403fa393

src/position.hxx
src/position.cxx

https://gist.github.com/beached/38a4ae52fcadfab68cb6de05403fa393

Break + Question

• If we wanted to write operator+ as a member function, what
would its signature be?
• T operator+(T const& lhs, T const& rhs)

struct position {

…

???

}

34

Break + Question

• If we wanted to write operator+ as a member function, what
would its signature be?
• T operator+(T const& lhs, T const& rhs)

struct position {

…

T operator+(T const& rhs) const;

}

35

36

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

GE211

• A simple game engine designed by Jesse Tov at Northwestern!
• Game Engine for CS211

• Source:
• https://github.com/tov/ge211

• Docs:
• https://tov.github.io/ge211/

37

https://github.com/tov/ge211
https://tov.github.io/ge211/

High-level overview

• GE211 has a big while loop that runs 60 times per second

• Each time through the loop:
• Checks for user inputs (mouse and keyboard)

• Calls functions in your code providing you those details

• Draws everything on screen

• Calls the draw() function in your code to get the sprites to draw

• All of this works through C++ objects
• Some details rely on inheritance, which we’ll discuss later

38

Game application code structure

• Model
• Keeps track of “game” state
• Might have multiple helper files for various objects it needs

• Controller
• Reads inputs from user and changes the model

• View
• Reads from model and sets the drawing

• Lab05 combines Controller and View into a single UI

39

Live coding: open up Lab05

• https://nu-cs211.github.io/cs211-files/lab/lab05.pdf

40

https://nu-cs211.github.io/cs211-files/lab/lab05.pdf

ge211::geometry::Posn

• Docs: https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

• Keeps track of a 2D position!
• Defines various constructors

• Methods that shift the coordinate

• Operators for comparison and modification

41

https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

ge211::geometry::Dims

• Docs: https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

• Keeps track of the dimensions of an object
• Width and height

• Returned as the difference between two Posn

• Defines constructors and operators

42

https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

43

• Object Oriented Programming

• Writing code with objects

• Constructors

• Operator Overloading

• Tour of GE211

Outline

