Lecture 12
Object Oriented Programming

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Fall 2021

Slides adapted from:
Jesse Tov, Clayton Price (Missouri S&T), Hal Perkins (University of Washington)

Northwestern



Administrivia

« Sorry Lab5 has taken so long to post!
It is now up
« Due on Monday
« The assessment will be added after class

« Make sure to try it ASAP so you can get CLion setup and working

« Homework 5 should be up late tonight
 Autograder might not be ready until tomorrow evening



Today’s Goals

» Introduce Classes and Objects in C++

« Why are they an important concept?
« How do we use them?

« Understand special functions useful for objects
 Constructors
« Overloaded operators

« Walk through GE211 to discuss how it works



Getting the code for today

» Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/12 objects.zip

« Extract code wherever

* Open with CLion
« Make sure you open the folder with the CMakelLists.txt

* Details on CLion in Lab05


https://nu-cs211.github.io/cs211-files/lec/12_objects.zip

Outline

» Object Oriented Programming

« Writing code with object

e Constructors

 Operator Overloading

e Tour of GE211




Object Oriented Programming

» Basic idea
« Combine data and code that modifies the data together

* In code this takes the form of structs (or classes)
« Which contain various fields (data)
« And have various methods (functions)

« When you create one of these, you're create an “object”
« Unit of data and interaction
* Big chunk of memory that holds all the fields
 But also with functions that you can run on it



How we handled this idea in C

« Created a file for dealing with a single “object”
*l.e.aballot t

 Functions inside the file operate on that object
» Each function takes a ballot t as the first argument

» Functions are named ballot_<action>()
* ballot create,ballot destroy, ballot count, etC.

» All access to the data must go through the functions

 Other files couldn’t access the ballot fields directly
« Otherwise they could screw up the rules of the ballot t



What would a ballot_t look like in C++7?

» Create a ballot struct
« With length and entries fields just like the C version

* Add functions to the struct
 (Couldn’t do this in C)

« Each function will modify the struct it's called on



Why do this?

» Keep concepts located together
« One object for VC, one for ballot, one for ballot_box

« Could have written it all as one big thing
 But it would be easy to get lost in the complexity
 Separating things into smaller parts meant each was easier to write

e Access control

« Later, we'll see that there are ways to control which data/functions can be
publicly accessed versus privately accessed

« Often there are public functions but private data



An example object: vector

 Each vector you create is an object

[t has data

* The values you put in it
* Also a length

« It also has methods (functions)
* vec.size (), vec.push back(), vec.pop back(), etcC.

 Data is only accessible through methods

10



Outline

 Object Oriented Programming

- Writing code with objects

e Constructors

 Operator Overloading

e Tour of GE211




Implementing member functions src/position.hxx

src/position.cxx

struct Position {
double x;
double vy;
vold print () ;

by

vold Position::Print () {

StdZZCOU.t << \\{\\ << X << \\ , \\ << y << \\ }\n/l;



Accessing data members in member functions

« Within member functions, you can just use the name of any data
member

 Make sure not to make local variables with the same name as data
members!!

* The this pointer can also be used inside member functions

« It's a pointer to the object itself
* this->member can access the data member directly

« Means the same thing as just member generally

13



Live coding example: positions

 Data
« Doubles for x and y coordinate

* Methods

e print()
» set_location()
« distance_to()

src/position.hxx
src/position.cxx

14



const is used everywhere in C++

* const keyword means that the thing cannot be modified

Used significantly more in C++ than it was in C
Signals intent to the compiler to keep you from making mistakes!

const 1nt x = 0;
 Integer x cannot be modified

const 1nt& x = vy;

int const& x = vy;
« Reference to an int now named x. x cannot be modified
« These two are identical! Either way is fine

print () const;
« There will be a print () member function doesn’t modify its object

15



Code organization

« Header files (.hxx)
« struct definitions, including member functions
 You can inline simple one-liner functions in the definition

» Source files (.cxx)
« Implementations of member functions

« Usually a set of cxx/hxx files for each struct/class you make
 Classes are nearly the same as structs, we’ll talk about them next week

16



Break + Open Question

« How would you have written libvc using C++ objects:

17



Break + Open Question

« How would you have written libvc using C++ objects?

« Add the vc_ functions to the struct vote_count
« Maybe make a few operators to make your life easier

18



Outline

 Object Oriented Programming

« Writing code with object

 Constructors

 Operator Overloading

e Tour of GE211




Contructors initialize newly-created objects

« Written with the class name as the method name, no return value!

Position(double x, double y);

* Allow us to define how data is initialized
« Might use inputs as values for some data members
« Might give default values to some data members
« Might do some computation to decide what data members should be

« Any and all of the above

20



Default constructor

« If you do not create a constructor, C++ will attempt a default

 Leave all basic types initialized
« Call the default constructor on all data members that are objects

* This is how we’ve been using Position so far

« C++ notation
 Basic data types: plain old data (POD)
 Object data types: non-POD

21



Writing our own constructor

struct Position {
double x;
double vy;

Position (double in x, double 1in y);

} Note: doesn’t return void

/ Has no return at all!

Position::Position(double 1n x, double 1in y)

X = 1n X;

y = 1n y;

src/position.hxx
src/position.cxx

{




Initialization lists

« C++ lets you optionally declare an initialization list as part of your
constructor definition
« Lists fields and initializes them, one-by-one
 MUST be in same order as the data members are in the struct

Position::Position (double 1n x, double 1in y)

x(1in Xx),
y(in_ y)

{ } // must have function body, even if empty

23



Initialization lists

« Always write initializer lists for constructors
» Nearly identical to doing it manually
 But that nearly can really hurt

« Examples:

« Data members that don’t have a default constructor need to be created in
the initializer list

« Data members that are references can never be NULL, so they don't have
a default! But the initializer list can still set them

24



Must use exclusively default constructors or defined ones

« Once you create a single constructor, C++ will no longer allow
default ones
 So if you want more options, you'll need to make them!

« Remember: C++ allows multiple functions with the same name, as
long as their input arguments are different
» We can create multiple constructors!

25



'S easier to use

Multiple constructors make objec

« Default constructor
Position: :Position ()
x(0),
y (0)

 Constructor with arguments

src/position.hxx
src/position.cxx

Position::Position (double 1n x, double 1in y)

x(1n Xx),
y(in_ y)




Copy constructor src/position.hxx

src/position.cxx

« Makes a copy of an existing object

Position::Position (const Position& oriqg)
X (0orig.x),
y(orig.y)

 Can be called automatically or used via assignment

Position x;
Position v (X);

Position z = X;



When do copies happen?

* The copy constructor is invoked if:

T . Position x; // default constructor
1. You /n/t/a//z_e an object from Position y(x); // copy constructor
another Ob.]eCt of the same type Position z = y;// copy constructor
2. You pass a non-reference object as [void foo(Position x) { ... )
a value parameter to a function Position y; // default constructor
| foo (y); // copy constructor
_ (Position foo () {
3. You return a non-reference object Position y; // default constructor

value from a function return y; // copy constructor
}

\.

28



Destructors src/position.hxx

src/position.cxx

« Same concept as constructors: used to clean up an object
« Automatically called when the object goes out of scope
« Note: you never call the destructor yourself!

« Handles any cleanup, including freeing necessary resources

Position::~Position () {
// nothing to clean here since we don’t use
// dynamic memory

29



Outline

 Object Oriented Programming

« Writing code with object

e Constructors

- Operator Overloading

e Tour of GE211




Defining operators for our objects

« One strength of C++ is that we can define how normal operators
work on our objects
* +, -, +=, ==, <<, etc.

« Most of these are not defined for you
« How would the compiler know what they mean for a Position?

« An exception is assignment (=), which is defined as a copy of all fields

« We can implement the operators ourselves though!
« Can be implemented as standalone functions or member functions

31



Example overloaded operator src/position.hxx

src/position.cxx

Standalone (normal) function Note: |hs - left-hand side, rhs - right-hand side
bool operator==(Position consté& lhs, Position consté& rhs) {
return (lhs.x == rhs.x) && (lhs.y == rhs.vy);

}

Member function (assumes the first argument is *this)
bool Position::operator==(Position consté& rhs) const/{
return (x == rhs.x) && (y == rhs.y);

}
Either is fine, but cant do both! That would be a duplicate function

32



What might we want to do with our positions? | src/position.hxx

src/position.cxx

« Compare them
* bool operator==(T const& lhs, T consté& rhs)

« Add them

* T operator+ (T const& lhs, T const& rhs)
* T& operator+=(T& lhs, T consté& rhs)

* Print them through std: : cout (which is type std: :ostream)

* std: :ostreamé&
operator<< (std::ostream& os, T consté& value)

e Note: cannot be a member function because Position is not the lhs

https://qgist.qgithub.com/beached/38a4ae52fcadfab68cb6de05403fa393



https://gist.github.com/beached/38a4ae52fcadfab68cb6de05403fa393

Break + Question

- If we wanted to write operator+ as a member function, what
would its signature be?
* T operator+ (T const& lhs, T const& rhs)

struct position

ffars

34



Break + Question

- If we wanted to write operator+ as a member function, what
would its signature be?
* T operator+ (T const& lhs, T const& rhs)

struct position

T operator+ (T const& rhs) const;

35



Outline

 Object Oriented Programming

« Writing code with object

e Constructors

 Operator Overloading

- Tour of GE211




GE211

» A simple game engine designed by Jesse Tov at Northwestern!
« Game Engine for CS211

 Source:
« https://github.com/tov/ge211

* Docs:
» https://tov.qgithub.io/ge211/

37


https://github.com/tov/ge211
https://tov.github.io/ge211/

High-level overview

« GE211 has a big while loop that runs 60 times per second

 Each time through the loop:
« Checks for user inputs (mouse and keyboard)
« Calls functions in your code providing you those details

« Draws everything on screen
 Calls the draw () function in your code to get the sprites to draw

« All of this works through C++ objects
« Some details rely on inheritance, which we'll discuss later

38



Game application code structure
* Model

 Keeps track of “"game” state
« Might have multiple helper files for various objects it needs

 Controller
« Reads inputs from user and changes the model

* View
« Reads from model and sets the drawing

 Lab05 combines Controller and View into a single UI

39



Live coding: open up Lab05

« https://nu-cs211.github.io/cs211-files/lab/lab05.pdf

40


https://nu-cs211.github.io/cs211-files/lab/lab05.pdf

ge2ll::geometry::Posn

* Docs: https://tov.github.io/ge211/structge211 1 1geometry 1 1 posn.html

 Keeps track of a 2D position!

 Defines various constructors
« Methods that shift the coordinate
« Operators for comparison and modification

41


https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

ge2ll::geometry::Dims

* DocCS: https://tov.github.io/ge211/structge211 1 1geometry 1 1 dims.html

 Keeps track of the dimensions of an object
« Width and height
« Returned as the difference between two Posn

 Defines constructors and operators

42


https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

Outline

 Object Oriented Programming

« Writing code with object

e Constructors

 Operator Overloading

e Tour of GE211




