
Lecture 11
Intro to C++

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov

Reminder: relative homework difficulties

* But really it’s up to you

2

Homework Difficulty

Hw01 2

Hw02 5

Hw03 7

Hw04 11

Hw05 6

Hw06 9

Final Project 10ish*

Hw04 is the last in C
one week break
Hw05 is the first in C++

Administrivia

• Nothing is due until Sunday of this week
• Lab05, which sets up your C++ environment

• I’ll try to publish this tonight

• Great time to catch up on any concepts you’re still muddy about
• Office hours are mostly empty, but course staff is still there!

3

Today’s Goals

• Introduce C++
• Goals of the language

• Basics of how to use it

• Explore some key differences from C
• Standard I/O

• References

• Discuss a C++ data structure library: vector

4

Getting the code for today

• Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/09_introCPP.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

• Details on CLion in Lab05

5

https://nu-cs211.github.io/cs211-files/lec/09_introCPP.zip

6

• Why C++?

• Simple C++ I/O

• Pass-by-reference

• Vectors

Outline

What is C++?

• Feared by many; loved by few; understood by one
• Bjarne Stroustrup, its designer

• Originally an extension to C called “C with Classes”

• Intended to bring modern (1980s) abstraction mechanisms to C
• Data hiding
• Generics

• Adds many other things too:
• Destructors, Exceptions, Lambda, Dynamic Dispatch, Inheritance, Libraries

• But without slowing things down
• “Pay (for language features) as you go”

7

What is C++ used for?

• Many different software areas
• Browsers: Firefox, Chrome, Edge

• Interactive software tools: Microsoft Office, Adobe Suite, AutoCAD

• Language runtimes: Node.js, .NET, Java VMs

• Major web services: Spotify, YouTube, Bloomberg’s financial database

• Databases: Oracle, MySQL, IBM DB2, MongoDB, SQL Server

• Game engines: Creation (Skyrim, Fallout), Frostbite (Battlefield, FIFA), Unreal

8

What is C++ used for?

• Many different software areas
• Browsers: Firefox, Chrome, Edge
• Office tools: Microsoft Office, Adobe Suite, AutoCAD
• Language runtimes: Node.js, .NET, Java VMs
• Major web services: Spotify, YouTube, Bloomberg’s financial database
• Databases: Oracle, MySQL, IBM DB2, MongoDB, SQL Server
• Game engines: Creation (Skyrim, Fallout), Frostbite (Battlefield, FIFA), Unreal

• Generally:
• Writing, big complicated programs that need to perform well

• You could write them in C, but C++ is more flexible, less work, and
provides better ways to manage complexity

9

Why is CS211 using C++?

• The second half of CS211 focuses on learning to build larger
programs and structure them using abstraction mechanisms

• Other popular languages that have the features we want don’t let
you take advantage of your newly-acquired C skills

• Java, C#, Kotlin

• And we do want to teach a popular language

• C++ lets you build larger programs with abstractions
• But the concepts you’ve been learning about still apply

• C++ automagic replaces some of the manual drudgery

10

C++ benefits

C C++

You must call free()
yourself to deallocate
heap objects.

Language helpfully frees
heap objects when owner
goes out of scope.

Need a unique name for
every function.

Can overload function for
different argument types.

Operators like + and ==
work only for built-in
types.

You can overload
operators for user-
defined types.

11

C++ downsides

C C++

You must call free()
yourself to deallocate
heap objects.

Language helpfully frees
heap objects when owner
goes out of scope.

Need a unique name for
every function.

Can overload function for
different argument types.

Operators like + and ==
work only for built-in
types.

You can overload
operators for user-
defined types.

12

You know exactly
when things are

freed.

Things get freed
when you might

not expect it.

You always know
what function

you are calling.

Must know
argument types

to determine
which function

gets called.

You know that /
means “divide”.

You know that
operator/() takes

two arguments.

C++ Versions

• C++ is a little less one language and more multiple iterations of a
language

• Where nothing old every leaves, only new things get added

• “Within C++, there is a much smaller and cleaner language struggling to
get out.” – Bjarne Stoustrop

• One major change was C++11 (2011) which introduced a better
method for handling dynamic memory

• We’ll be using C++14 which has some quality-of-life improvements to that

• C++17 and C++20 also exist!

• But don’t add much that we need

13

14

• Why C++?

• Simple C++ I/O

• Pass-by-reference

• Vectors

Outline

Hello world in C++

#include <iostream>

int main() {

std::cout << "Hello World\n";

return 0;

}

15

src/hello_world.cxx

The standard C headers are renamed

• Every C header loses the .h and gets a c added to the front

16

C version of headers C++ version of headers

#include <ctype.h>

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <cctype>

#include <cmath>

#include <cstdio>

#include <cstring>

The standard C headers are renamed

• Every C header loses the .h and gets a c added to the front

• And new headers support the similar functionality in a C++ way

#include <iostream>

#include <string>

17

C version of headers C++ version of headers

#include <ctype.h>

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <cctype>

#include <cmath>

#include <cstdio>

#include <cstring>

You’ll use these instead of the C versions
because they are easier and safer to use.

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

18

src/io_example.cxx

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

19

New library for I/O

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

20

main() and main(void)

are equivalent

Could still get input argc
and argv if wanted

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

21

C++ standard library is in
the std namespace

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

22

Stream insertion operator
writes a value to an output
stream

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

23

Stream extraction operator
reads from the input
stream into an object

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

24

To detect I/O error on a
stream, test the stream as
if it were a bool.

More complicated I/O input example

#include <iostream >

int main() {

std::cout << "Enter a number to square:\n";

double x;

std::cin >> x;

if (!std::cin) {

std::cerr << "Error: could not read number!\n";

return 1;

}

std::cout << x << " * " << x << " == " << x * x << "\n";

return 0;

}

25

Stream operators are left-
associative and return their
left operand

Stream operator chaining

This:

std::cout << x << " * " << x << " == " << x * x << "\n";

Is equivalent to this:

(((((std::cout << x) << " * “) << x) << " == “) << x * x) << "\n";

Is equivalent to this:

std::cout << x;

std::cout << “ * “;

std::cout << x;

std::cout << “ == “;

std::cout << x * x;

std::cout << “\n”;

26

iostream library

• Provides input/output streams
• Sources that you can write characters to or read characters from

• Same idea as a FILE* in C

std::cin - standard in

std::cout - standard out

std::cerr - standard error

• Simple I/O
• Write using << operator (stream insertion)

• Read using >> operator (stream extraction)

27

Namespaces in C++

• Namespaces provide additional naming to functions/variables
• Prevent C problem of “no two functions can have the same name”
• Refer to name as namespace::name
• Defaults to global namespace (just ::name which is the same as name)

• Basically what we were doing in C anyways
• vc_create(), ballot_create(), ballot_box_create()

• Avoid using namespace std;
• Eliminates the need to use std:: for library calls!
• But also means you must never duplicate a library function name

• Back to the same problem C had!

28

Break + Open Question

How does this code know you want a double?

double x;

std::cin >> x;

29

Break + Open Question

How does this code know you want a double?

double x;

std::cin >> x;

Operator overloading!

• You can redefine the meaning of operators in C++

• So operator>>(istream, double) is defined to read in a double

• We’ll talk more about this in a future lecture

30

31

• Why C++?

• Simple C++ I/O

• Pass-by-reference

• Vectors

Outline

In C, all arguments are passed as values

void f(int x, int* p) { ...

• In C, every variable names its own object:
• x names 4 bytes capable of containing an int

• p names 8 bytes capable of holding the memory address of an int

• C allows you to access other objects with pointers
• But you are still passing a value into the function (a pointer value)

32

C++ has pass-by-reference

void f(int x, int* p , int& r) { ...

• x and p work the same as in C programs

• r refers to some other existing int object
• r is an alternative name for whatever object was passed in

• r is borrowed and cannot be nullptr

• Use r like an ordinary int – no need to dereference

33

C++ reference example: increment

#include <211.h>

void inc_ptr(int* p) {

*p += 1;

}

void c_style_test(void) {

int x = 0;

inc_ptr(&x);

CHECK_INT(x, 1);

}

34

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

Our C++ testing
framework. Similar to
how it worked in C!

test/reference_examples.cxx

Visual representation of references

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

35

x: 0

test/reference_examples.cxx

Visual representation of references

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

36

x: 0

test/reference_examples.cxx

Visual representation of references

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

37

r: 0

Same object that was
previously named x

test/reference_examples.cxx

Visual representation of references

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

38

r: 1

test/reference_examples.cxx

Visual representation of references

#include <catch.hxx>

void inc_ref(int& r){

r += 1;

}

TEST_CASE("C++-style"){

int x = 0;

inc_ref(x);

CHECK(x == 1);

}

39

x: 1

Back here, the object
is still named x

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

40

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

41

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

x: 3

y: 4

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

42

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

r: x: 3

s: y: 4

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

43

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

r: x: 3

s: y: 4

temp: 3

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

44

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

r: x: 4

s: y: 4

temp: 3

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

45

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

r: x: 4

s: y: 3

temp: 3

test/reference_examples.cxx

Swap with references in C++

void swap_ref(int& r, int& s) {

int temp = r;

r = s;

s = temp;

}

46

TEST_CASE("C++-style swap"){

int x = 3;

int y = 4;

swap_ref(x, y);

CHECK(x == 4);

CHECK(y == 3);

}

x: 4

y: 3

temp: 💥

test/reference_examples.cxx

References can be thought of as “syntactic sugar”

void swap(int& r, int& s)

{

int temp = r;

r = s;

s = temp;

}

swap(x, v[3]);

47

void swap(int* rp, int* sp)

{

int temp = *rp;

*rp = *sp;

*sp = temp;

}

swap(&x, &v[3]);

1. Replace every declared references with a pointer
2. Dereference each use of the variable
3. Take pointer of each variable passed in

References can be thought of as “syntactic sugar”

void swap(int& r, int& s)

{

int temp = r;

r = s;

s = temp;

}

swap(x, v[3]);

48

void swap(int* rp, int* sp)

{

int temp = *rp;

*rp = *sp;

*sp = temp;

}

swap(&x, &v[3]);

1. Replace every declared references with a pointer
2. Dereference each use of the variable
3. Take pointer of each variable passed in

References can be thought of as “syntactic sugar”

void swap(int& r, int& s)

{

int temp = r;

r = s;

s = temp;

}

swap(x, v[3]);

49

void swap(int* rp, int* sp)

{

int temp = *rp;

*rp = *sp;

*sp = temp;

}

swap(&x, &v[3]);

1. Replace every declared references with a pointer
2. Dereference each use of the variable
3. Take pointer of each variable passed in

References can be thought of as “syntactic sugar”

void swap(int& r, int& s)

{

int temp = r;

r = s;

s = temp;

}

swap(x, v[3]);

50

void swap(int* rp, int* sp)

{

int temp = *rp;

*rp = *sp;

*sp = temp;

}

swap(&x, &v[3]);

1. Replace every declared references with a pointer
2. Dereference each use of the variable
3. Take pointer of each variable passed in

This “desugaring” approach can explain more complicated references

References version

entry& e = entries[i];

std::string const& n = e.name;

if (n == current) {

++e.count;

}

51

“Desugared” pointer version

entry* pe = &(entries[i]);

std::string const* pn = &(pe->name);

if (*pn == current) {

++pe->count;

//++(*pe).count

}

• Note: std::string types can be compared with ==
• Prefer std::string over char* in C++

Break + Question: Does this swap work?

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

52

Break + Question: Does this swap work?

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

53

r: 4

s: 3

Break + Question: Does this swap work?

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

54

r:
4

temp:

s: 3

r and temp both

name the same object!

Break + Question: Does this swap work?

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

55

r:
3

temp:

s: 3

r and temp both

name the same object!

Break + Question: Does this swap work?

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

56

r:
3

temp:

s: 3

r and temp both

name the same object!

This version of swap is broken!

Break + Question: Does this swap work?

References version

void alt_swap(int& r, int& s)

{

int& temp = r;

r = s;

s = temp;

}

57

“Desugared” pointer version

void alt_swap(int* rp, int* sp)

{

int* tempp = &*rp;

*rp = *sp;

*sp = *tempp;

}

58

• Why C++?

• Simple C++ I/O

• Pass-by-reference

• Vectors

Outline

C++ libraries provide various useful structures for you

• C libraries had some functions that would let you interact with
things like files or the user

• C++ has those, but also has libraries with data structures and with
various algorithms (such as sorting)

• C++ data structures (containers): https://cplusplus.com/reference/stl/

• C++ algorithms: https://cplusplus.com/reference/algorithm/

59

https://cplusplus.com/reference/stl/
https://cplusplus.com/reference/algorithm/

C++ Vectors

• One example C++ library: Vector
• An automatically expanding “array” capable of holding any type
• std::vector<TYPE> to choose what type it should hold

• std::vector<int>, std::vector<double>, etc.
• This idea is known as “generics”. We’ll discuss in a later lecture

• Creating a vector (there are many ways)
std::vector<TYPE> myvector(); //empty vector of with no size
std::vector<TYPE> myvector(len); //vector of size len with uninitialized values
std::vector<TYPE> myvector(len, val); //vector of size len with values set to val

std::vector<TYPE> myvector{val1, val2, val3, ...};

//vector with initial values, set to a size to hold them all

60

Other useful Vector operations

• vec[n] is used to get the value at index n
• Works just like a C array
• Still UNDEFINED BEHAVIOR if n is out of bounds for the Vector

• vec.at(n) accesses value at index n
• Just like square brackets, but throws an exception if out-of-bounds
• Exceptions: new way of signaling errors. Will talk about in later lecture

• vec.size() returns the length of the Vector

• vec.push_back() and vec.pop_back() add/remove items
• And resize the Vector automatically as needed

61

Example vector code

• Play around with vectors

62

test/vector_examples.cxx

C++ allows for simpler iteration (like Python)

double sum_vec(std::vector<double> const& vec){

double result = 0;

for (double val : vec) {

result += val;

}

return result;

}

63

Iterates over elements in
the vector, not indices!

Modifying elements inside the vector

• Warning: make sure you’re modifying the actual vector element

void dec_vec_wrong(std::vector<int> &vec){

for (int val : vec){

--val;

}

}

64

Each val is a copy of the

value in the vector

Modifying elements inside the vector

• Warning: make sure you’re modifying the actual vector element

void dec_vec_wrong(std::vector<int> &vec){

for (int val : vec){

--val;

}

}

void dec_vec_right(std::vector<int> &vec){

for (int& val : vec){

--val;

}

}

65

Each val is a copy of the

value in the vector

Each val is a reference to

the value in the vector.

So modifying it works!

66

• Why C++?

• Simple C++ I/O

• Pass-by-reference

• Vectors

Outline

