Lecture 04
Arrays and Strings

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Fall 2021

Slides adapted from:
Jesse Tov

Northwestern

Administrivia
« Homework 1 is due today

 Lab03 is released today (due Sunday)
* Practice manipulating strings

« Homework 2 will be released late tonight (due next Thursday)
« Lots of string manipulation
» Get started early!

 Partner assignment (work with 1 or O other people)
« We'll put out a survey for people who want to be matched

* Includes “hidden tests”

Administrivia

« Campuswire issues
« Seems to be crashing every night right now...

« We're watching this and will move to a new platform if necessary

Today’s Goals

« More practice with pointers and why they are useful

Getting the code for today

cd ~/cs21l/lec/ (or wherever you put stuff)
tar -xkvf ~cs2l1l/lec/04 arrays strings.tgz

cd 04 arrays strings/

Outline

- What are pointers?

« Why are pointers?

 Arrays

* Characters
» Strings

« Arguments to main

Pointers are another type of value

 Values could be a number, like 5 or 6.27

 Or they could be a “pointer” to an object
 Points at the object, not the variable or value
o It points at the “chunk of memory”
 Technically, in C it holds the address of that memory

Z_pointer:

C syntax for pointers

* Pointers are a family of types
« Each pointer is an existing C type, followed by a *

» To get the pointer to an existing variable, use the & operator
« Returns the address of that variable

« Example:

int z =5; Y

int* z_pointer = &z; Z_pointer:

Possible pointer values

» Uninitialized
unsigned long* zeta;

* Pointing at an existing object
char* letter ptr = &my char;

* Null (explicitly pointing at nothing)
int* p = NULL;
bool* b = NULL;
double* d = NULL;

« NULL works for any pointer type
« NULL is NOT the same as uninitialized (%3)
« Dereferencing a null pointer is an error (segfault)

Some things to remember about pointers

1. Remember that a pointer is a type
 int*, char*, short*, bool*, double*, size_t*, etc.

2. Think carefully about whether the pointer is being modified or
the value in the object it points to

« my_pointer = &x; // modifies which object we are pointing at
« *my_pointer = x; // modifies the value in the object we are pointing at

3. Remember that pointer variables are themselves variables
« They have values: the address of the object being pointed at
« They name objects: memory is allocated to hold the address

10

C things that make pointers annoying

* For pointer types, the * doesn’t have to be next to the type

» These three all mean exactly the same thing:
1. int* x; // I strongly recommend you use this

11

C things that make pointers annoying

* For pointer types, the * doesn’t have to be next to the type
» These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this
2. 1nt * X;
3. 1nt *X;

* The * operator also means multiplication
signed long w = *t * *v; // multiply values referenced

// by the pointers t and v

12

Never define multiple variables at once

 You can define multiple variables at once in C

double x, vy, radius;

Equivalent code:
double x;

double vy;
double radius;

13

Never define multiple variables at once

 But this breaks when you're using pointers

double* x, vy, radius;

Equivalent code:
double* x;

double vy;
, Not pointers!!! @)

double radius

 To write that line correctly, you need to write:
double *x, *y, *radius; OR double * x, * y, * radius; (spacing doesn't matter)

 Or just never ever declare multiple variables in the same line!

14

Outline

« What are pointers?

- Why are pointers?

 Arrays

* Characters
» Strings

« Arguments to main

Pointers functions directly modify values inside variables

« Normally, functions get a copy of the value inside the variable

« With pointers, functions can directly modify the variable
« The function gets a copy of the pointer to the variable

16

Adding two to a variable WITHOUT pointers

int add two(int n) {
return n+2;

J

int main(void) {
int x = 15;
x = add two (x);
printf (“sd\n”, x);
return 0O;

17

Adding two to a variable WITH pointers

volid add two (int* n)
*n o += 2;
}

int main(void) {
int x = 15;
add two (&x) ;
printf (“$d\n”, x);
return 0O;

18

Side-by-side comparison of without/with pointers

vold add two (int* n)

void add two(int n) {
*n o += 2;

return n+2;

J J

int main(void) { int main(void) {

int x = 15; int x = 15;

x = add two(x); add two (&x) ;

printf (“$d\n”, x);

return 0; return 0;

printf (“$d\n”, x);

{

19

Scanf example

* scanf () uses pointers to write to the variables you pass it

int x = 0;
int count = scanf (“%d”, &x);

 Pointers allow scanf () to read results directly into your variable

« scanf () also simultaneously returns the number of arguments matched

« For homework 1, for example, scanf () needs to match three inputs
« Without pointers, you would only be able to match one

20

Another example: what if we want to pass a struct

typedef struct plants {
bool is watered;
double height;
int num leaves;

} plant t; }

void initialize oak tree(plant t* plant) {
(*plant) .1s watered = true;

(*plant) .height = 10;
(*plant) .num leaves = 100000;

int main (void) {
plant t plant a;

initlalize oak tree(&plant a);
return 0;

21

Shortcut for pointers to structs

s A LOT

» C programs end up using pointers to struc!

« [t's annoying to type (*struct).field all the time

« S0 we made a shortcut. These two mean exactly the same thing:

(*struct) . field

struct->field (that’s dash and greater than)

* This is known as “syntactic sugar”

» Bonus syntax to make common things easier

22

Adding a function to print the struct

typedef struct plants { void initialize oak tree(plant t* plant) {

bool is watered; (*plant) .1s watered = true;

double height; (*plant) .height = 10;

int num leaves; (*plant) .num leaves = 100000;
} plant t; }

void print plant (plant t* plant) {
printf ("Plant 1s %d meters tall and ”
“‘has %d leaves.\n”,
plant->height, plant->num leaves);

if (!plant->watered) {
printf ("\tIt needs to be watered!\n”);

23

Break + Question

double x = 7.0;
double* xptr =
*xptr += 3.0;

x =x / 4.0;
printf (“sf£f\n”,

What value prints?

&X;

*xptr);

24

Break + Question

double x = 7.0;
double* xptr =
*xptr += 3.0;

x =x / 4.0;
printf (“sf£f\n”,

What value prints?

&X;

*xptr);

2.5

25

Outline

« What are pointers?

« Why are pointers?

« Arrays

* Characters
» Strings

« Arguments to main

Array types

« Let’s talk about some ideas that really rely on the existence of
pointers

 The first of these is arrays
 Arrays: a variable that holds multiple of a type

« Example: one horizontal shelf
 Can hold multiple books

A shelf is an “array of books”

27

Arrays in C

int x;
X:| 93
int array x[4]; Multiple objects
for a single variable,
array_x: %3 %3 % o7 each with their own value
» Generally:

type variable name[N]; (array of type with length N)

28

Working with values in arrays

 Every array has one or more objects, each with their own values
« Like fields in a struct

* The “slots” in an array are numbered from zero
* Arrays in C are zero-indexed

double wvalues|[3] {1.2, -3.50623, 0.0},

double x = wvalues][0];

values:| 1.2 | -3.5623 | 0.0
X:| 1.2

29

Array assignment example

array x:| % | ¥

= int datal[5];
for (int 1=0; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

Array assignment example

array x:| %8 | %8 | W | W | ¥
i:| O

int datal[5];
= for (int 1=0,; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

31

Array assignment example

array x:| 5 o %
H.

int datal[5];
for (int 1=0; 1<5; 1++) {
- datali] = 5-1;
}
data[4] = data[0] + datalll];

Array assignment example

array_x:| 5 W | e | e | 3
i 1

int datal[5];
= for (int 1=0,; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

33

Array assignment example

array_x:| 5 4
i 1

int datal[5];
for (int 1=0; 1<5; 1++) {
= datali] = 5-1;
}
data[4] = data[0] + datalll];

Array assignment example

array_x:| 5 4 6 | W8 | U
1| 2

int datal[5];
= for (int 1=0; 1<b; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

35

Array assignment example

array_x:| 5 4
1| 2

int datal[5];
for (int 1=0; 1<5; 1++) {
= datali] = 5-1;
}
data[4] = data[0] + datalll];

Array assignment example

array_x:| 5 4 3 %6 | U
il 3

int datal[5];
- for (int 1=0,; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

37

Array assignment example

array_x:| 5 4
il 3

int datal5];
for (int 1=0; 1<5; 1++) {
- data[i] = 5-1;
}
datal4] = data[0] + datalll];

Array assignment example

array x:| 5 4 3 2 o2
1| 4

int datal[5];
- for (int 1=0,; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

39

Array assignment example

array_x:| 5 4

| 4

int datal[5];
for (int 1=0; 1<5; 1++) {
- datali] = 5-1;
}
data[4] = data[0] + datalll];

Array assignment example

array_Xx:| 5 4 3 2 1
I

int datal[5];
- for (int 1=0,; 1<5; 1++) {
datal[1] = 5-1;
}
data[4] = data[0] + datalll];

41

Array assignment example
array_Xx:| 5 4 3 2 9

int datalb];

for (int 1=0; 1<5; 1i++) {
datal[i] = 5-1;

}

- datal4d4] = data[0] + datall]; Remember array [N-1]

s the last slot in an array
of length N

Lengths of arrays

* How do you determine how long an array is?

* You cannot in C
« Hopefully, you remember
« Or someone told you

* This is an example of C giving you “full control”
« Why bother storing the length of the array? That wastes memory

43

The name of the array is like a pointer to the first element

* You can treat the name of the array like a pointer
« It basically is one

* You could dereference it, and you’'ll get the value in the first slot of
the array

« Two ramifications of this:
« You can't pass arrays into functions, only pointers

 Array indexing is identical to pointer arithmetic

44

live example

Arrays passed into functions are just pointers

. W?en you pass an array into a function, you don’t pass a copy of the
values

 Instead you pass a pointer to the start of the array
» Be sure to pass a length as well! (no way to determine that in C)

vold print array(int* values, int count) {

J

int main (void) {
int array([10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};
print array(array, 10);
return 0;

}

45

live example

Array indexing is pointer arithmetic

» Indexing into arrays is just adding to the pointer value
« Example, these two are equivalent:

array[10]

* (array+10)
» As are these two:

& (arrayl[7])

array+/

DANGER! Nothing stops you from going past the end of an array

live example

 C does not check whether your array accesses are valid
« It just tries to grab the value in the memory you asked for

« Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR

 Could result in anything happening

« If you're lucky, the code will crash
« But you will not always get lucky
 Be sure to always check if you're going past the end of the array

47

Ways of creating arrays

» Statically sized “local variable” (a variable inside a function)
int array[10];

« Dynamically sized local variable
1int data size;
scanf (V“sd”, &data size);
int dataldata size]; // probably should have checked
// the value in data size first...

48

One more way to create arrays

 Using a library that gives you a chunk of memory for the object

« Example
double* array = malloc (4 * sizeof (double));

* malloc () returns a pointer to an amount of memory requested
* sizeof () returns the size of a type in bytes
4 slots, each of which can hold a double

« MUCH more about malloc next week

49

C arrays cannot change length

« Once an array is created, its length cannot be changed
 You cannot grow or shrink the number of slots

* You can make a whole new array that’s bigger
« Copy over elements from the old array

malloc () and dynamic memory are a way to create new arrays
« We'll talk about this more next week

50

live example

Array of structs example

 Arrays can be made of any type
« int, float, bool, char, etc.
« Also structs!

struct circle {

double x; : o
Special syntax to initialize all
double y; values as zero within the
} double radius; array. Only works for zero.
struct circle many circles[5] = {Oj};
many circles[l].x = 1;
many circles[l].y = 1;

many circles[1l].radius = 2;

51

Break + Question

» Fill in the remaining code to sum an array in C

int sum array(int* array, size t length)

int sum = 0;
for (size t i=0; ;) |
sum += ;

J

return sum;

{

52

Break + Question

» Fill in the remaining code to sum an array in C

int sum array(int* array, size t length)
int sum = 0;

for (size t 1=0; i<length; i++) {

sum += arrayl[i];

J

return sum;

{

53

Outline

« What are pointers?

« Why are pointers?

 Arrays

 Characters
» Strings

« Arguments to main

Character types

* char, signed char, unsigned char
« Capable of holding numbers from 0 to 255 or -128 to 127

* Also capable of holding single “characters”
* Letters, digits, symbols

char letter = ‘a’;

MUST use single quotes in C

L when referring to characters

char number

char symbol = ‘~';

Characters are both numbers and letters

 How can a char hold either a letter or a number?
» Each number represents a certain character

« Example:
« 33is'l

e 65 is ‘A’
e 66 is 'B’

e 97 is'a’

e 50is'2’
e 51is'3’

56

ASCII character encoding

« Mappings from number to letter
« ASCII is one such mapping (https://www.asciitable.com/)

« Maps American keyboard characters and symbols

« Also special characters like tab, newline, or backspace

Dec Hxoct Char Dec Hx Oct Html Chr |Dec Hx ©Oct Himl Chr] Dec Hx Oct Html Chr
0 0 000 NOL ({rnuall) 32 20 040 Z; Space| §4 40 100 d; [95 60 140 `
1l 1 001 30H (start of heading) 33 21 041 =#33; ! 65 41 101 «#65; 4 a7 61 141 =#97: a
2 2 002 5Tx (start of text) 34 22 042 "d; 7 66 42 102 «#66; b 08 £2 142 =#93; b
3 3 003 ETX [end of text) 35 23 043 # # 67 43 103 C C 99 g3 143 c C
4 4 004 EOT (end of transmission) 36 24 044 $ § 65 44 104 «#68; D (100 64 144 d d
5 5 005 ENQ (enquiry) 37 25 045 %:; % 59 45 105 E E (10l &5 145 =#101; e
B 6 006 ACE [acknowleddge) 38 26 046 & = 70 45 106 &«#70; F |102 66 146
z2; €
77 007 BEEL (bell) 39 27 047 ' ' 71 47 107 «#71; G |103 &7 147 &«#l03; O
& & 010 B3 (backspace) A0 28 050 (| 72 45 110 Z; H (104 68 150 «#104; h
9 9 011 TAE (horizontal tab) 41 29 051 &«#41:) 73 49 111 «#73; I [105 69 151 i 1
10 & 012 LF (NL line feed, new line)| 42 z& 052 &#da; * 74 44 1172 J: J |106 64 152 j]
11 E 013 VT ([wertical tah) 43 2B 053 + + 75 4E 113 K K |107 6B 153 k kK
1z C 014 FF (NP form feed, new page)| 44 2ZC 054 &#d4d; | 76 AC 114 &«#76: L (108 &C 154 &#l08; 1
13 D 015 CE (carriage return) 45 ZD 055 =#45; - 77 4D 115 °7: M 109 6D 155 m o
14 E 0la 50 ([shift out) 4 2FE 056 d6; . 78 4E 116 N N |110 6E 156 n 1
152 F 017 51 [(shift in) 47 2F 057 d7: / 79 4F 117 «#79: 0 |111 AF 157 «#lll; o
1e 10 0z0 DLE i(data link escane] 48 30 060 -: 0 20 50 120 #3580 P |11Z2 70 160 &#llz: b

https://www.asciitable.com/

Other encoding systems

» ASCII was made in 1961 and was never meant to encompass
everything (American Standard Code for Information Interchange)

« Modern systems use Unicode
« Which includes letters in other alphabets
« 144762 characters from 159 modern and historic written languages

» Also includes various symbols like emoiji

« Doesn’t fit in a char though, that's only 256 options
« We'll stick to simple ASCII for this class

58

Dec HxOct Char

Escape sequences oo gy
2 2 002 3Tx [start of text)
. . 3 3 003 ETx [{end of text) _ _
* The first part of the ASCII table was various 4 4004 EOT (end of tranuission)
speC|aI sequences 5 6 008 ACK EEE};T?ledgE]
* Most of which aren't relevant anymore, but some are & s 01055 ipackspace)
- We need a way to type those “characters” 16 a0z LF (NI Line feed. mew line)
» Also sometimes want to write normal characters that 1 201271 (vertical ety -0
WOUId break C Syntax 13 D 015 CE [(carriage rEt.L;l]:Il:l
14 E 0Olg 50 [shift out)
15 F 017 &1 [shift in)
16 10 020 DLE (data link escape)
. Escape seC{uences \ followed by another symbol 17 11 21 ocr iaevice coneror 1)
(only counts as one character) Lo 13 uos Des rdevice colroe)
» Common examples: 21 15 025 WAK (negative acknoviedge]
° \].'1 —_— neW“ne 22 16 02 3¥N (synchronous idle)
23 17 027 ETE (end of trans. block)
e \t —tab 24 18 030 CAN [cancel]
25 19 031 EM (end of medium)
26 14 032 2UE (substitute)
 \\\ — backslash 27 1B 033 ESC (escape)
y . 28 1C 034 F3 [(f£ile separator)
¢ \ - Slngle C|U0te 29 1D 035 G2 [(group separator)
 \” —double quote 3 1P 037 U5 {umin senavatery

59

Outline

« What are pointers?

« Why are pointers?

 Arrays

* Characters

» Strings

« Arguments to main

Strings in C

» C strings are arrays of characters, ending with a null terminator
 Null terminator: \O’ character, which is the integer value zero
« No relation to NULL pointers

e String literals in code are arrays of characters
« And a "\0’ is placed at the end of them automatically

“Hello"\n” MUST use d_ouble qu_otes in C
when referring to strings

\Hl \el \II \|I \OI \!I \\nl \\OI

Working with strings

= const char* phrase = “"The cake 1s a lie”;
printf (“%s\n”, phrase); // prints “The cake is a lie\n”

printf (“sc\n”, phrase[0]); // prints “T\n”

char letter = phrasel[2];

\TI \hl \el \7 \CI \al \kl \el '\ \il \SI \\ \al \\ \II \il \el \\nl \\OI

phrase:

62

Working with strings

const char* phrase = “"The cake 1s a lie”;

=p printf (“"$s\n”, phrase);

printf (“sc\n”,

char letter

phrase[0]);

phrase[2];

// prints “The cake 1is

// prints “T\n”

a lie\n”

\TI

\hl

al \kl \el

\II

\\OI

phrase:

63

Working with strings

const char* phrase = “"The cake 1s a lie”;

printf (“$s\n”, phrase);

= printf (“$c\n”,

char letter

phrase[0]);

phrase[2];

// prints “The cake 1is

// prints “T\n”

a lie\n”

\TI

\hl

al \kl \el

\II

\\OI

phrase:

64

Working with strings

const char* phrase = “The cake 1s a 1lie”;
printf (“%s\n”, phrase); // prints “The cake is a lie\n”

printf (“sc\n”, phrase[0]); // prints “T\n”

= char letter = phrasel2];

\TI \hl \el \7 \CI \al \kl \el '\ \il \SI \\ \al \\ \II \il \el \\nl \\OI

phrase: letter: | ‘€’

65

WARNING! Single quotes versus double quotes

» Single quotes mean single characters
\al
\\nl
\ & ’

* Double quotes mean strings (zero or more characters)

\\ 144

a
\\alpha//

\\7/7

“She—-Ra 1s the best show ever!\n”

 Be careful not to mix them up!
 Especially because in many other languages they are identical

66

live example

String literals cannot be modified

» const in C marks a variable as constant (a.k.a. immutable)

« Example:
const 1nt x = 5;
x++; // Compilation error!

» String literals in C are of type const char*

const char* mystr = “Hello!\n”;
mystr[1l] = ‘B’; // Compilation error!

« Just removing the “"const” will result in a runtime crash instead...

The null terminator marks the end of the string

* SO, strings are arrays of characters

« And there’s no way to know the length of an array in C
« SO0 how does printf know when to stop printing characters?

e It looks for the null terminator!

68

Iterating through a string ive example

volid print string chars(char* string)
for (size t i=0; string[i] != “\O0'; 1i++) {
printf (“"String[%d] = ‘%c’\n”, i, stringli]);

 Note that we didn’t need a length this time!
« Just iterate until you find the null terminator

Making modifiable strings ive example

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
« Need to be sure to copy over the "\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, 'b’, 'c/, and "\0")

A note on writing meaningful code

» Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
« false is implemented as zero as well

 So, technically, you could use any to mean any

« But humans will be the ones reading your code
« NULL \0’, 0, and f£alse all have different meanings

« NULL means pointers
» '\0O' means the end of strings
« false means a Boolean value

0 means a number

Use the one that is
appropriate to the situation!

71

C has a library for working with strings

#include <string.h>

» https://www.cplusplus.com/reference/cstring/
« Particularly useful:

« strlen () finds the length of a string (not including null terminator)
* strcpy () copies the characters of a string

« strcmp () compares two strings to determine alphabetic order

« Note: you cannot compare two strings with ==
« That would just check if the pointers are the same

72

https://www.cplusplus.com/reference/cstring/

Outline

« What are pointers?

« Why are pointers?

 Arrays

* Characters

» Strings

 Arguments to main

Passing arguments to main

» We've been using "int main (void);” aSmain ()’s signature

 Actually, main () can receive arguments, which are what the user
called the program with

o\°

./programname argl arg2 arg3

74

Real signature for main

* The real signature for main () is:

int maln(1int argc, char* argvl[]);

« argc — the number of strings in argv (length of argv)

* argv — an array of strings (array of char*)

 The first string is the name of the program itself
« The remaining strings are the arguments to the function

* By using main (void), we've just been ignoring these
« Which is fine, because they aren’t always useful

75

Working with argv live example

» Let’s print out all the arguments to the function

int mailn(int argc, char* argvl[]) {
for (int 1=0; 1<argc; 1++) {
printf (“Argument %d: \”%s\”\n”, i, argv[il]);

return 0;

Outline

« What are pointers?

« Why are pointers?

 Arrays

* Characters
» Strings

« Arguments to main

Outline

* Bonus: Variable Lifetimes

(We'll get to this in class at some point, but I suspect not today)

When is a pointer “valid"?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
» Variables “live” until the end of the scope they were created in
« Scopes are defined by { }

« Example:

volid some function (void) {
int a = 5;

} G— o gOeS out of scope” here
The variable stops being “alive”

79

Examples of variable lifetimes

int main(void) {

(
—p int a = 5
(

printf (“&d\n”, a);

return 0O;

80

Examples of variable lifetimes

int main(void) {

(
int a = 5;
=» printf (“%d\n”, a);

return 0O;

81

Examples of variable lifetimes

int main(void) {
int a = 5;
printf (“%d\n”, a);

=» return 0O;
}

82

Examples of variable lifetimes

int main(void) {
int a = 5;
printf (“$d\n”, a);
return O;
*}

» Variable a is no longer “alive” at this point

« It “poofs” out of existence
 The variable is no longer valid

83

Lifetimes go from creation to end brace }

test (17);

=» vold test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;
printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
- int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
- if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

printf (“$d\n”, n);
}

17

Lifetimes go from creation to end brace }

test (17);
volid test (int n) { a.
int a = 5; b:
if (n >= a) | '
= int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
}

17

5

16

Lifetimes go from creation to end brace }

test (17);

volid test (int n) { a.

int a = 5;
1if (n >= a) {
int b = 16;
—>> printf (“%d\n” , Db);
}

printf (“$d\n”, n);
}

17

5

16

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
1if (n >= a) {
int b = 16;

printf (“sd\n” , b);

-> }

printf (“$d\n”, n);
}

Q)

17

Lifetimes go from creation to end brace }

test (17);

volid test (int n) {
int a = 5;
if (n >= a) {
int b = 16;

printf (“sd\n” , b);

}

- printf (“%d\n”, n);
}

17

Referring to variable b

at this point would be
a compilation error

90

Lifetimes go from creation to end brace }

test (17);
A X
void test (int n) { 3 Z}:
int a = 5;

if (n >= a) {

int b = 16;

printf (“sd\n” , b);
}

printf (“$d\n”, n);
=> }

o1

Variable lifetimes are what makes loops work

» Variables created inside of loops only exist until the end of that
iteration of the loop
* i.e. they only exist until the next end curly brace }

while (n < 5) {

int 1 = 1; A new variable i is created

} n += 1i; each time the loop repeats

92

Dangling pointers reference invalid objects

int* get pointer to value(void) {
int n = 5;

return &n;

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

93

Dangling pointers reference invalid objects

int* get pointer to value(void) {
int n = 5;

return &n; n goes out of scope at the end of this function

} <
So what does the pointer point to???

int main (void) {
int* x = get pointer to value();
printf (“sd\n”, *x);

return 0;

94

Dangling pointers are especially dangerous

 Accessing a dangling pointer is undefined behavior
 Anything could happen!

« If you are lucky: segmentation fault (a.k.a. SIGSEGV)
» The OS kills your program because it accesses invalid memory

o If you are unlucky: anything at all

* Including returning the correct result the first time you run it and an
incorrect result the second time

95

String literals are an exception to scoping rules ve example

» String literals always exist
 This is why they cannot be modified. They might be reused later

const char* get poilnter to string(void) {

return “oh, hello!”; // this is okay for string literals

int main (void) {
const char* string = get pointer to string();
printf (“$s\n”, string);

return 0O;

96

