
Lecture 04
Arrays and Strings

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov

Administrivia

• Homework 1 is due today

• Lab03 is released today (due Sunday)
• Practice manipulating strings

• Homework 2 will be released late tonight (due next Thursday)
• Lots of string manipulation
• Get started early!

• Partner assignment (work with 1 or 0 other people)
• We’ll put out a survey for people who want to be matched

• Includes “hidden tests”

2

Administrivia

• Campuswire issues
• Seems to be crashing every night right now…

• We’re watching this and will move to a new platform if necessary

3

Today’s Goals

• More practice with pointers and why they are useful

4

Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/04_arrays_strings.tgz

cd 04_arrays_strings/

5

6

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

7

z: 5

z_pointer:

C syntax for pointers

• Pointers are a family of types
• Each pointer is an existing C type, followed by a *

• To get the pointer to an existing variable, use the & operator
• Returns the address of that variable

• Example:

int z = 5;

int* z_pointer = &z;

8

z: 5

z_pointer:

Possible pointer values

• Uninitialized
unsigned long* zeta;

• Pointing at an existing object
char* letter_ptr = &my_char;

• Null (explicitly pointing at nothing)
int* p = NULL;

bool* b = NULL;

double* d = NULL;

• NULL works for any pointer type
• NULL is NOT the same as uninitialized (🐝)
• Dereferencing a null pointer is an error (segfault)

9

Some things to remember about pointers

1. Remember that a pointer is a type
• int*, char*, short*, bool*, double*, size_t*, etc.

2. Think carefully about whether the pointer is being modified or
the value in the object it points to
• my_pointer = &x; // modifies which object we are pointing at

• *my_pointer = x; // modifies the value in the object we are pointing at

3. Remember that pointer variables are themselves variables
• They have values: the address of the object being pointed at

• They name objects: memory is allocated to hold the address

10

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this

2. int * x;

3. int *x;

11

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this

2. int * x;

3. int *x;

• The * operator also means multiplication
signed long w = *t * *v; // multiply values referenced

// by the pointers t and v

12

Never define multiple variables at once

• You can define multiple variables at once in C

double x, y, radius;

Equivalent code:

double x;

double y;

double radius;

13

Never define multiple variables at once

• But this breaks when you’re using pointers

double* x, y, radius;

Equivalent code:

double* x;

double y;

double radius;

• To write that line correctly, you need to write:
double *x, *y, *radius; OR double * x, * y, * radius; (spacing doesn’t matter)

• Or just never ever declare multiple variables in the same line!

14

Not pointers!!! 😱

15

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Pointers functions directly modify values inside variables

• Normally, functions get a copy of the value inside the variable

• With pointers, functions can directly modify the variable
• The function gets a copy of the pointer to the variable

16

Adding two to a variable WITHOUT pointers

int add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

17

Adding two to a variable WITH pointers

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

18

Side-by-side comparison of without/with pointers

void add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

19

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

Scanf example

• scanf() uses pointers to write to the variables you pass it

int x = 0;

int count = scanf(“%d”, &x);

• Pointers allow scanf() to read results directly into your variable

• scanf() also simultaneously returns the number of arguments matched

• For homework 1, for example, scanf() needs to match three inputs

• Without pointers, you would only be able to match one

20

Another example: what if we want to pass a struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

int main(void){

plant_t plant_a;

initialize_oak_tree(&plant_a);

return 0;

}

21

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

Shortcut for pointers to structs

• C programs end up using pointers to structs A LOT

• It’s annoying to type (*struct).field all the time
• So we made a shortcut. These two mean exactly the same thing:

(*struct).field

struct->field (that’s dash and greater than)

• This is known as “syntactic sugar”

• Bonus syntax to make common things easier

22

Adding a function to print the struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

void print_plant(plant_t* plant){

printf(“Plant is %d meters tall and ”

“has %d leaves.\n”,

plant->height, plant->num_leaves);

if (!plant->watered) {

printf(“\tIt needs to be watered!\n”);

}

}

23

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

Break + Question

double x = 7.0;

double* xptr = &x;

*xptr += 3.0;

x = x / 4.0;

printf(“%f\n”, *xptr);

What value prints?

24

Break + Question

double x = 7.0;

double* xptr = &x;

*xptr += 3.0;

x = x / 4.0;

printf(“%f\n”, *xptr);

What value prints? 2.5

25

26

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Array types

• Let’s talk about some ideas that really rely on the existence of
pointers

• The first of these is arrays
• Arrays: a variable that holds multiple of a type

• Example: one horizontal shelf

• Can hold multiple books

• A shelf is an “array of books”

27

Arrays in C

int x;

int array_x[4];

• Generally:
type variable_name[N]; (array of type with length N)

28

x: 🐝

array_x: 🐝 🐝 🐝 🐝

Multiple objects
for a single variable,
each with their own value

Working with values in arrays

• Every array has one or more objects, each with their own values
• Like fields in a struct

• The “slots” in an array are numbered from zero
• Arrays in C are zero-indexed

double values[3] = {1.2, -3.5623, 0.0};

double x = values[0];

29

values: 1.2 -3.5623 0.0

x: 1.2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

30

array_x: 🐝 🐝 🐝 🐝 🐝

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

31

array_x: 🐝 🐝 🐝 🐝 🐝

i: 0

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

32

array_x: 5 🐝 🐝 🐝 🐝

i: 0

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

33

array_x: 5 🐝 🐝 🐝 🐝

i: 1

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

34

array_x: 5 4 🐝 🐝 🐝

i: 1

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

35

array_x: 5 4 🐝 🐝 🐝

i: 2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

36

array_x: 5 4 3 🐝 🐝

i: 2

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

37

array_x: 5 4 3 🐝 🐝

i: 3

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

38

array_x: 5 4 3 2 🐝

i: 3

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

39

array_x: 5 4 3 2 🐝

i: 4

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

40

array_x: 5 4 3 2 1

i: 4

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

41

array_x: 5 4 3 2 1

i: 5

Array assignment example

int data[5];

for (int i=0; i<5; i++) {

data[i] = 5-i;

}

data[4] = data[0] + data[1];

42

array_x: 5 4 3 2 9

Remember array[N-1]

is the last slot in an array
of length N

Lengths of arrays

• How do you determine how long an array is?

• You cannot in C
• Hopefully, you remember

• Or someone told you

• This is an example of C giving you “full control”
• Why bother storing the length of the array? That wastes memory

43

The name of the array is like a pointer to the first element

• You can treat the name of the array like a pointer
• It basically is one

• You could dereference it, and you’ll get the value in the first slot of
the array

• Two ramifications of this:
• You can’t pass arrays into functions, only pointers

• Array indexing is identical to pointer arithmetic

44

Arrays passed into functions are just pointers

• When you pass an array into a function, you don’t pass a copy of the
values
• Instead you pass a pointer to the start of the array
• Be sure to pass a length as well! (no way to determine that in C)

void print_array(int* values, int count) {

. . .

}

int main(void) {

int array[10] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};

print_array(array, 10);

return 0;

}

45

live example

Array indexing is pointer arithmetic

• Indexing into arrays is just adding to the pointer value
• Example, these two are equivalent:

array[10]

*(array+10)

• As are these two:

&(array[7])

array+7

46

live example

DANGER! Nothing stops you from going past the end of an array

• C does not check whether your array accesses are valid
• It just tries to grab the value in the memory you asked for

• Going past the end (or before the beginning) of an array is
UNDEFINED BEHAVIOR
• Could result in anything happening

• If you’re lucky, the code will crash
• But you will not always get lucky

• Be sure to always check if you’re going past the end of the array

47

live example

Ways of creating arrays

• Statically sized “local variable” (a variable inside a function)
int array[10];

• Dynamically sized local variable
int data_size;

scanf(“%d”, &data_size);

int data[data_size]; // probably should have checked

// the value in data_size first...

48

One more way to create arrays

• Using a library that gives you a chunk of memory for the objects

• Example
double* array = malloc(4 * sizeof(double));

• malloc() returns a pointer to an amount of memory requested

• sizeof() returns the size of a type in bytes

• 4 slots, each of which can hold a double

• MUCH more about malloc next week

49

C arrays cannot change length

• Once an array is created, its length cannot be changed
• You cannot grow or shrink the number of slots

• You can make a whole new array that’s bigger
• Copy over elements from the old array

• malloc() and dynamic memory are a way to create new arrays
• We’ll talk about this more next week

50

Array of structs example

• Arrays can be made of any type
• int, float, bool, char, etc.
• Also structs!

struct circle {

double x;

double y;

double radius;
};

struct circle many_circles[5] = {0};

many_circles[1].x = 1;

many_circles[1].y = 1;

many_circles[1].radius = 2;

51

Special syntax to initialize all
values as zero within the
array. Only works for zero.

live example

Break + Question

• Fill in the remaining code to sum an array in C

int sum_array(int* array, size_t length) {

int sum = 0;

for (size_t i=0; ________; ___) {

sum += ________;

}

return sum;

}

52

Break + Question

• Fill in the remaining code to sum an array in C

int sum_array(int* array, size_t length) {

int sum = 0;

for (size_t i=0; i<length; i++) {

sum += array[i];

}

return sum;

}

53

54

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Character types

• char, signed char, unsigned char
• Capable of holding numbers from 0 to 255 or -128 to 127

• Also capable of holding single “characters”
• Letters, digits, symbols

char letter = ‘a’;

char number = ‘1’;

char symbol = ‘~’;

55

MUST use single quotes in C
when referring to characters

Characters are both numbers and letters

• How can a char hold either a letter or a number?
• Each number represents a certain character

• Example:

• 33 is ‘!’

• 65 is ‘A’

• 66 is ‘B’

• 97 is ‘a’

• 50 is ‘2’

• 51 is ‘3’

56

ASCII character encoding

• Mappings from number to letter
• ASCII is one such mapping (https://www.asciitable.com/)

• Maps American keyboard characters and symbols

• Also special characters like tab, newline, or backspace

57

https://www.asciitable.com/

Other encoding systems

• ASCII was made in 1961 and was never meant to encompass
everything (American Standard Code for Information Interchange)

• Modern systems use Unicode
• Which includes letters in other alphabets

• 144762 characters from 159 modern and historic written languages

• Also includes various symbols like emoji

• Doesn’t fit in a char though, that’s only 256 options

• We’ll stick to simple ASCII for this class

58

Escape sequences

• The first part of the ASCII table was various
special sequences
• Most of which aren’t relevant anymore, but some are
• We need a way to type those “characters”
• Also sometimes want to write normal characters that

would break C syntax

• Escape sequences: \ followed by another symbol
(only counts as one character)
• Common examples:

• \n – newline
• \t – tab

• \\ – backslash
• \’ – single quote
• \” – double quote

59

60

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Strings in C

• C strings are arrays of characters, ending with a null terminator
• Null terminator: ‘\0’ character, which is the integer value zero

• No relation to NULL pointers

• String literals in code are arrays of characters
• And a ‘\0’ is placed at the end of them automatically

“Hello!\n”

61

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘!’ ‘\n’ ‘\0’

MUST use double quotes in C
when referring to strings

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

62

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

63

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

64

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase:

Working with strings

const char* phrase = “The cake is a lie”;

printf(“%s\n”, phrase); // prints “The cake is a lie\n”

printf(“%c\n”, phrase[0]); // prints “T\n”

char letter = phrase[2];

65

‘T’ ‘h’ ‘e’ ‘ ’ ‘c’ ‘a’ ‘k’ ‘e’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘a’ ‘ ‘ ‘l’ ‘i’ ‘e’ ‘\n’ ‘\0’

phrase: letter: ‘e’

WARNING! Single quotes versus double quotes

• Single quotes mean single characters
‘a’

‘\n’

‘&’

• Double quotes mean strings (zero or more characters)
“a”

“alpha”

“”

“She-Ra is the best show ever!\n”

• Be careful not to mix them up!
• Especially because in many other languages they are identical

66

String literals cannot be modified

• const in C marks a variable as constant (a.k.a. immutable)
• Example:

const int x = 5;

x++; // Compilation error!

• String literals in C are of type const char*

const char* mystr = “Hello!\n”;

mystr[1] = ‘B’; // Compilation error!

• Just removing the “const” will result in a runtime crash instead…

67

live example

The null terminator marks the end of the string

• So, strings are arrays of characters

• And there’s no way to know the length of an array in C

• So how does printf know when to stop printing characters?

• It looks for the null terminator!

68

Iterating through a string

void print_string_chars(char* string) {

for (size_t i=0; string[i] != ‘\0’; i++) {

printf(“String[%d] = ‘%c’\n”, i, string[i]);

}

}

• Note that we didn’t need a length this time!
• Just iterate until you find the null terminator

69

live example

Making modifiable strings

Two options

1. Create a new character array with enough room for the string
and then copy over characters from the string literal
• Need to be sure to copy over the ‘\0’ for it to be a valid string!

2. Initialize an array with a string literal

char mystr[] = “abc”;

Creates a character array of length 4 (‘a’, ‘b’, ‘c’, and ‘\0’)

70

live example

A note on writing meaningful code

• Technically, NULL pointers and null terminators are both
implemented as a value zero (on any modern system)
• false is implemented as zero as well

• So, technically, you could use any to mean any

• But humans will be the ones reading your code
• NULL ‘\0’, 0, and false all have different meanings

• NULL means pointers

• ‘\0’ means the end of strings

• false means a Boolean value

• 0 means a number

71

Use the one that is
appropriate to the situation!

C has a library for working with strings

#include <string.h>

• https://www.cplusplus.com/reference/cstring/
• Particularly useful:

• strlen() finds the length of a string (not including null terminator)

• strcpy() copies the characters of a string

• strcmp() compares two strings to determine alphabetic order
• Note: you cannot compare two strings with ==

• That would just check if the pointers are the same

72

https://www.cplusplus.com/reference/cstring/

73

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

Passing arguments to main

• We’ve been using “int main(void);” as main()’s signature

• Actually, main() can receive arguments, which are what the user
called the program with

% ./programname arg1 arg2 arg3

74

Real signature for main

• The real signature for main() is:

int main(int argc, char* argv[]);

• argc – the number of strings in argv (length of argv)

• argv – an array of strings (array of char*)
• The first string is the name of the program itself

• The remaining strings are the arguments to the function

• By using main(void), we’ve just been ignoring these
• Which is fine, because they aren’t always useful

75

Working with argv

• Let’s print out all the arguments to the function

int main(int argc, char* argv[]) {

for (int i=0; i<argc; i++) {

printf(“Argument %d: \”%s\”\n”, i, argv[i]);

}

return 0;

}

76

live example

77

• What are pointers?

• Why are pointers?

• Arrays

• Characters

• Strings

• Arguments to main

Outline

78

• Bonus: Variable Lifetimes

(We’ll get to this in class at some point, but I suspect not today)

Outline

When is a pointer “valid”?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
• Variables “live” until the end of the scope they were created in

• Scopes are defined by { }

• Example:

void some_function(void) {

int a = 5;

}

79

a goes “out of scope” here

The variable stops being “alive”

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

80

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

81

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

82

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

• Variable a is no longer “alive” at this point
• It “poofs” out of existence

• The variable is no longer valid

83

a:

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

84

n: 17

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

85

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

86

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

87

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

88

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

89

n: 17

a: 5

b: 💥

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

90

n: 17

a: 5

Referring to variable b

at this point would be
a compilation error

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

91

n: 💥

a: 💥

Variable lifetimes are what makes loops work

• Variables created inside of loops only exist until the end of that
iteration of the loop
• i.e. they only exist until the next end curly brace }

while (n < 5) {

int i = 1;

n += i;

}

92

A new variable i is created

each time the loop repeats

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

93

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

94

n goes out of scope at the end of this function

So what does the pointer point to???

Dangling pointers are especially dangerous

• Accessing a dangling pointer is undefined behavior
• Anything could happen!

• If you are lucky: segmentation fault (a.k.a. SIGSEGV)
• The OS kills your program because it accesses invalid memory

• If you are unlucky: anything at all
• Including returning the correct result the first time you run it and an

incorrect result the second time

95

String literals are an exception to scoping rules

• String literals always exist
• This is why they cannot be modified. They might be reused later

const char* get_pointer_to_string(void) {

return “oh, hello!”; // this is okay for string literals

}

int main(void) {

const char* string = get_pointer_to_string();

printf(“%s\n”, string);

return 0;

}

96

live example

