
Lecture 03
Build System + Pointers

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov

Administrivia

• Campuswire access
• If you do not have access to campuswire, email me ASAP

• Homework submissions
• Be sure to make a Gradescope account ASAP

• You should have gotten an email

• You may submit your homework any number of times

• For this assignment, we won’t take away points for spaces vs. tabs

2

Today’s Goals

• Catch up on various C details
• Compilation steps

• Pre-processor

• Make

• Begin introducing pointers in C
• Why do they exist?

• What are they useful for?

• How do we use them?

3

Getting files for today’s lecture

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/03_pointers.tgz

cd 03_pointers/

4

5

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

Shell command: sudo

• Superuser do
• Executes a command with special administrator privilege (superuser)
• Necessary for installing new programs and modifying the OS

• Run it before a command to execute that command as a superuser
• Example: sudo rm –rf / (don’t run this!)

• You can only use sudo on computers where you are an admin
• Only use with caution and care. It can destroy your computer

• You’ll never need it for class stuff
• You are NOT an admin on the class servers! (neither am I)

6

sudo example

7

sudo example

8

C comments

• // means a single-line comment

• /* starts a multiline comment, which continues until */

• How to use comments effectively
• Comment “blocks” of code with their purpose

• Every line is too much

• Often helpful to write the comments before the code as planning

• Comment tricky bits of code so you know what it means

• You + several weeks = “what does that code mean?!”

9

Signed vs unsigned variables

• All “integer” types in C can be signed or unsigned
• char, short, int, long, etc.

• Unsigned: only zero or positive

• Signed: negative, zero, or positive

• Signed is the default! If it doesn’t say, it’s usually signed

• An exception is size_t which is unsigned

• Comparing signed and unsigned numbers generates a warning
• Should make sure they’re the same before comparing

10

Temporarily changing types while comparing

• You can cast a variable to another type during an expression
• To cast, put a type in parentheses before the variable name

• Example
int i = 0; //int is signed by default

size_t length = 5; //size_t is unsigned

if (i > length) { // warning here!

printf(“Too big!\n”);

}

11

Temporarily changing types while comparing

• You can cast a variable to another type during an expression
• To cast, put a type in parentheses before the variable name

• Example
int i = 0; //int is signed by default

size_t length = 5; //size_t is unsigned

if (i > (int)length) { // no warning anymore!

printf(“Too big!\n”);

}

12

typedef can be used to make new C type names

• Typedef creates a new type name that is a copy of an existing type

• Typedef keyword is followed by two types
• First type: the original type name

• Second type: the new type name

• Example:
typedef int x_coordinate_t;

x_coordinate_t my_variable = 5;

13

Break + relevant xkcd

14https://xkcd.com/838/

15

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

Problems with compilation

• Two issues
• Big programs take a very long time to compile

• How can we reuse our functions in multiple programs?

• Let’s focus on that second issue. It would be nice to:
1. Write some functions in one file

2. Call those functions from multiple programs (other files)

16

Source Code Machine Code
compilation

Solution: multiple C files

• You can write code in any number of different C files
• And combine them together while compiling

• But we need some way to tell C code in one file about the
existence of C code in another file
• Solution: header files (.h)

• Header files list all the publicly available functions and variables from a C
file

• Usually, there is a .c and .h file for various libraries

• Header files are #include-ed at the top of your C file

17

Compiling multiple C files

• Each C file is compiled separately

• Then combine multiple together into a single program

• Compilers have a middle step: object files (.o)
• Still not human readable

• Meant to be joined together into a single executable

18

General C project layout

• src/
• Various code that actually runs your project

• test/
• Various code that tests your files in src/

• We separate code in src/ into two categories
• The executable, which has a main() function and not much else

• Named whatever your executable is, but with a .c
• Example: overlapped.c

• Libraries which have both .c and .h files
• Example: circle.c and circle.h

19

Example of multiple compilation

20

21

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

C pre-processor

• Reads in the text of your source code

• Does some initial text-based manipulations to the code
• Prepares everything for the compiler

22

C reads files from the top down

• First important thing to know about the pre-processor/compiler
• They read from the top of the file down
• Functions that don’t exist when you try to call them are an error

• How would we write this code then?

void a(void) {

b();
}

void b(void) {

a();
}

23

Function declaration

• You can inform the compiler about functions that will later be
defined
• You are telling the C compiler: “here’s what this other function looks like,

you’ll get details about how it works later”
• Very useful for libraries that you are using

• A function declaration in C includes the return type, name, and
argument types
• Examples:

void a(void);

struct circle read_circle(void);

• A function definition in C also includes the body of the function

24

Header files are collections of declarations

• You could manually type out the declaration for each function you
want to use at the top of your C file

• Instead, we create “Header files” (.h) that hold all the function
declarations for functions in the associated .c file

• #include-ing a header file tells the pre-processor to paste its
contents
• The same as if you had typed them in the top of the file yourself

• Leads to weird errors sometimes if you mess up a header file

• Be sure to only include header files!

25

What else can the pre-processor do?

• Macros
• Text substitutions made by the pre-processor

• Compile-time code inclusion
• Determine which code is actually compiled based on flags

• Pragma
• Special commands to the compiler

26

C macros

#define NAME_OF_MACRO value_of_macro

• Examples:
#define LENGTH 20

#define FAIL_MESSAGE “There was an error!\n”

• The pre-processor pastes the text of the “value” wherever it finds
the macro “name” in the source code
• Useful for defining values that will be used in code

• Again, be careful about weird bugs here!

27

Macro functions

• Macros can be used as functions as well

#define DEBUG(msg) printf(msg)

#define MIN(a, b) ((a < b) ? a : b)

• Generally, avoid this
• You could just write a C function to do the operation instead

• And the compiler will check this for errors better

• It can be tricky to get right

28

Example of macro function trickiness

#define ADD(a, b) a+b

int x = ADD(3,4)*5; // Expects 7*5=35

• The pre-processor will expand this to:

int x = 3+4*5; // Expects 7*5=35

• Extra parentheses around the macro value prevent this issue
#define ADD(a, b) (a+b)

29

Ifdef in C

• The pre-processor evaluates the statement before compilation and
either includes or removes the text
• Useful because the code literally does not exist if removed

#ifdef DEBUG

printf(“Debug message here\n”);

#endif

• Ifdef hell: when you can’t figure out which C code is actually being
compiled due to too many #ifdefs

30

Pragma examples

• Pragmas tell the C compiler to do something
• Turn on/off warnings

• Various compiler tricks that are important for low-level OS code

• Most common example: #pragma once at the top of each header
• Tells the compiler to track this file and only paste it in a given C file once

• Otherwise could end up with a bunch of different copies

• Old C code uses #ifdef at the top of header files for the same task

• Paired with an #endif at the very bottom of the file

31

Examples

• The –E flag tells the compiler to only run the pre-processor

• In homework01
• cc –E src/overlapped.c –o overlapped.i

• Note that header files are included

• Note that some functions are only definitions right now

• Also give an example of a macro substitution

32

33

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

New problem, how do you remember all these steps?

34

And this doesn’t even
include various flags we
give to the compiler,
such as the location of
the 211.h library

Simplifying multiple compilation with Make

• Make is a tool for building programs out of multiple source files
• Allows you to specify goals and requirements as “rules”

• And then runs the compiler to fulfill those

• To build a file named ⟨goal⟩ using make, you run:
make ⟨goal⟩

• Make looks around the current directory for a file named Makefile
which specifies the various rules
• We’ll provide the Makefile for you in this class

• But you’ll have to use make to compile your programs

35

What does a make rule look like?

• A rule has a goal and pre-requisites for the goal
• And then specifies commands to create the goal given the pre-requisites

⟨goal⟩: ⟨prereqs⟩. . .

⟨commands⟩
...

• Example:
hello: hello.c

cc -o hello hello.c

36

Bonus: Makefile for building interact and posn_test

• Take a look at these if you want to understand the Makefile for the
interact and posn_test programs from today’s lecture files

• ~cs211/lec/03_pointers

37

Bonus: Makefile for building interact and posn_test

• These rules encode the dependency diagram from a few slides back
(but with preprocessing and translation combined)

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c

38

Bonus: Makefile for building interact and posn_test

• Good programmers are lazy and hate repetition. So much repetition here!

interact: interact.o posn.o

cc -o interact interact.o posn.o

posn_test: posn_test.o posn.o

cc -o posn_test posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o interact.o interact.c

posn_test.o: posn_test.c posn.h

cc -c -o posn_test.o posn_test.c

posn.o: posn.c posn.h

cc -c -o posn.o posn.c

39

Bonus: Makefile for building interact and posn_test

• You don’t have to repeat the goal in each recipe
• It’s better to use the special variable $@ instead

interact: interact.o posn.o

cc -o $@ interact.o posn.o

posn_test: posn_test.o posn.o

cc -o $@ posn_test.o posn.o

interact.o: interact.c posn.h

cc -c -o $@ interact.c

posn_test.o: posn_test.c posn.h

cc -c -o $@ posn_test.c

posn.o: posn.c posn.h

cc -c -o $@ posn.c

40

Bonus: Makefile for building interact and posn_test

• Similarly, $^ is a variable that stands for the prerequisites
• Or $< when you only want the first prerequisite

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<

41

Bonus: Makefile for building interact and posn_test

• Now note that the bottom three compilation rules are the same except for
the filename. We can replace them with a pattern rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

interact.o: interact.c posn.h

cc -c -o $@ $<

posn_test.o: posn_test.c posn.h

cc -c -o $@ $<

posn.o: posn.c posn.h

cc -c -o $@ $<

42

Bonus: Makefile for building interact and posn_test

• This pattern says we can build any .o file from a matching .c file

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c posn.h

cc -c -o $@ $<

43

Bonus: Makefile for building interact and posn_test

• That pattern is pretty generic except for the reliance on posn.h
• Let’s break that out into a separate rule

interact: interact.o posn.o

cc -o $@ $^

posn_test: posn_test.o posn.o

cc -o $@ $^

%.o: %.c

cc -c -o $@ $<

interact.o posn_test.o posn.o: posn.h

44

Bonus: Makefile for building interact and posn_test

• And we really out to make the compiler used a variable
• Then others could change it out if desired

interact: interact.o posn.o

$(CC) -o $@ $^

posn_test: posn_test.o posn.o

$(CC) -o $@ $^

%.o: %.c

$(CC) -c -o $@ $<

interact.o posn_test.o posn.o: posn.h

45

Bonus: Makefile for building interact and posn_test

• Finally, there are often compiler options we want to pass in
• Here are the standard variables for holding those

interact: interact.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

posn_test: posn_test.o posn.o

$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS)

%.o: %.c

$(CC) -c -o $@ $< $(CPPFLAGS) $(CFLAGS)

interact.o posn_test.o posn.o: posn.h

46

Break + Question

• Let’s combine things we’ve
learned

• Typedef:
typedef old_type new_type;

• Structs:
struct name {

type1 field1;

type2 field2;

};

47

• What does this do?

typedef struct posn {

double xcoor;

double ycoor;

} posn_t;

Break + Question

• Let’s combine things we’ve
learned

• Typedef:
typedef old_type new_type;

• Structs:
struct name {

type1 field1;

type2 field2;

};

48

• What does this do?

typedef struct posn {

double xcoor;

double ycoor;

} posn_t;

• Creates a new struct type,
and typedefs it so you can
refer to it as a “posn_t” or
as “struct posn”

Break + Question

• What does this do?

typedef struct posn {

double xcoor;

double ycoor;

} posn_t;

• Creates a new struct type, and
typedefs it so you can refer to
it as a “posn_t” or as
“struct posn”

49

• You can go one step further

typedef struct {

double xcoor;

double ycoor;

} posn_t;

• Now the struct is anonymous
and can only be referred to as
the new type “posn_t”

50

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

Remember: values, objects, and variables

• Values are the actual information we want to work with
• Numbers, Strings, Images, etc.
• Example: 3 is an int value

• An object is a chunk of memory that can hold a value of a particular
type.
• Example: function f has a parameter int x

• Each type f is called, a “fresh” object that can hold an int is “created”

• A variable is the name of an object

• Assigning to a variable changes the value stored in the object named by
the variable

51

Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

52

z: 5

z_pointer:

C syntax for pointers

• Pointers are a family of types
• Each pointer is an existing C type, followed by a *

• To get the pointer to an existing variable, use the & operator
• Returns the address of that variable

• Example:

int z = 5;

int* z_pointer = &z;

53

z: 5

z_pointer:

Longer pointer example

1. double alpha;

54

alpha: 🐝

Longer pointer example

1. double alpha;

2. double* beta;

55

alpha: 🐝

beta: 🐝

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

56

alpha: 🐝

beta: 🐝

gamma: 🐝

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

57

alpha: 🐝

beta:

gamma: 🐝

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

58

alpha: 🐝

beta:

gamma:

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

59

alpha: 🐝

beta:

gamma:

test: true

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

60

alpha: -7.362

beta:

gamma:

test: true

Dereferencing a pointer

• Pointers can be used to read or modify the value in the object
pointed at

• The * operator is used for getting/setting the value in the object
• This is called “dereferencing” the pointer

• Not multiply in this context

• Examples:
printf(“%d\n”, *my_int_pointer);

*my_int_pointer = 15;

61

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

8. test = (*beta < 0); // still true!

62

alpha: -7.362

beta:

gamma:

test: true

Longer pointer example

1. double alpha;

2. double* beta;

3. double* gamma;

4. beta = α

5. gamma = α

6. bool test = (beta == gamma && beta == &alpha);

7. alpha = -7.362;

8. test = (*beta < 0);

9. *gamma = 14.3

63

alpha: 14.3

beta:

gamma:

test: true

Possible pointer values

• Uninitialized
unsigned long* zeta;

• Pointing at an existing object
char* letter_ptr = &my_char;

• Null (explicitly pointing at nothing)
int* p = NULL;

bool* b = NULL;

double* d = NULL;

• NULL works for any pointer type
• NULL is NOT the same as uninitialized (🐝)
• Dereferencing a null pointer is an error (segfault)

64

Some things to remember about pointers

1. Remember that a pointer is a type
• int*, char*, short*, bool*, double*, size_t*, etc.

2. Think carefully about whether the pointer is being modified or
the value in the object it points to
• my_pointer = &x; // modifies which object we are pointing at

• *my_pointer = x; // modifies the value in the object we are pointing at

3. Remember that pointer variables are themselves variables
• They have values: the address of the object being pointed at

• They name objects: memory is allocated to hold the address

65

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this

2. int * x;

3. int *x;

66

C things that make pointers annoying

• For pointer types, the * doesn’t have to be next to the type
• These three all mean exactly the same thing:

1. int* x; // I strongly recommend you use this

2. int * x;

3. int *x;

• The * operator also means multiplication
signed long w = *t * *v; // multiply values referenced

// by the pointers t and v

67

Never define multiple variables at once

• You can define multiple variables at once in C

double x, y, radius;

Equivalent code:

double x;

double y;

double radius;

68

Never define multiple variables at once

• But this breaks when you’re using pointers

double* x, y, radius;

Equivalent code:

double* x;

double y;

double radius;

• To write that line correctly, you need to write:
double *x, *y, *radius; OR double * x, * y, * radius; (spacing doesn’t matter)

• Or just never ever declare multiple variables in the same line!

69

Not pointers!!! 😱

70

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

Pointers functions directly modify values inside variables

• Normally, functions get a copy of the value inside the variable

• With pointers, functions can directly modify the variable
• The function gets a copy of the pointer to the variable

71

Adding two to a variable WITHOUT pointers

int add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

72

Adding two to a variable WITH pointers

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

73

Side-by-side comparison of without/with pointers

void add_two(int n) {

return n+2;

}

int main(void) {

int x = 15;

x = add_two(x);

printf(“%d\n”, x);

return 0;

}

74

void add_two(int* n) {

*n += 2;

}

int main(void) {

int x = 15;

add_two(&x);

printf(“%d\n”, x);

return 0;

}

Another example: what if we want to pass a struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

int main(void){

plant_t plant_a;

initialize_oak_tree(&plant_a);

return 0;

}

75

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

Shortcut for pointers to structs

• C programs end up using pointers to structs A LOT

• It’s annoying to type (*struct).field all the time
• So we made a shortcut. These two mean exactly the same thing:

(*struct).field

struct->field (that’s dash and greater than)

• This is known as “syntactic sugar”

• Bonus syntax to make common things easier

76

Adding a function to print the struct

void initialize_oak_tree(plant_t* plant){

(*plant).is_watered = true;

(*plant).height = 10;

(*plant).num_leaves = 100000;

}

void print_plant(plant_t* plant){

printf(“Plant is %d meters tall and ”

”has %d leaves.\n”,

plant->height, plant->num_leaves);

if (!plant->watered) {

printf(“\tIt needs to be watered!\n”);

}

}

77

typedef struct plants {

bool is_watered;

double height;

int num_leaves;

} plant_t;

Scanf example

• scanf() uses pointers to write to the variables you pass it

int x = 0;

int count = scanf(“%d”, &x);

• Pointers allow scanf() to read results directly into your variable

• Pointers also scanf() to simultaneously return the number of arguments
matched

78

79

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

When is a pointer “valid”?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
• Variables “live” until the end of the scope they were created in

• Scopes are defined by { }

• Example:

void some_function(void) {

int a = 5;

}

80

a goes “out of scope” here

The variable stops being “alive”

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

81

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

82

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

83

a: 5

Examples of variable lifetimes

int main(void) {

int a = 5;

printf(“%d\n”, a);

return 0;

}

• Variable a is no longer “alive” at this point
• It “poofs” out of existence

• The variable is no longer valid

84

a:

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

85

n: 17

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

86

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

87

n: 17

a: 5

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

88

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

89

n: 17

a: 5

b: 16

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

90

n: 17

a: 5

b: 💥

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

91

n: 17

a: 5

Referring to variable b

at this point would be
a compilation error

Lifetimes go from creation to end brace }

test(17);

void test(int n) {

int a = 5;

if (n >= a) {

int b = 16;

printf(“%d\n” , b);

}

printf(“%d\n”, n);

}

92

n: 💥

a: 💥

Variable lifetimes are what makes loops work

• Variables created inside of loops only exist until the end of that
iteration of the loop
• i.e. they only exist until the next end curly brace }

while (n < 5) {

int i = 1;

n += i;

}

93

A new variable i is created

each time the loop repeats

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

94

Dangling pointers reference invalid objects

int* get_pointer_to_value(void) {

int n = 5;

return &n;

}

int main(void) {

int* x = get_pointer_to_value();

printf(“%d\n”, *x);

return 0;

}

95

n goes out of scope at the end of this function

So what does the pointer point to???

Dangling pointers are especially dangerous

• Accessing a dangling pointer is undefined behavior
• Anything could happen!

• If you are lucky: segmentation fault (a.k.a. SIGSEGV)
• The OS kills your program because it accesses invalid memory

• If you are unlucky: anything at all
• Including returning the correct result the first time you run it and an

incorrect result the second time

96

97

• Potpourri

• Separate Compilation

• C Pre-Processor

• Makefiles

• What are pointers?

• Why are pointers?

• Variable lifetimes

Outline

