
Lecture 02
Introducing C

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov

Administrivia

• Lab01 is due on Friday
• About half of you have finished it already

• Lab02 is released today
• Due on Sunday

• Hw01 will be released tonight
• Due next week Thursday

2

Today’s Goals

• Introduce the basics of C programming
• Compilation

• Variables

• Conditionals (if)

• Iteration (while and for)

• Input and Output (printf and scanf)

• Continue practicing working in the shell

3

4

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Commands for moving between directories

• Directory structure and moving through it
• ls

• Lists files in the current directory
• cd

• Change directory
• pwd

• Prints the path of the current directory

• Mis-typing something
• “Command not found” means you tried to run something invalid
• fish: somecommandyoumistyped: command not found...

5

Command flags

• man

• Opens the manual pages for a program

• Example: man ls

• Flags are configurations for a command that change what it does
• ls –l lists files in the current directory in a vertical list with details

• ls –t sorts the ls output by most recently modified

• ls –l –t does both

• You can type multiple flags after a single dash
• ls –lt is equivalent to ls –l -t

6

Working with files

• cat path

• Prints out the contents of the file

• mv path1 path2

• Moves a file from path1 to path2

• cp path1 path2

• Copies a file from path1 to path2

• rm path

• Deletes (removes) a file

7

Editing files

• There are many different terminal text editors
• And there are holy wars about why one is best

• There is no best. Just use whatever you like

• Example editors
• Vim, Emacs, Nano

• In CS211, I’ll be teaching you using the Micro text editor
• Occasionally I’ll open vim by accident. Someone yell at me when I do

• https://micro-editor.github.io/

8

Editing with Micro

• micro filename
• Opens micro, editing filename

• Works just like any text editor you’ve used
• Mouse moves the cursor around, as do the arrow keys

• Typing makes text appear

• (This isn’t true in some shell editors, looking at you vim)

• Ctrl-s save the file

• Ctrl-o open a file

• Ctrl-q quit

9

Helpful guides

• Great lecture notes on using the shell
• https://swcarpentry.github.io/shell-novice/

• Tool to explain various shell command syntax
• https://explainshell.com/

• Tool to explain how to use various shell commands
• Just type the command into the box at the top

• https://tldr.ostera.io/

10

https://swcarpentry.github.io/shell-novice/
https://explainshell.com/
https://tldr.ostera.io/

11

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Getting the examples from lecture

• First, make your own cs211 directory to store class stuff in
• cd ~/

• mkdir cs211

• The files for this class are in a zipped tarball (just like a zip file)
• We can extract them right into your cs211/ directory

• cd ~/cs211/

• tar -xvkf ~cs211/lec/02_intro_c.tgz

• cd 02_intro_c

• What does that command do?: https://explainshell.com/explain?cmd=tar+-
xvkf+%7Ecs211%2Flec%2F02_intro_c.tgz

12

https://explainshell.com/explain?cmd=tar+-xvkf+%7Ecs211%2Flec%2F02_intro_c.tgz

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

13

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

14

A function named main()

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

15

A function named main()

No Arguments (void)

Returns an integer

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

16

Call to the printf() function

One argument to the function,
the string “Hello, CS211\n”

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

17

Call to the printf() function

One argument to the function,
the string “Hello, CS211\n”

The printf() function is a part of

the standard input/output library,
included here

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

18

Returns a value, 0
(which is of type int)

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

19

Two special things going on here:

1. main() is a special function
name that is called when the
program runs

Hello world C program

#include <stdio.h>

int main(void) {

printf("Hello, CS 211!\n");

return 0;

}

20

Two special things going on here:

1. main() is a special function
name that is called when the
program runs

2. main() returns a number that
specifies whether the program
succeeded or failed and how
• 0 means success
• non-zero means failure
• specific numbers mean

different things to different
programs

21

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

How do you “run” C code?

• First, the C code needs to be translated
• From human-readable source code

• To machine code capable of being executed on a particular machine
(definitely not human readable)

• This translation process is called “compiling”
• The tool that does it is a “compiler”

22

Source Code Machine Code
compilation

What does machine code look like?

• Just a bunch of numbers
• Your text editor would interpret those numbers as random characters

• The computer processor reads the numbers to figure out which
instruction to run
• This is a version of assembly code

• See CS213 for way more details

23

Compiling a C program

• The compiler we’ll use is referred to as cc
• Short for C Compiler

• It takes in C source code and outputs executable machine code

• cc hello.c

• ls
a.out hello.c

• ./a.out
Hello, CS 211!

24

Compiling a C program

• a.out is the default name, but we probably want to use something
more memorable

• The -o flag specifies the output filename for the compiler

• cc -o hello hello.c

• ls
hello hello.c

• ./hello
Hello, CS 211!

25

Remember to compile!

• You need to re-compile code every time the source code changes

• You WILL forget to do this at some point
• And you’ll run the program but it’ll do the old behavior rather than the

new things you’ve written

26

Break + relevant xkcd

27
https://xkcd.com/303/

28

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Definition of Fibonacci Function

• 𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

29

n fib(n)

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

30

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

31

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

if (⟨test-expr⟩) { // evaluate ⟨test-expr⟩; then…
⟨then-stms⟩ // do these if ⟨test-expr⟩ was true

} else {

⟨else-stms⟩ // do these if ⟨test-expr⟩ was false

}

Statements can be nested in C

if (⟨first-test-expr⟩) {

if (⟨second-test-expr⟩) {

⟨A-stms⟩

} else {

⟨B-stms⟩

}

} else {

if (⟨third-test-expr⟩) {

⟨C-stms⟩

} else {

⟨D-stms⟩

}

}

32

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) + fib(n - 1);

}

}

33

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib(int n){

if (n < 2) {

return n;

} else {

return fib(n - 2) +

fib(n - 1);

}

}

34

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C doesn’t care about whitespace

Implementing Fibonacci in C

long fib(int n){if(n<2){return n;}else{return

fib(n-2)+fib(n-1);}}

35

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C really doesn’t care about whitespace

Implementing Fibonacci in C

long fib(int n){if(n<2){return n;}else{return

fib(n-2)+fib(n-1);}}

36

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

C really doesn’t care about whitespace

But humans do!

So don’t write your code this way!!!!!!!!!!

A note on style

• A lot of things are possible in C, but bad ideas
• They can make things hard to read

• They can be a source of bugs in code

• We try to provide you with what we think of as “good” C code

• We have a guide to how you should write your C code
• https://nu-cs211.github.io/cs211-files/cstyle.html

37

https://nu-cs211.github.io/cs211-files/cstyle.html

38

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Values, objects, and variables

• Values are the actual information we want to work with
• Numbers, Strings, Images, etc.
• Example: 3 is an int value

• An object is a chunk of memory that can hold a value of a particular
type.
• Example: function f has a parameter int x

• Each type f is called, a “fresh” object that can hold an int is “created”

• A variable is the name of an object

• Assigning to a variable changes the value stored in the object named by
the variable

39

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?

40

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
1. The first statement is a definition.

It creates an int object,
names it z,
and initializes it to the value 5

41

z: 5

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
2. The second statement is an assignment.

It replaces the value 5
stored in the object named by z
with the value 7.

42

z: 7

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

•What happens?
3. The third statement is also an assignment.

It retrieves the current value of z (which is 7),
then adds 4 to it,
and then stores the result back in the object named by z.

43

z: 11

C: Typed imperative programming

• Imperative programming
• Each line is a statement that changes the program’s state

• Usually, the values within a variable

• Type System
• Variables have a type associated with them

• The type determines qualities of the object

• Example: how much memory it takes up

• The type specifies what kind of value the variable holds

• Example: integers, decimal numbers, strings, etc.

44

Types in C

• Hold an integer number (like 5 or 0 or -3)
• char, short, int, long, size_t, int8_t, int16_t, int32_t, etc.
• These can also specify signedness

• unsigned: only 0 and greater
• signed: negative, 0, or positive

• Hold a decimal number (like 6.238 or 0.00001 or -32566.5)
• float, double
• These are always negative, 0, or positive

• Difference between types: how big of a value they can hold
• Short: 0 to 65536 OR signed short -32768 to 32767
• Int: 0 to 4294967296 OR signed int -2147483648 to 2147483647
• We’ll have a whole future lecture on why the types are like this

45

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

46

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

47

prev: 🐝

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

48

prev: 🐝

curr: 5

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

49

prev: 🐝

curr: 5

next: 8

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

50

prev: 5

curr: 5

next: 8

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

51

prev: 5

curr: 8

next: 8

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

52

prev: 5

curr: 8

next: 13

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

53

prev: 8

curr: 8

next: 13

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

54

prev: 8

curr: 13

next: 13

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

55

prev: 8

curr: 13

next: 21

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

56

prev: 13

curr: 13

next: 21

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

57

prev: 13

curr: 21

next: 21

More complicated example

int prev;

int curr = 5;

int next = 8;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

prev = curr;

curr = next;

next = prev + curr;

58

prev: 13

curr: 21

next: 34

59

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Statements and Conditions aren’t enough

• Those lines of code were actually implementing Fibonacci!
• And they were doing it without requiring any recursion

• Problem: it’s really repetitive to have to write out the same lines of
code again and again

• Solution: Iteration

60

Iteration with the While Statement

• Syntax

while (⟨test-expression⟩) {

⟨body-statements⟩

}

• Semantics
1. Evaluate ⟨test-expression⟩ to a bool

2. If the bool is false then skip to the statement after the while loop

3. Execute ⟨body-statements⟩ (if the bool was true)

4. Go back to step 1

61

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

62

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For loops

• For loops allow you to combine iteration and incrementing
• When you write a for statement like this:

for (⟨start-decl⟩; ⟨test-expr⟩; ⟨step-expr⟩) {

⟨body-stms⟩

}

• It’s as if you’d written this while statement:

{

⟨start-decl⟩;

while (⟨test-expr⟩) {

⟨body-stms⟩

⟨step-expr⟩;

}

} 63

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

while (n > 0) {

long prev = curr;

curr = next;

next = prev + curr;

n = n - 1;

}

return curr;

}

64

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

int i = 0;

while (i < n) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}

65

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

int i = 0;

for (; i < n;) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}

66

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

// int i = 0;

for (int i = 0; i < n;) {

long prev = curr;

curr = next;

next = prev + curr;

i = i + 1;

}

return curr;

}

67

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; i = i + 1) {

long prev = curr;

curr = next;

next = prev + curr;
//i = i + 1;

}

return curr;

}

68

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; i = i + 1) {

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

69

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Break + Question

• What value will this code return when called as:
• loop_function(3)

• loop_function(5)

• loop_function(6)

70

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

Break + Question

• What value will this code return when called as:
• loop_function(3) returns 2

• loop_function(5) returns 0

• loop_function(6) returns 0

71

int loop_function(int test) {

int retval = 0;

while (test < 5) {

retval = retval + 1;

test = test + 1;

}

return retval;

}

72

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Logical operators

• || &&
• Logical OR, and Logical AND
• a < 5 && b > 12

• !
• Logical NOT
• !(a < 5) -> (a >= 5)

• ==
• Equality
• 5 == 5 -> TRUE
• 16 == -3 -> FALSE

• Don’t mix it up with assignment (single equals sign)

73

Other operators you’ll see around

• += *= -= /=
• Perform the action of VAR = VAR operator ARG
• a += 5 -> a = a + 5
• a *= b -> a = a * b

• %
• Modulus operator
• Returns the remainder of division
• 12 % 10 -> 2

• ~ | & ^
• Bitwise NOT, OR, AND, and XOR (you’ll learn these in CS213)
• Importantly, ^ is not exponentiation!!!

74

Adding and Subtracting one

• ++ --
• Shorthand for plus 1 or minus 1

• ++a -> a += 1 -> a = a + 1

• The auto-increment/decrement operators can go before or after
the variable
• (--x) subtracts one and returns the new value of x from the expression

• (x--) subtracts one but returns the old value of x from the expression

• Usually, this doesn’t matter, unless you write complicated statements that
combine assignment and conditions

• if (--x > 0) … (just don’t do this)

75

Implementing Fibonacci in C

long fib_iterative(int n){

long curr = 0;

long next = 1;

for (int i = 0; i < n; ++i) { // i++ also works

long prev = curr;

curr = next;

next = prev + curr;
}

return curr;

}

76

𝑓𝑖𝑏 𝑛 = ቊ
𝑛, 𝑖𝑓 𝑛 < 2;

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ternary Operator

• ?:
• Shorthand version of an if statement, determining result of expression

• Example:
• return (a < 5) ? a : b;

• if (a < 5) {
return a;

} else {

return b;

}

• You won’t need to use this. Usually, it just makes code harder to read.

77

78

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

printf() function

• The usual way to print in C is the printf() function
• Takes a format string followed by arguments to interpolate in place of the

string’s directives

printf("(%d, %d)\n", x, y);

%d directive means the argument is an int

Prints “(“ + the value of x + “, “ + the value of y + “)\n”

• printf() is in the stdio.h library, which needs to be #include-ed

79

Example: formatted output

#include <stdio.h>

int main(void){

int x = 5;

double f = 5.1;

printf("sizeof x: %zu bytes\n", sizeof(x));

printf("sizeof f: %zu bytes\n", sizeof(f));

printf("x: %d\nf: %.60e\n", x, f);

}

• A directive gives the argument’s type and maybe some options

• %zu type: size_t (the return result of sizeof)

• %d type: int

• %.60e type: double, include 60 digits of precision
80

How do you learn format specifiers?

• You look them up in a guide!
• Even I don’t have them memorized…

• man 3 printf
• Runs in the terminal

• Shows details about printf

• google “printf directives”
• cplusplus.com is a good resource

• https://www.cplusplus.com/reference/cstdio/printf/

81

Reading user input

• To input numbers in C, use the scanf() function

• scanf reads keyboard input, converts it to the require type, and
stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf(), scanf() uses a format string to determine what type to
convert the input into

• &x means to pass x’s location, not its value (more on this next week)

• Careful: scanf() directives aren’t exactly the same as printf()

82

Example: reading input

#include <stdio.h>

double sqr_dbl(double n){

return n * n;

}

int main(void){

double d = 0.0;

scanf("%lf", &d);

printf("%lf squared is %lf\n", d, sqr_dbl(d));

}

83

Example: reading multiple items

#include <stdio.h>

int main(void){

int x;

int y;

printf("Enter two integers: ");

scanf("%d%d", &x, &y);

printf("%d * %d = %d\n", x, y, x * y);

}

84

What if scanf() has an error?

• scanf() returns the number of successful conversions

#include <stdio.h>

int main(void){

int x
int y;

printf("Enter two integers: ");

if (scanf("%d%d", &x, &y) != 2) {

printf("Input error\n");

return 1;

}

printf("%d * %d == %d\n", x, y, x * y);

}

85

86

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

Problems with compilation

• Two issues
• Big programs take a very long time to compile

• How can we reuse our functions in multiple programs?

• Let’s focus on that second issue. It would be nice to:
1. Write some functions in one file

2. Call those functions from multiple programs (other files)

87

Source Code Machine Code
compilation

Solution: multiple C files

• You can write code in any number of different C files
• And combine them together while compiling

• But we need some way to tell C code in one file about the
existence of C code in another file
• Solution: header files (.h)

• Header files list all the publicly available functions and variables from a C
file

• Usually there is a .c and .h file for various libraries

• Header files are #include-ed at the top of your C file

88

Compiling multiple C files

• Usually we compile each C file separately

• Then combine multiple together into a single program

• Compilers have a middle step: object files (.o)
• Still not human readable

• Meant to be joined together into a single executable

89

Example of multiple compilation

90

Simplifying multiple compilation with Make

• Make is a tool for building programs out of multiple source files
• Allows you to specify goals and requirements as “rules”

• And then runs the compiler to fulfill those

• To build a file named ⟨goal⟩ using make, you run:
make ⟨goal⟩

• Make looks around the current directory for a file named Makefile
which specifies the various rules
• We’ll provide the Makefile for you in this class

• But you’ll have to use make to compile your programs

91

You now know the basics of C programming

• We’re missing a few simple things
• You’ll practice those in Lab02 and Hw01

• Structs!

• We’re missing some advanced features
• We’ll cover those next week

92

93

• Unix Shell Wrap-up

• Hello World in C

• Compilation

• Computing Fibonacci Numbers

• Variables

• Iteration

• Other C Syntax

• Input and Output

• Separate Compilation

Outline

