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Project Hardware

• I have a bunch of stuff to hand to groups today!

• If you haven’t placed your first set of parts orders yet, do so ASAP
• Due by end-of-day Saturday

• I will place next round of orders on Sunday

• Warnings about receiving hardware
• Check what you received, and ask questions!

1. I might have substituted something

2. I may have a different number of items

3. I may have forgotten some adapter you need
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Today’s Goals

• Discuss additional wired communication protocols: SPI and I2C

• Understand tradeoffs in design
• UART, SPI, and I2C are each useful for different scenarios

• Explore real-world usage of SPI and I2C
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• Review

• SPI

• I2C

• Using SPI and I2C

Outline



• Controlling Timing

Sync              Async

• Network topology
Point    Bus    Ring    Star

Tradeoffs in Wired Communication

• Number of Signals

Serial               Parallel

• Communication Speed
kbps  Mbps  Gbps
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UART

• Number of Signals: Two (plus optional flow control)

• Communication Speed: Usually 1 to 100 kbps

• Controlling Timing: Asynchronous

• Network Topology: Point-to-Point
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UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

• Let’s get rid of all the cons (by sacrificing on all the pros)
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• Review

• SPI

• I2C

• Using SPI and I2C

Outline



Let’s start with timing control

• How do we move from asynchronous to synchronous 
communication?
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Let’s start with timing control

• How do we move from asynchronous to synchronous 
communication?

• Just add a clock signal!
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• USART
• Synchronous/Asynchronous

• Just add a clock line

• Common peripheral in many microcontrollers to allow adaptable 
communication
• Could build various protocols (like SPI or UART) on top of it

• Still point-to-point limited in this form

Synchronous UART
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Now, let’s change the network topology

• How do we allow communication with more than one device?
• Start by choosing a network topology.
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Now, let’s change the network topology

• How do we allow communication with more than one device?
• Start by choosing a network topology.

• Bus = (relatively) simple to implement
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Synchronous serial communication with a single device
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Want bi-directional communication, so three wires
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Wire signals to all devices to form a bus
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Communicating on a bus

How do you distinguish which device you are talking to?

17



Communicating on a bus

How do you distinguish which device you are talking to?

1. Address for each device
• Devices must always listen and then discard messages that aren’t for them

• Need to define packet format so it’s clear where the address is

• Need a method for addressing devices

2. GPIO pin for each device
• Signal which device is being communicated with

• Only activates communication on transition of “select” line

• Needs a separate pin for each device
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Separate chip select line for each device
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Serial Peripheral Interface (SPI)

• Serial, synchronous, bus 
communication protocol

• Single controller with 
multiple peripherals
• Within a circuit board

• High-speed 
communication
• Multiple Mbps
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A note on outdated notation

• Master/Slave paradigm
• Master is the “Computer” and is in charge of interaction

• Slave is the “Device” and has little control over interaction parameters

• Really common notation in EE side of the world.

• Not intended to be harmful, but also literally inconsiderate.

• Field is changing for the better. It’s going to take some time.
• Controller/Peripheral

• Central/Peripheral

• Device/Peripheral

• Master/Minion

• Primary/Secondary
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SPI naming schemes

• Historical SPI Naming
• MISO – Master In Slave Out

• MOSI – Master Out Slave In

• SS – Slave Select

• Revised SPI Naming
• SDI – Serial Data In -> also known as CIPO (Controller In, Peripheral Out)

• SDO – Serial Data Out -> also known as COPI (Controller Out, Peripheral In)

• CS – Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi_signal_names
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SPI wiring

• 3+N  wires for N peripherals

• SDI – input to the chip

• SDO – output from the chip

• SCK – Serial ClocK

• CS – Chip Select
• Active low signal

• Names are always relative to 
this particular chip

• SDO connects to SDI

• SDI connects to SDO
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SPI timing diagram

• CS goes low to start 
transaction and 
high to end

• Data is sent 
synchronously with 
clock signals

• Capable of full-
duplex transfers
• Both directions at 

the same time
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SPI communication

• Transactions usually 
in multiples of bytes 
(as many as needed)

• Either bit endianness 
is possible
• nRF can do LSb first 

OR MSb first

• No need for framing 
bits (start/stop)
• CS handles that
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SPI configurations

• CPOL – is the clock default low or default high

• CPHA – is data read on first edge or second edge

• Peripherals tell you what their configuration is (usually 0 and 0)
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SPI data rate

• No particular requirements
• Speed can go as fast as your clock and line capacitance can handle

• Datasheet for devices will specify their speeds
• Sort-of standard rates (less so than UART, for example)

• 700 kbps

• 3.4 Mbps

• 10 Mbps
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Daisy-chaining SPI

• SPI can also be formed into a ring bus

• Doesn’t save on pins, but does reduce wires…
• At the cost of reliability and speed

• Fairly rare in practice
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How do we determine when peripheral has information?

• Controller starts/stops SPI 
transfers
• Could ask peripheral 

periodically

• Peripherals often add 
interrupt outputs to signal 
controller that an event has 
occurred
• More pins, yay!
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Use Cases

• High-speed peripherals
• Microphone, External ADC, Displays!

• External memory
• Memory chips

• SD cards

• All SD cards support a SPI communication mode

• QSPI – Quad SPI (four SDO lines for more throughput)

• Often used for communication with external memory
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SPI Pros and Cons

• Pros
• Faster throughput (and no overhead)

• No restrictions on data frame

• No addressing requirements or word size assumptions

• Full duplex transfers

• Cons
• Many pins: 3+N  (for N peripherals)

• CS line scales linearly (other signals are a bus)

• Controller must initiate all transfers

• Not designed for multi-controller scenarios
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Relevant xkcd

33https://xkcd.com/927/
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• Review

• SPI

• I2C

• Using SPI and I2C

Outline



Choosing different tradeoffs from other wired communication

• Things we like from SPI
• Communication over a bus

• Synchronous communication

• Things we want from new protocol
• Fewer I/O pins

• Use a single data line for bi-directional communication

• Needs addressing and more specified data frame

• Multiple controllers sharing the bus

• Needs a bus contention solution
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Bus contention could short a shared bus

• Want to enable multiple controllers

• Problem
• What if they each try to transmit different data?

• At some point, there will be a short-circuit
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Disconnected I/O pins enable shared communication

• I/O pins often have three states
• High

• Low

• Disconnected
(also known as High-Impedance/High-Z)

• We can use this third state to enable 
communication over a shared line
• Low or Disconnected

• Wired-AND

• 1 if they are all disconnected

• 0 if any are low
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Inter-Integrated Circuit (I2C)

• Two-wire, synchronous, bus communication
• Ubiquitous in the embedded world

• De-facto standard for sensors

• Invented and patented by Phillips (now NXP)
• Patent expired in 2004

• Also known as Two-Wire Interface (TWI)
• Occasionally as System Management Bus (SMBus or SMB) but that’s 

actually a related but separate thing
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I2C overview

• SDA – Serial Data

• SCL – Serial Clock
• Usually 100 kHz or 400 kHz

• Communication is a shared
bus between all controller(s) and peripheral(s)

• Pull-up resistors for open-drain communication
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• SDA and SCL are open-drain
• 1 – high-impedance, let line 

float high

• 0 – active drive, pull line low
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• Pull-up resistor to provide high 
signal
• Low enough resistance that current 

can flow in a reasonable amount of 
time

• Common value: 4.7 kΩ

Open drain bus communication



I2C transaction walkthrough

• Here’s a one-byte I2C write to a device
• Let’s walk through all the parts of how this works
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Address: 0x66 Data: 0x9C
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I2C transaction walkthrough

• Default state for SDA and SCL is high

• A transaction starts when data goes low while clock is still high
• Usually, data changes when clock is low

• Known as a “Start Condition”
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Address: 0x66 Data: 0x9C

0 0



I2C transaction walkthrough

• First byte sent has two parts
• 7-bit chip address

• 1-bit read/write indication (1 for read, 0 for write)

• Values are read MSb first (reverse of other protocols )
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Address: 0x66 Data: 0x9C
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I2C transaction walkthrough

• Acknowledgement is sent by the other device
• Sender briefly changes to an input (high-z)

• 1 is the default state of the bus, which means no device responded

• 0 means some device responded, which is an ack
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I2C transaction walkthrough

• Data byte(s) are sent after the address
• For a write, bytes are sent by the controller

• For a read, bytes are sent by the peripheral

• Other device acknowledges each byte along the way
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Address: 0x66 Data: 0x9C

0 0



I2C transaction walkthrough

• Stop condition
• Let data go high while clock is still high

• Returns bus to default state
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Address: 0x66 Data: 0x9C
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Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try 
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and 
the other wants a high bit?
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Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try 
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and 
the other wants a high bit?
• Low bit wins! (so smaller address or data)

• Each controller constantly checks whether SDA matches the 
voltage level it expects
• Stops attempting to transmit if it ever does not

• (Only actually needs to check high signals)
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Repeated start conditions

• Repeated start conditions 
allow the bus to be used 
again while arbitration was 
won

• Trigger another Start 
condition without triggering 
Stop condition
• Send address again

• Frequently used for write 
then read pattern
• Write which value you want
• Then repeated start and read
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Clock stretching

• Clock is an open-drain 
line too
• Either device could 

keep it low

• Transaction can be 
briefly paused by 
holding SCL low

50
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Real-world I2C transactions
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Each I2C device on a bus must have a different address

• Shared addresses would cause both to 
respond

• ICs often have one or more address pin(s) 
used to select bit(s) of address
• 0 pins: only one may be on bus
• 1 pin: two may be on bus
• 2 pins: four may be on bus

• If no address pins (or not enough), need 
an I2C address translator chip
• Translates addresses for one or more 

peripheral chips
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A0 is low: address  1001010x
A0 is high: address 1001011x



Sparkfun Qwiic connect system

• System for wiring multiple prototyping boards together

• Four-pin connector
• VCC (3.3 volts)

• Ground

• SDA

• SCL

• Daisy-chains through boards
• Actually connects to chips in parallel as a bus
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System Management Bus (SMBus)

• Related communication specification
• A little more strict in places, but generally interoperable

• Adds ability to broadcast or unicast messages
• Generic addresses for Controller and various peripherals (Battery)

• Adds an open-drain shared interrupt signal
• High-impedance or pull low, just like SDA and SCL

• Allows any device to alert a controller

• Controller has to probe bus to determine which device wants attention
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I2C use cases

• Various sensors
• Usually low to medium speed

• Even relatively high speed stuff often has I2C for convenience

• Accelerometers and microphones

• Often with intelligent filtering built in

• Communication between microcontrollers
• Either can act as the Controller when necessary

• Commonly exists internally within smartphones and laptops too
• Light sensors, Temperature sensors, etc.
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I2C Pros and Cons

• Pros
• Wiring is simple

• Only uses two pins

• Very widely supported

• Cons
• Relatively slow communication rate

• Speed versus power use tradeoff (due to pull-down resistor)

• Open collector makes debugging difficult
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Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)
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Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

• Too slow:

• Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

• Not robust: 

• No effort put into the electrical encoding of data or error checking

• Long external cables lead to additional errors

• Overall: they’re too simple
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• Review

• SPI

• I2C

• Using SPI and I2C
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Common sensor interaction pattern

• First write one byte to the device
• This selects what data you want to interact with, called a “register address”

• Second read/write one (or more) bytes
• This is the actual data

• SPI and I2C devices both work this way
• Datasheet will have a list of registers you can read/write

• Each register will have some address: that’s the first byte you write
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Example: Microbit accelerometer

• Details of each 
register on 
later pages 
show you the 
structure of 
the data read 
or written
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Register/data pattern in I2C

• I2C is the more difficult of these
• Need some way to tell the device “this transaction is still going”, but switch 

from writing to reading

• This is the use of the “repeated start” option
• Continues the “transaction”
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I2C Read Transaction

• First, write the address of the register you want

• Then, repeated start

• Finally, read the data from the device
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I2C Write Transaction

• Just write the data. No need to change modes in the middle

• Some devices also allow “repeated start” in the middle of write transactions
• But it’s not necessary
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nRF I2C Implementation

• nrf_twi_mngr driver: I2C (Two-Wire Interface) manager
• Expects transactions to occur and is set up to run those

• Takes in an array of “transfer” operations as an argument

• Each operation is either a read or a write
• Includes a device address, includes a pointer to data and length

• Includes flags like NRF_TWI_MNGR_NO_STOP which does not execute a 
stop bit after one operation

• Your job is to set up the array of transfer operations
• Then the driver will make it happen
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Register/data pattern in SPI

• SPI is easier to implement transactions for
• No indication of reading/writing by default

• You can just hold Chip Select low and stop clocking if you want to pause

• Need some way to indicate to the peripheral whether you’re 
reading or writing though
• Possibly different register addresses for read versus write

• Possibly 7-bit addresses, with a bit leftover for read/write specification

• Some devices just work uni-directionally

• Can’t read from a screen
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SPI Read Transaction

• Chip select goes low to select the device

• First byte is the register address and read selection

• Next bytes are from the peripheral (read data)
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SPI Write Transaction

• Chip select goes low to select the device

• First byte is the register address and write selection

• Next bytes are the data to write
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nRF SPI Implementation

• nrfx_spim driver: nRF SPI Master (Controller)

• Expects data in “XFER” (transfer) operations
• Can either be read, write, or read AND write (both simultaneously)

• Flags control whether CS pin goes high afterwards or if it stays low
• Or you could just manually control the CS pin with GPIO which is usually 

easier…
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Example: ADXL345 accelerometer

• 3-axis accelerometer
• Pretty high accuracy: 13-bit resolution, +/- 16 g

• Can use either SPI or I2C

70https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf


What fields can we 
access?

• Same “registers” for SPI 
and I2C

• Transactions:
• Register address sent first

• Register value sent second

• Some are read/write while 
others are read-only
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ADXL345 SPI configuration

• Normally uses 4-wire SPI

• Can also use a 3-wire SPI version
• One wire for in and out

• SPI Config
• 5 MHz (or slower)

• CPOL=1 CPHA=1 (ugh, not the default)
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ADXL345 SPI transactions
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ADXL345 I2C configuration

• Connection of CS pin determines mode
• Connecting to power puts it in I2C mode

• Supports 100 kHz or 400 kHz mode

• Address: selectable with pin
• Pin low:  0b1010011 (0x53)

• Pin high: 0b0011101 (0x1D)
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ADXL345 I2C transactions
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• Review

• SPI

• I2C

• Using SPI and I2C
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