Lecture 11
Wired Communication:
SPI and I2C

CE346 — Microprocessor System Design
Branden Ghena — Spring 2025

Slides adapted from:
Branden Ghena (Northwestern), Josiah Hester (Georgia Tech), Prabal Dutta (UC Berkeley), Sparkfun

Northwestern

Project Hardware

I have a bunch of stuff to hand to groups today!

o If you haven't placed your first set of parts orders yet, do so ASAP
« Due by end-of-day Saturday
I will place next round of orders on Sunday

« Warnings about receiving hardware
« Check what you received, and ask questions!
1. I might have substituted something
2. I may have a different number of items
3. I may have forgotten some adapter you need

Today’s Goals

» Discuss additional wired communication protocols: SPI and I12C

 Understand tradeoffs in design
« UART, SPI, and I2C are each useful for different scenarios

 Explore real-world usage of SPI and I2C

Outline

e Review

* SPI

« 12C

 Using SPI and I2C

Tradeoffs in Wired Communication

« Number of Signals » Controlling Timing

Serial e Parallel e Sync @ Async @
« Communication Speed * Network topology

kbps Mbps Gbps Point Bus Ring Star

o~ " 7
® ®
M1 1T 1 5%

® 0 Ne¢ 7N

=

UART

@O @

Serial kbps Async Point
« Number of Signals: Two (plus optional flow control)

« Communication Speed: Usually 1 to 100 kbps
» Controlling Timing: Asynchronous
» Network Topology: Point-to-Point

UART Pros and Cons

* Pros
* Only uses two wires
* No clock signal is necessary
 Can do error detection with parity bit

» Cons
« Data frame is limited to 8 bits (20% signaling overhead)
« Doesn’t support multiple device interactions (point-to-point only)
« Relatively slow to ensure proper reception

* Let’s get rid of all the cons (by sacrificing on all the pros)

Outline

 Review

* SPI

« 12C

 Using SPI and I2C

Let’s start with timing control

« How do we move from asynchronous to synchronous

communication?

Let’s start with timing control

« How do we move from asynchronous to synchronous

communication?

» Just add a clock signal!

10

Synchronous UART e @ .

e USART Serial Mbps Sync Point

- Synchronous/Asynchronous Transmitter Receiver
e Just add a clock line

« Common peripheral in many microcontrollers to allow adaptable
communication

 Could build various protocols (like SPI or UART) on top of it

» Still point-to-point limited in this form

11

Now, let’s change the network topology

« How do we allow communication with more than one device?
» Start by choosing a network topology.

12

Now, let’s change the network topology
« How do we allow communication with more than one device?

» Start by choosing a network topology.
» Bus = (relatively) simple to implement

13

Synchronous serial communication with a single device

Device 1

Microcontroller
Device 2

Device 3

Want bi-directional communication, so three wires

Device 1

Microcontroller

Device 2

Device 3

15

Wire signals to all devices to form a bus

Device 1

Data In
Data Out

Clock

Microcontroller
Device 2

Data Out Data In
R AP U Data Out

Data In
I B AP U

Clock
II Device 3
Data In

Ul N - O
U

16

Communicating on a bus

How do you distinguish which device you are talking to?

17

Communicating on a bus T

How do you distinguish which device you are talking to?

1. Address for each device

 Devices must always listen and then discard messages that aren’t for them
* Need to define packet format so it's clear where the address is
* Need a method for addressing devices

2. GPIO pin for each device
» Signal which device is being communicated with
« Only activates communication on transition of “select” line
« Needs a separate pin for each device

18

Separate chip select line for each device

Device 1

Data In
Data Out
Clock

Chip Select

Microcontroller

Device 2

Data Out Data In
o L1 | e

Da(EIaocI:E 1 u Clock
- —— -
Chip Select (2) T s
Chip Select (1)

Chip Select (3)

Device 3

Data In
Data Out

Clock
Chip Select

19

Serial Peripheral Interface (SPI) e @ @ -|-|-|-|-

» Serial, synchronous, bus Serial Mbps Sync
communication protocol Device 1

Serial Data In
Serial Data Out

Serial Clock

Chip Select

» Single controller with
multiple peripherals
« Within a circuit board

Microcontroller

Device 2

Serial Data In

Serial Data Out
—" —
Serial Data In oy - = e SIS (D) (U
S
Serial Clock =0 =Skl @1eE
Chip Select I B Sl

. ngh-speed Chip Select Device 3
communication I— R

* Multiple Mbps Serial Clock

Chip Select

20

A note on outdated notation

« Master/Slave paradigm
« Master is the "Computer” and is in charge of interaction
» Slave is the "Device” and has little control over interaction parameters
« Really common notation in EE side of the world.
« Not intended to be harmful, but also literally inconsiderate.

* Field is changing for the better. It's going to take some time.
« Controller/Peripheral
 Central/Peripheral
 Device/Peripheral
e Master/Minion
 Primary/Secondary

21

SPI naming schemes

» Historical SPI Naming
« MISO — Master In Slave Out
« MOSI — Master Out Slave In
« SS — Slave Select

 Revised SPI Naming
« SDI — Serial Data In -> also known as CIPO (Controller In, Peripheral Out)
« SDO - Serial Data Out -> also known as COPI (Controller Out, Peripheral In)
« CS — Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi signal names

22

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names
https://www.sparkfun.com/spi_signal_names

SPI wiring

« 3+/V wires for N peripherals

« SDI — input to the chip

« SDO — output from the chip
« SCK — Serial ClocK

« CS — Chip Select

* Active low signal

« Names are always relative to
this particular chip

« SDO connects to SDI
* SDI connects to SDO

Device 1

Microcontroller
Device 2

SDI
>0 S AP W .

SDI
-1 1. o5
SCK o - ScK

CS CS

CS

(ON) _
Device 3

23

SPI timing diagram

 CS goes low to start
transaction and SCK
high to end

SDO

 Data is sent
synchronously with P!
clock signals

CS

 Capable of full-
duplex transfers

* Both directions at
the same time

24

SPI communication — l—__-sc.(
COPI 4o COPI
CIPO CIPO

» Transactions usually cs cs
in multiples of bytes
(aS many as needed) COntroller to Peripheral Peripheral to COntroller
SCK
Controller ‘ | L . :
 Either bit endianness 01234567 01234567
iSpOSSibIe cort
* NRF can do LSb first ~ Sanreteriowt | oom
OR MSD first 0x53 = ASCII 'S’
C|Po e - - . ’
- No need for framing peripherat-out
bits (start/stop)
* CS handles that cs

Chip Select

SPI configurations

CPHA =0 CPHA =1

o .
o n | | | I |

- |
g O | \ / *
%‘ - | | Mode 0 Mode 1 | |
= I Lo om=Er g vedel | I
S l ! Mode 2 | Mode3 | |
o | | i | |
i3 1 o
© O
G o | | | | |

o I | i | |

Sampling Toggling i Toggling Sampling
Edge Edge Edge Edge

« CPOL — is the clock default low or default high
« CPHA —is data read on first edge or second edge
* Peripherals tell you what their configuration is (usually 0 and 0)

26

SPI data rate

» No particular requirements
« Speed can go as fast as your clock and line capacitance can handle

 Datasheet for devices will specify their speeds
« Sort-of standard rates (less so than UART, for example)
« 700 kbps
« 3.4 Mbps
« 10 Mbps

28

Daisy-chaining SPI

 SPI can also be formed into a ring bus

» Doesn’t save on pins, but does reduce wires...
« At the cost of reliability and speed

» Fairly rare in practice

SDO sDI SDO |—{SDI SDO
MICROCONTROLLER m U1 U2
MISO SCLK CS CS SCLK| | CS SCLK
. |
-

How do we determine when peripheral has information?

 Controller starts/stops SPI

transfers
» Could ask peripheral FUNCTIONAL BLOCKDIAGRAN
periOd ica I Iy ADXL345 CI‘:OWET
]

» Peripherals often add i T o P e e
interrupt outputs to signal o I o I Il il S
controller that an event has d ij* 15T
occurred Rl I v

* More pins, yay! O é

30

Use Cases

 High-speed peripherals
« Microphone, External ADC, Displays!

» External memory
« Memory chips
« SD cards
« All SD cards support a SPI communication mode

« QSPI — Quad SPI (four SDO lines for more throughput)
« Often used for communication with external memory

31

SPI Pros and Cons

* Pros
 Faster throughput (and no overhead)
 No restrictions on data frame
« No addressing requirements or word size assumptions
 Full duplex transfers

» Cons
« Many pins: 3+ /N (for N peripherals)
 CS line scales linearly (other signals are a bus)
 Controller must initiate all transfers
 Not designed for multi-controller scenarios

32

Relevant xkcd

HOW STANDARDS PROUFERATE:

(< A/C CHARGERS, CHARACTER ENCODINGS, INSTRNT MESSAGING, ETC)

SITUATION:

THERE ARE
4 COMPETING
STANDPRDS.

W7 RiDICULOULS]

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

\ O)

)

SO0N:

GITUATION:

THERE ARE
|5 COMPETING
STANDPRDS.

https://xkcd.com/927/

33

Outline

 Review

* SPI

- I2C

 Using SPI and I2C

Choosing different tradeoffs from other wired communication

* Things we like from SPI
« Communication over a bus
« Synchronous communication

« Things we want from new protocol
« Fewer I/O pins
 Use a single data line for bi-directional communication
« Needs addressing and more specified data frame

 Multiple controllers sharing the bus
* Needs a bus contention solution

35

Bus contention could short a shared bus

. | it ecyratineg
« Want to enable multiple controllers narrmal MOS autputs
| orl ’
* Problem B output
« What if they each try to transmit different data?
« At some point, there will be a short-circuit .
| o ff
% L output
| orl

Shart-circut between
porwver supphy and GHD

36

Disconnected I/O pins enable shared communication

| it egyrating Wired ANDing
- I/0 pins often have three states nermal MO ewtputs apen-drain autputs
* High
* Low |Dﬂ H cutput
» Disconnected | ot |5ﬁ
(also known as High-Impedance/High-2)
—0
» We can use this third state to enable
communication over a shared line 54 .
« Low or Disconnected r RS |i B
« Wired-AND
- 1 if they are all disconnected : :
e 0if any are low Shart-circult betieen L 15 cutput

ponver sUpply and GhD either is L {on),

37

Inter-Integrated Circuit (12C) e @ @ HY|

Serial kbps Sync

« Two-wire, synchronous, bus communication y o
« Ubiquitous in the embedded world i e
« De-facto standard for sensors

SDA =< > SDA
Controller 2 Peripheral 2

» Invented and patented by Phillips (now NXP) T
 Patent expired in 2004

* Also known as Two-Wire Interface (TWI)

 Occasionally as System Management Bus (SMBus or SMB) but that’s
actually a related but separate thing

38

I2C overview Vee

%)
* SDA — Serial Data S . i
« SCL — Serial Clock [) I
« Usually 100 kHz or 400 kHz Periphors Poriphers

2

« Communication is a shared
bus between all controller(s) and peripheral(s)

* Pull-up resistors for open-drain communication

spa Serial data line

SCL

Serial clock line

39

Open drain bus communication

adalthdalall ™ N] MremT ' 1 T
CONTROLLER ‘ PERIPHERAL
' © ' o

3 b |
» SDA and SCL are open-drain . P_uII-qu resistor to provide high
_ . sigha
* 1- hlg_h-lmpedance, let line Low enough resistance that current
float high tgan flow in a reasonable amount of
ime

« 0 — active drive, pull line low « Common value: 4.7 kQ

40

I2C transaction walkthrough

sa -\ / _J/ YUYW\ /S S\
SCL
JeZ O 800880008008800007 Q7

7} Address: 0x66 JWJA) Data: 0x9C VAN

data

« Here's a one-byte I2C write to a device
« Let’s walk through all the parts of how this works

41

I2C transaction walkthrough

soa T\ T\ /T
se. UL U

JeZ O 800880008008800007 Q7
data ﬁ%% Address: 0x66 HW}{A}'[Data: 0x9C }{A}E%%ﬁ

 Default state for SDA and SCL is high

» A transaction starts when data goes low while clock is still high
 Usually, data changes when clock is low
« Known as a “Start Condition”

42

I2C transaction walkthrough

soa -\ / \JJ\J J\YJ
se. ULV UL UIUUUU UL
JeZ O 800880008008800007 Q7

data 7 Address:0x66 JWJA} Data: 0x9C VAKX

* First byte sent has two parts
« 7-bit chip address
- 1-bit read/write indication (1 for read, 0 for write)

» Values are read MSb first (reverse of other protocols (&))

43

I2C transaction walkthrough

soA -\ / ./ \J S\ /S J\J

se. UV UL UILIUUL
JeZ O 800880008008800007 Q7
7} Address: 0x66 JWJA) Data: 0x9C VAN

data

« Acknowledgement is sent by the other device
 Sender briefly changes to an input (high-z)
« 1 is the default state of the bus, which means no device responded
* 0 means some device responded, which is an ack

44

I2C transaction walkthrough

soa -\ ./ / \J\J_J /U

sc. JUUULUUUUUULUUULUUL

JeZ O 800880008008800007 Q7
7} Address: 0x66 JWJA) Data: 0x9C VAN

data

« Data byte(s) are sent after the address
« For a write, bytes are sent by the controller
» For a read, bytes are sent by the peripheral

 Other device acknowledges each byte along the way

45

I2C transaction walkthrough

sa -\ / _J/ Y\ /S S
SCL |
JeZ O 800880008008800007 Q7

7} Address: 0x66 JWJA) Data: 0x9C VAN

data

 Stop condition

* Let data go high while clock is still high
 Returns bus to default state

46

Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

47

Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

« Low bit wins! (so smaller address or data)

« Each controller constantly checks whether SDA matches the
voltage level it expects
 Stops attempting to transmit if it ever does not
* (Only actually needs to check high signals)

48

Repeated start conditions

« Repeated start conditions

Despite the idle state of the bus, After the repeated start, a new
d I IOW the bUS tO be . Used no other controller may assert transfer, complete with address frame(s),
aga|n Wh||e arb|trat|on Was control of the bus during this period. ~ must begin. .
won ¥ s %
o *l * KRS - " =58

- Trigger another Start | SDA."X D7 \Aé{‘/ \ / A6 X AS X A4X~*.
condition without triggering : : 3 . :

Stop condition _/‘\j_/‘_/ ;

« Send address again SCL".
~~4-' \l‘.sl ‘._Y...

- -
e 8 TP ==~

* Frequently used for write : . g
then read pattern Last data frame No stop condition Another start occurs-

. - of prior transfer is present this is the "repeated start"
« Write which value you want
« Then repeated start and read

49

Clock stretching

» Clock is an open-drain
line too

 Either device could
keep it low

« Transaction can be
briefly paused by
holding SCL low

ACK/NACK occurs as normal, bu
we can assume ACK, or no clock
stretch would have occurred.

-
-
-
-

- =
ry -~

-
-
-~
-

= ¥ *.\
SDA .'Dz X D1 X DO \

t

The data frame can be completed
as normal, either with a stop condition,
another data frame, or a repeated start.

’
’

- .
o -
.
.
- .

ACK

U\/\ /\

Data transfer is completed as
normal, with 8 bits being
transferred.

\

-~

-

The peripheral is not ready for more
data so it buys time by holding the

-

* clock low. The controller will wait for

the clock line to be released before
proceeding to the next frame.

50

Real-world I2C transactions

Write Read
7-bit 7-bit
Bl : ACK Data ACK I ACK Dpata NACK
S [1001011{0 [OOOOOOOOE]Stop bomonb]@] @ootoouﬁ] Stop

....“...rt ‘ T T N e e

123456789 123456789 123456789 123456789

Each I2C device on a bus must have a different address

 Shared addresses would cause both to 038y Vog T0 381
respond OV TOVee
.j_ 1 uF
. T .
» ICs often have one or more address pin(s) = g““‘“é'“"ﬂ ?“‘
used to select bit(s) of address o
0 pins: only one may be on bus
1 pin: two may be on bus GND sl .
« 2 pins: four may be on bus ﬂ _
o—| A INT *
- If no address pins (or not enough), need | msrssos
an I2C address translator chip AQ is low: address 1001010x
« Translates addresses for one or more A0 is high: address 1001011x

peripheral chips

52

Sparkfun Qwiic connect system

 System for wiring multiple prototyping boards together

 Four-pin connector
« VCC (3.3 volts)
« Ground
* SDA
« SCL

« Daisy-chains through boards
« Actually connects to chips in parallel as a bus

https://www.sparkfun.com/gwiic

53

https://www.sparkfun.com/qwiic

System Management Bus (SMBus)

 Related communication specification
* A little more strict in places, but generally interoperable

» Adds ability to broadcast or unicast messages
« Generic addresses for Controller and various peripherals (Battery)

« Adds an open-drain shared interrupt signal
 High-impedance or pull low, just like SDA and SCL
 Allows any device to alert a controller
 Controller has to probe bus to determine which device wants attention

54

[2C use cases

* Various sensors
 Usually low to medium speed
 Even relatively high speed stuff often has I2C for convenience
 Accelerometers and microphones
 Often with intelligent filtering built in

« Communication between microcontrollers
« Either can act as the Controller when necessary

« Commonly exists internally within smartphones and laptops too
« Light sensors, Temperature sensors, etc.

55

[2C Pros and Cons

* Pros
« Wiring is simple
* Only uses two pins
 Very widely supported

» Cons
» Relatively slow communication rate
« Speed versus power use tradeoff (due to pull-down resistor)
« Open collector makes debugging difficult

56

Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

57

Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

* Too slow:
 Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

 Not robust:
« No effort put into the electrical encoding of data or error checking
 Long external cables lead to additional errors

» Overall: they're too simple

58

Outline

 Review

* SPI

« 12C

* Using SPI and I12C

Common sensor interaction pattern

* First write one byte to the device
 This selects what data you want to interact with, called a “register address”

» Second read/write one (or more) bytes
 This is the actual data

 SPI and I2C devices both work this way

« Datasheet will have a list of registers you can read/write
 Each register will have some address: that’s the first byte you write

60

Example: Microbit accelerometer

Table 26. Register address map

Register address

Name Type! Default Comment
Hex Binary

Reserved 00 - 06 Reserved
STATUS_REG_AUX_A R 07 000 0111
Reserved R 08-0B Reserved
OUT_TEMP_L_A R 0C 000 1100 Output
OUT_TEMP_H_A R 0D 000 1101 Output Output registers
INT_COUNTER_REG_A R OE 000 1110
WHO_AM_I_A R OF 000 1111 | 00110011 | Dummy register
Reserved 10 -1E Reserved
TEMP_CFG_REG_A R/W 1F 001 1111 | 00000000
CTRL_REG1_A R/W 20 010 0000 0000011
CTRL_REG2_A R/W 21 010 0001 | 00000000
CTRL_REG3_A R/W 22 010 0010 | 00000000 | Accelerometer control
CTRL_REG4_A R/W 23 010 0011 00000000 |registers
CTRL_REGS5_A R/W 24 010 0100 00000000
CTRL_REG6_A R/W 25 010 0101 00000000

register on
later pages
show you the
structure of
the data read
or written

 Details of each

61

Register/data pattern in 12C

« [2C is the more difficult of these

* Need some way to tell the device “this transaction is still going”, but switch
from writing to reading

* This is the use of the “repeated start” option
e Continues the “transaction” PR W YU SO—

no other controller may assert transfer, complete with address frame(s),
control of the bus during this period. must begin. .

d oy B /’AGX AS X A4 X

Last data frame No stop condition Another start occurs-
of prior transfer is present this is the "repeated start"

62

[2C Read Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Read From One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Device (Slave) Address (7 bits) Data Byte From Register N (8 bits)
A A
(A 4 N 4 h 4 N\

S |A6 |AS | A4 | A3 [A2 | Al | AD B7 | B6|B5| B4 |B3|B2|B1|B0 Sr|AB| A5 | Ad| A3 | A2 | Al | AD D7|De|D5| D4 | D3| D2| D1 | DO | NA

! U f 1 T

START R/W=0 ACK Y& '@l Repeated START R/W=1 ACK NACK STOP

» First, write the address of the register you want
* Then, repeated start
» Finally, read the data from the device

63

[2C Write Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Write to One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Data Byte to Register N (8 bits)
A A
() 4 N A
S |A6|A5|Ad4|A3|A2|A1|A0| 0| A |B7|B6|B5|B4|B3|B2|B1|BO| A |D7|D6|DS|D4|D3|D2|D1|DO| A | P
1 T 1 t Tt

START R/W=0 ACK ACK ACK STOP

» Just write the data. No need to change modes in the middle

« Some devices also allow “repeated start” in the middle of write transactions
« But it's not necessary

NRF I2C Implementation

*nrf twi mngr driver: I2C (Two-Wire Interface) manager
 Expects transactions to occur and is set up to run those

 Takes in an array of “transfer” operations as an argument

« Each operation is either a read or a write

 Includes a device address, includes a pointer to data and length
» Includes flags like NRF TWI MNGR NO STOP which does not execute a
stop bit after one operation

* Your job is to set up the array of transfer operations
» Then the driver will make it happen

65

Register/data pattern in SPI

« SPI is easier to implement transactions for
 No indication of reading/writing by default
* You can just hold Chip Select low and stop clocking if you want to pause

* Need some way to indicate to the peripheral whether you're
reading or writing though
 Possibly different register addresses for read versus write
 Possibly 7-bit addresses, with a bit leftover for read/write specification
« Some devices just work uni-directionally
« Can't read from a screen

66

SPI Read Transaction

 Chip select goes low to select the device
» First byte is the register address and read selection
« Next bytes are from the peripheral (read data)

s\ [

YAV AYAVAVAVAVAVAVAVAVAVAVAVAVAY AR
SDO X) [

RN MS ADS AD4 AD3 ADZ ADH ADO

SbL L A A A A A A

DO DO6 DOs DO4 DO3 DO2 DO DOO

SPI Write Transaction

 Chip select goes low to select the device
» First byte is the register address and write selection
« Next bytes are the data to write

cs |\ /[

SOV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVY
SDO XX X R X e X e X X X

RW MS ADS AD4 ADZ AD2 AD1 ADD DI7 DI6 DIS DI4 DI3 DI2 DI DIO

68

NRF SPI Implementation

* nrfx spim driver: nRF SPI Master (Controller)

« Expects data in "XFER" (transfer) operations
 Can either be read, write, or read AND write (both simultaneously)

» Flags control whether CS pin goes high afterwards or if it stays low

 Or you could just manually control the CS pin with GPIO which is usually
easier...

69

Example: ADXL345 accelerometer

e 3-axis acceleromete

r

* Pretty high accuracy: 13-bit resolution, +/- 16 g

« Can use either SPI or I2C

~3Vo —j;&

OOOOOO

%
4
x] 3
" o
- Gor (O
— PR
- —

VIN—GND—SDA @

FUNCTIONAL BLOCK DIAGRAM

Vs Vopuo
Y i\

ADXL345

T Y

POWER
MANAGEMENT

\

Y

RS

3-AXIS ||

SENSOR

SENSE
ELECTRONICS

—

DIGITAL
FILTER

40

[

LN
V]

CONTROL
AND
INTERRUPT
LOGIC

)

T LT

32 LEVEL
FIFO

LN

V]

SERIAL 110

20

Figure 1.

https://www.analog.com/media/en/technical-documentation/data-sheets/adxI345.pdf

L

cs

INT1

INT2

SDA/SDI/SDIO

SDO/ALT
ADDRESS

SCL/ISCLK

&
[
=1

70

https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf

What fields can we

access?

« Same “registers” for SPI

and I12C

* Transactions:

 Register address sent first
 Register value sent second

« Some are read/write while
others are read-only

REGISTER MAP
Table 19.
Address
Hex Dec Name Type | Reset Value Description
0x00 0 DEVID R 11100101 Device ID
0x01 to 0x1C 1to 28 Reserved Reserved; do not access
0x1D 29 THRESH_TAP R/W 00000000 Tap threshold
0x1E 30 OFSX R/W 00000000 X-axis offset
0x1F N OFSY R/W 00000000 Y-axis offset
0x20 32 OFS5Z R/W 00000000 Z-axis offset
0x21 33 DUR RIW 00000000 Tap duration
0x22 34 Latent R/W 00000000 Tap latency
0x23 35 Window R/W 00000000 Tap window
0x24 36 THRESH_ACT R/W 00000000 Activity threshold
0x25 37 THRESH_INACT R/W 00000000 Inactivity threshold
0x26 38 TIME_INACT R/W 00000000 Inactivity time
0x27 39 ACT _INACT_CTL R/W 00000000 Axis enable control for activity and inactivity detection
0x28 40 THRESH_FF R/W 00000000 Free-fall threshold
0x29 41 TIME_FF R.‘W 00000000 Free-fall time
0x2A 42 TAP_AXES R/W 00000000 Axis control for single tap/double tap
0x2B 43 ACT_TAP_STATUS R 00000000 Source of single tap/double tap
0x2C 44 BW_RATE R/W 00001010 Data rate and power mode control
0x2D 45 POWER_CTL R/W 00000000 Power-saving features control
0x2E 46 INT_ENABLE R/W 00000000 Interrupt enable control
0x2F 47 INT_MAP R/W 00000000 Interrupt mapping control
0x30 48 INT_SOURCE R 00000010 Source of interrupts
0x31 49 DATA_FORMAT R/W 00000000 Data format control
0x32 50 DATAXO0 R 00000000 X-Axis Data 0
0x33 51 DATAX1 R 00000000 X-Axis Data 1
0x34 52 DATAYO0 R 00000000 Y-Axis Data 0
0x35 53 DATAY1 R 00000000 Y-Axis Data 1
0x36 54 DATAZO R 00000000 Z-Axis Data 0
0x37 55 DATAZ1 R 00000000 Z-Axis Data 1
0x38 56 FIFO_CTL R/W 00000000 FIFO control
0x39 57 FIFO_STATUS R 00000000 FIFO status

71

ADXL345 SPI configuration

* Normally uses 4-wire SPI

e Can also use a 3-wire SPI version
e One wire for in and out

« SPI Config

* 5 MHz (or slower)
« CPOL=1 CPHA=1 (ugh, not the default)

SF1 DIT (BIT Jb) IN The UALA_FUKMAL register | AQaress Uxs1)
selects 4-wire mode, whereas setting the SPI bit selects 3-wire
mode. The maximum SPI clock speed is 5 MHz with 100 pF
maximum loading, and the timing scheme follows clock polarity
(CPOL) = 1 and clock phase (CPHA) = 1. If power is applied to
the ADXL345 before the clock polarity and phase of the host

™ =1 Tl = 1T . 1 =

ADXL345
Cs
SDIO

sDO
SCLK

PROCESSOR

D ouT
D INOUT

D ouT

(R P S |

Figure 34. 3-Wire 5P Connection Diagrarm

ADXL345
Cs

SDI

SDO

SCLK

PROCESSOR

D ouT
D ouT
DIN

D ouT

1S

Figure 35. 4-Wire 5PI Connection Diagram

72

ADXL345 SPI transactions

CS
i) b}
[} [L} |
tSCLK | tM tS t
| toe ay \ QUIET ag—a= ~a—a= tcsDIS
—_—
sk UV ANVAANVANVA __/

| | thoLp
tsETUP et t—p

sDI —>\ w /(MB X A5 X ¥ X AD X D7 X ::::X Do

\

RN
bl Al
ADDRESS BITS DATA BITS

smo——(x X x X x X X x X x X X

)1
[

- t3po

OTa2s017

Figure 37. 5Pl 4-Wire Write

¢S M) 31 / \,
t 4} £ t [} '[C
SCLK M s t .
tDELM’ | —> I; —n QUIET jei—p| [-—p= C5,DIS
tseTup fem |
i) 33
|14 [41
sDl Y R \(MB X AS X X AD X X K X X
i)
N v " A
~&> tsno ADDRESS BITS tois == =

mo——(_ x X x X x X, X x X X, X e »—

DATA BITS

=
e
07925018

Figure 38. 5Pl 4-Wire Read

ADXL345 I2C configuration

« Connection of CS pin determines mode
» Connecting to power puts it in I2C mode

 Supports 100 kHz or 400 kHz mode

 Address: selectable with pin
* Pin low: 0b1010011 (0x53)
 Pin high: 0b0011101 (0Ox1D)

ADXL345 $ 3Rp | PROCESSOR

cs
SDA

D INfOUT
ALT ADDRESS
SCL

DouT

< :
Figure 40. °C Connection Diagram (Address 0x53)

74

ADXL345 I2C transactions

SINGLE-BYTE WRITE
MASTER (START SLAVE ADDRESS + WRITE REGESTER ADDRESS DATA STOP

MULTIFLE-BYTE WRITE
MASTER (START SLAVE ADDRESS + WRITE REGEETER ADDRESS
SLAVE

DATA DATA STOP

=3 acx

[SINGLE-BYTE READ

MASTER |START| | SLAVE ADDRESS + WRITE REGISTER ADDRESS START| | SLAVE ADDRESS + READ Nack | | sToP
MULTIPLE-EYTE READ
MASTER |START| | SLAVE ADDRESS + WRITE REGISTER ADDRESS sSTART!| | SLAVE ADDRESS + READ [Ack | | Nack | | sToP

NOTES
1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START.
2. THE SHADED AREAS REPRESENT WHEN THE DEVICE IS5 LISTENING.

75

025013

Outline

 Review

* SPI

« 12C

 Using SPI and I2C

	Default Section
	Slide 1: Lecture 11 Wired Communication: SPI and I2C

	Goals
	Slide 2: Project Hardware
	Slide 3: Today’s Goals

	Review
	Slide 4: Outline
	Slide 5: Tradeoffs in Wired Communication
	Slide 6: UART
	Slide 7: UART Pros and Cons

	SPI
	Slide 8: Outline
	Slide 9: Let’s start with timing control
	Slide 10: Let’s start with timing control
	Slide 11: Synchronous UART
	Slide 12: Now, let’s change the network topology
	Slide 13: Now, let’s change the network topology
	Slide 14: Synchronous serial communication with a single device
	Slide 15: Want bi-directional communication, so three wires
	Slide 16: Wire signals to all devices to form a bus
	Slide 17: Communicating on a bus
	Slide 18: Communicating on a bus
	Slide 19: Separate chip select line for each device
	Slide 20: Serial Peripheral Interface (SPI)
	Slide 21: A note on outdated notation
	Slide 22: SPI naming schemes
	Slide 23: SPI wiring
	Slide 24: SPI timing diagram
	Slide 25: SPI communication
	Slide 26: SPI configurations
	Slide 28: SPI data rate
	Slide 29: Daisy-chaining SPI
	Slide 30: How do we determine when peripheral has information?
	Slide 31: Use Cases
	Slide 32: SPI Pros and Cons
	Slide 33: Relevant xkcd

	I2C
	Slide 34: Outline
	Slide 35: Choosing different tradeoffs from other wired communication
	Slide 36: Bus contention could short a shared bus
	Slide 37: Disconnected I/O pins enable shared communication
	Slide 38: Inter-Integrated Circuit (I2C)
	Slide 39: I2C overview
	Slide 40: Open drain bus communication
	Slide 41: I2C transaction walkthrough
	Slide 42: I2C transaction walkthrough
	Slide 43: I2C transaction walkthrough
	Slide 44: I2C transaction walkthrough
	Slide 45: I2C transaction walkthrough
	Slide 46: I2C transaction walkthrough
	Slide 47: Bus arbitration
	Slide 48: Bus arbitration
	Slide 49: Repeated start conditions
	Slide 50: Clock stretching
	Slide 51: Real-world I2C transactions
	Slide 52: Each I2C device on a bus must have a different address
	Slide 53: Sparkfun Qwiic connect system
	Slide 54: System Management Bus (SMBus)
	Slide 55: I2C use cases
	Slide 56: I2C Pros and Cons
	Slide 57: Open Question
	Slide 58: Open Question

	Using SPI and I2C
	Slide 59: Outline
	Slide 60: Common sensor interaction pattern
	Slide 61: Example: Microbit accelerometer
	Slide 62: Register/data pattern in I2C
	Slide 63: I2C Read Transaction
	Slide 64: I2C Write Transaction
	Slide 65: nRF I2C Implementation
	Slide 66: Register/data pattern in SPI
	Slide 67: SPI Read Transaction
	Slide 68: SPI Write Transaction
	Slide 69: nRF SPI Implementation
	Slide 70: Example: ADXL345 accelerometer
	Slide 71: What fields can we access?
	Slide 72: ADXL345 SPI configuration
	Slide 73: ADXL345 SPI transactions
	Slide 74: ADXL345 I2C configuration
	Slide 75: ADXL345 I2C transactions

	Wrapup
	Slide 76: Outline

