
Lecture 11
Wired Communication:

SPI and I2C

CE346 – Microprocessor System Design

Branden Ghena – Spring 2025

Slides adapted from:
Branden Ghena (Northwestern), Josiah Hester (Georgia Tech), Prabal Dutta (UC Berkeley), Sparkfun

Project Hardware

• I have a bunch of stuff to hand to groups today!

• If you haven’t placed your first set of parts orders yet, do so ASAP
• Due by end-of-day Saturday

• I will place next round of orders on Sunday

• Warnings about receiving hardware
• Check what you received, and ask questions!

1. I might have substituted something

2. I may have a different number of items

3. I may have forgotten some adapter you need

2

Today’s Goals

• Discuss additional wired communication protocols: SPI and I2C

• Understand tradeoffs in design
• UART, SPI, and I2C are each useful for different scenarios

• Explore real-world usage of SPI and I2C

3

4

• Review

• SPI

• I2C

• Using SPI and I2C

Outline

• Controlling Timing

Sync Async

• Network topology
Point Bus Ring Star

Tradeoffs in Wired Communication

• Number of Signals

Serial Parallel

• Communication Speed
kbps Mbps Gbps

5

UART

• Number of Signals: Two (plus optional flow control)

• Communication Speed: Usually 1 to 100 kbps

• Controlling Timing: Asynchronous

• Network Topology: Point-to-Point

6

Serial kbps Async Point

UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

• Let’s get rid of all the cons (by sacrificing on all the pros)

7

8

• Review

• SPI

• I2C

• Using SPI and I2C

Outline

Let’s start with timing control

• How do we move from asynchronous to synchronous
communication?

9

Let’s start with timing control

• How do we move from asynchronous to synchronous
communication?

• Just add a clock signal!

10

• USART
• Synchronous/Asynchronous

• Just add a clock line

• Common peripheral in many microcontrollers to allow adaptable
communication
• Could build various protocols (like SPI or UART) on top of it

• Still point-to-point limited in this form

Synchronous UART

11

DATA

CLK

Transmitter Receiver

b0 b1 b2 b3 b4 b5 b7b6

Serial Mbps Sync Point

Now, let’s change the network topology

• How do we allow communication with more than one device?
• Start by choosing a network topology.

12

Now, let’s change the network topology

• How do we allow communication with more than one device?
• Start by choosing a network topology.

• Bus = (relatively) simple to implement

13

Synchronous serial communication with a single device

14

Microcontroller

Data Out
Clock

Device 2

Device 1

Device 3

Data In
Clock

Want bi-directional communication, so three wires

15

Microcontroller

Data Out
Data In

Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Wire signals to all devices to form a bus

16

Microcontroller

Data Out
Data In

Clock

Data In
Data Out
Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Data In
Data Out
Clock

Communicating on a bus

How do you distinguish which device you are talking to?

17

Communicating on a bus

How do you distinguish which device you are talking to?

1. Address for each device
• Devices must always listen and then discard messages that aren’t for them

• Need to define packet format so it’s clear where the address is

• Need a method for addressing devices

2. GPIO pin for each device
• Signal which device is being communicated with

• Only activates communication on transition of “select” line

• Needs a separate pin for each device

18

Separate chip select line for each device

19

Microcontroller

Data Out
Data In

Clock
Chip Select (2)
Chip Select (1)
Chip Select (3)

Device 2

Device 1

Device 3

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Serial Peripheral Interface (SPI)

• Serial, synchronous, bus
communication protocol

• Single controller with
multiple peripherals
• Within a circuit board

• High-speed
communication
• Multiple Mbps

20

Microcontroller

Serial Data Out
Serial Data In

Serial Clock

Chip Select

Chip Select

Chip Select

Device 2

Device 1

Device 3

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Mbps Sync Bus

A note on outdated notation

• Master/Slave paradigm
• Master is the “Computer” and is in charge of interaction

• Slave is the “Device” and has little control over interaction parameters

• Really common notation in EE side of the world.

• Not intended to be harmful, but also literally inconsiderate.

• Field is changing for the better. It’s going to take some time.
• Controller/Peripheral

• Central/Peripheral

• Device/Peripheral

• Master/Minion

• Primary/Secondary

21

SPI naming schemes

• Historical SPI Naming
• MISO – Master In Slave Out

• MOSI – Master Out Slave In

• SS – Slave Select

• Revised SPI Naming
• SDI – Serial Data In -> also known as CIPO (Controller In, Peripheral Out)

• SDO – Serial Data Out -> also known as COPI (Controller Out, Peripheral In)

• CS – Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi_signal_names

22

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names
https://www.sparkfun.com/spi_signal_names

SPI wiring

• 3+N wires for N peripherals

• SDI – input to the chip

• SDO – output from the chip

• SCK – Serial ClocK

• CS – Chip Select
• Active low signal

• Names are always relative to
this particular chip

• SDO connects to SDI

• SDI connects to SDO

23

Microcontroller

SDO
SDI
SCK

CS

CS

CS

Device 2

Device 1

Device 3

SDI
SDO
SCK

CS

SDI
SDO
SCK

CS

SDI
SDO
SCK

CS

SPI timing diagram

• CS goes low to start
transaction and
high to end

• Data is sent
synchronously with
clock signals

• Capable of full-
duplex transfers
• Both directions at

the same time

24

SCK

SDO

SDI

CS

SPI communication

• Transactions usually
in multiples of bytes
(as many as needed)

• Either bit endianness
is possible
• nRF can do LSb first

OR MSb first

• No need for framing
bits (start/stop)
• CS handles that

25

SPI configurations

• CPOL – is the clock default low or default high

• CPHA – is data read on first edge or second edge

• Peripherals tell you what their configuration is (usually 0 and 0)

26

SPI data rate

• No particular requirements
• Speed can go as fast as your clock and line capacitance can handle

• Datasheet for devices will specify their speeds
• Sort-of standard rates (less so than UART, for example)

• 700 kbps

• 3.4 Mbps

• 10 Mbps

28

Daisy-chaining SPI

• SPI can also be formed into a ring bus

• Doesn’t save on pins, but does reduce wires…
• At the cost of reliability and speed

• Fairly rare in practice

29

How do we determine when peripheral has information?

• Controller starts/stops SPI
transfers
• Could ask peripheral

periodically

• Peripherals often add
interrupt outputs to signal
controller that an event has
occurred
• More pins, yay!

30

Use Cases

• High-speed peripherals
• Microphone, External ADC, Displays!

• External memory
• Memory chips

• SD cards

• All SD cards support a SPI communication mode

• QSPI – Quad SPI (four SDO lines for more throughput)

• Often used for communication with external memory

31

SPI Pros and Cons

• Pros
• Faster throughput (and no overhead)

• No restrictions on data frame

• No addressing requirements or word size assumptions

• Full duplex transfers

• Cons
• Many pins: 3+N (for N peripherals)

• CS line scales linearly (other signals are a bus)

• Controller must initiate all transfers

• Not designed for multi-controller scenarios

32

Relevant xkcd

33https://xkcd.com/927/

34

• Review

• SPI

• I2C

• Using SPI and I2C

Outline

Choosing different tradeoffs from other wired communication

• Things we like from SPI
• Communication over a bus

• Synchronous communication

• Things we want from new protocol
• Fewer I/O pins

• Use a single data line for bi-directional communication

• Needs addressing and more specified data frame

• Multiple controllers sharing the bus

• Needs a bus contention solution

35

Bus contention could short a shared bus

• Want to enable multiple controllers

• Problem
• What if they each try to transmit different data?

• At some point, there will be a short-circuit

36

Disconnected I/O pins enable shared communication

• I/O pins often have three states
• High

• Low

• Disconnected
(also known as High-Impedance/High-Z)

• We can use this third state to enable
communication over a shared line
• Low or Disconnected

• Wired-AND

• 1 if they are all disconnected

• 0 if any are low

37

ANDing

Inter-Integrated Circuit (I2C)

• Two-wire, synchronous, bus communication
• Ubiquitous in the embedded world

• De-facto standard for sensors

• Invented and patented by Phillips (now NXP)
• Patent expired in 2004

• Also known as Two-Wire Interface (TWI)
• Occasionally as System Management Bus (SMBus or SMB) but that’s

actually a related but separate thing

38

Serial kbps Sync Bus

I2C overview

• SDA – Serial Data

• SCL – Serial Clock
• Usually 100 kHz or 400 kHz

• Communication is a shared
bus between all controller(s) and peripheral(s)

• Pull-up resistors for open-drain communication

39

• SDA and SCL are open-drain
• 1 – high-impedance, let line

float high

• 0 – active drive, pull line low

40

• Pull-up resistor to provide high
signal
• Low enough resistance that current

can flow in a reasonable amount of
time

• Common value: 4.7 kΩ

Open drain bus communication

I2C transaction walkthrough

• Here’s a one-byte I2C write to a device
• Let’s walk through all the parts of how this works

41

Address: 0x66 Data: 0x9C

0 0

I2C transaction walkthrough

• Default state for SDA and SCL is high

• A transaction starts when data goes low while clock is still high
• Usually, data changes when clock is low

• Known as a “Start Condition”

42

Address: 0x66 Data: 0x9C

0 0

I2C transaction walkthrough

• First byte sent has two parts
• 7-bit chip address

• 1-bit read/write indication (1 for read, 0 for write)

• Values are read MSb first (reverse of other protocols)

43

Address: 0x66 Data: 0x9C

0 0

I2C transaction walkthrough

• Acknowledgement is sent by the other device
• Sender briefly changes to an input (high-z)

• 1 is the default state of the bus, which means no device responded

• 0 means some device responded, which is an ack

44

Address: 0x66 Data: 0x9C

0 0

I2C transaction walkthrough

• Data byte(s) are sent after the address
• For a write, bytes are sent by the controller

• For a read, bytes are sent by the peripheral

• Other device acknowledges each byte along the way

45

Address: 0x66 Data: 0x9C

0 0

I2C transaction walkthrough

• Stop condition
• Let data go high while clock is still high

• Returns bus to default state

46

Address: 0x66 Data: 0x9C

0 0

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?

47

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?
• Low bit wins! (so smaller address or data)

• Each controller constantly checks whether SDA matches the
voltage level it expects
• Stops attempting to transmit if it ever does not

• (Only actually needs to check high signals)

48

Repeated start conditions

• Repeated start conditions
allow the bus to be used
again while arbitration was
won

• Trigger another Start
condition without triggering
Stop condition
• Send address again

• Frequently used for write
then read pattern
• Write which value you want
• Then repeated start and read

49

Clock stretching

• Clock is an open-drain
line too
• Either device could

keep it low

• Transaction can be
briefly paused by
holding SCL low

50

ready

Real-world I2C transactions

51

Each I2C device on a bus must have a different address

• Shared addresses would cause both to
respond

• ICs often have one or more address pin(s)
used to select bit(s) of address
• 0 pins: only one may be on bus
• 1 pin: two may be on bus
• 2 pins: four may be on bus

• If no address pins (or not enough), need
an I2C address translator chip
• Translates addresses for one or more

peripheral chips

52

A0 is low: address 1001010x
A0 is high: address 1001011x

Sparkfun Qwiic connect system

• System for wiring multiple prototyping boards together

• Four-pin connector
• VCC (3.3 volts)

• Ground

• SDA

• SCL

• Daisy-chains through boards
• Actually connects to chips in parallel as a bus

53

https://www.sparkfun.com/qwiic

https://www.sparkfun.com/qwiic

System Management Bus (SMBus)

• Related communication specification
• A little more strict in places, but generally interoperable

• Adds ability to broadcast or unicast messages
• Generic addresses for Controller and various peripherals (Battery)

• Adds an open-drain shared interrupt signal
• High-impedance or pull low, just like SDA and SCL

• Allows any device to alert a controller

• Controller has to probe bus to determine which device wants attention

54

I2C use cases

• Various sensors
• Usually low to medium speed

• Even relatively high speed stuff often has I2C for convenience

• Accelerometers and microphones

• Often with intelligent filtering built in

• Communication between microcontrollers
• Either can act as the Controller when necessary

• Commonly exists internally within smartphones and laptops too
• Light sensors, Temperature sensors, etc.

55

I2C Pros and Cons

• Pros
• Wiring is simple

• Only uses two pins

• Very widely supported

• Cons
• Relatively slow communication rate

• Speed versus power use tradeoff (due to pull-down resistor)

• Open collector makes debugging difficult

56

Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

57

Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

• Too slow:

• Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

• Not robust:

• No effort put into the electrical encoding of data or error checking

• Long external cables lead to additional errors

• Overall: they’re too simple

58

59

• Review

• SPI

• I2C

• Using SPI and I2C

Outline

Common sensor interaction pattern

• First write one byte to the device
• This selects what data you want to interact with, called a “register address”

• Second read/write one (or more) bytes
• This is the actual data

• SPI and I2C devices both work this way
• Datasheet will have a list of registers you can read/write

• Each register will have some address: that’s the first byte you write

60

Example: Microbit accelerometer

• Details of each
register on
later pages
show you the
structure of
the data read
or written

61

Register/data pattern in I2C

• I2C is the more difficult of these
• Need some way to tell the device “this transaction is still going”, but switch

from writing to reading

• This is the use of the “repeated start” option
• Continues the “transaction”

62

I2C Read Transaction

• First, write the address of the register you want

• Then, repeated start

• Finally, read the data from the device

63

Peripheral Controls SDA Line

Controller Controls SDA Line

I2C Write Transaction

• Just write the data. No need to change modes in the middle

• Some devices also allow “repeated start” in the middle of write transactions
• But it’s not necessary

64

Peripheral Controls SDA Line

Controller Controls SDA Line

nRF I2C Implementation

• nrf_twi_mngr driver: I2C (Two-Wire Interface) manager
• Expects transactions to occur and is set up to run those

• Takes in an array of “transfer” operations as an argument

• Each operation is either a read or a write
• Includes a device address, includes a pointer to data and length

• Includes flags like NRF_TWI_MNGR_NO_STOP which does not execute a
stop bit after one operation

• Your job is to set up the array of transfer operations
• Then the driver will make it happen

65

Register/data pattern in SPI

• SPI is easier to implement transactions for
• No indication of reading/writing by default

• You can just hold Chip Select low and stop clocking if you want to pause

• Need some way to indicate to the peripheral whether you’re
reading or writing though
• Possibly different register addresses for read versus write

• Possibly 7-bit addresses, with a bit leftover for read/write specification

• Some devices just work uni-directionally

• Can’t read from a screen

66

SPI Read Transaction

• Chip select goes low to select the device

• First byte is the register address and read selection

• Next bytes are from the peripheral (read data)

67

SDO

SDI

SPI Write Transaction

• Chip select goes low to select the device

• First byte is the register address and write selection

• Next bytes are the data to write

68

SDO

nRF SPI Implementation

• nrfx_spim driver: nRF SPI Master (Controller)

• Expects data in “XFER” (transfer) operations
• Can either be read, write, or read AND write (both simultaneously)

• Flags control whether CS pin goes high afterwards or if it stays low
• Or you could just manually control the CS pin with GPIO which is usually

easier…

69

Example: ADXL345 accelerometer

• 3-axis accelerometer
• Pretty high accuracy: 13-bit resolution, +/- 16 g

• Can use either SPI or I2C

70https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf

What fields can we
access?

• Same “registers” for SPI
and I2C

• Transactions:
• Register address sent first

• Register value sent second

• Some are read/write while
others are read-only

71

ADXL345 SPI configuration

• Normally uses 4-wire SPI

• Can also use a 3-wire SPI version
• One wire for in and out

• SPI Config
• 5 MHz (or slower)

• CPOL=1 CPHA=1 (ugh, not the default)

72

ADXL345 SPI transactions

73

ADXL345 I2C configuration

• Connection of CS pin determines mode
• Connecting to power puts it in I2C mode

• Supports 100 kHz or 400 kHz mode

• Address: selectable with pin
• Pin low: 0b1010011 (0x53)

• Pin high: 0b0011101 (0x1D)

74

ADXL345 I2C transactions

75

76

• Review

• SPI

• I2C

• Using SPI and I2C

Outline

	Default Section
	Slide 1: Lecture 11 Wired Communication: SPI and I2C

	Goals
	Slide 2: Project Hardware
	Slide 3: Today’s Goals

	Review
	Slide 4: Outline
	Slide 5: Tradeoffs in Wired Communication
	Slide 6: UART
	Slide 7: UART Pros and Cons

	SPI
	Slide 8: Outline
	Slide 9: Let’s start with timing control
	Slide 10: Let’s start with timing control
	Slide 11: Synchronous UART
	Slide 12: Now, let’s change the network topology
	Slide 13: Now, let’s change the network topology
	Slide 14: Synchronous serial communication with a single device
	Slide 15: Want bi-directional communication, so three wires
	Slide 16: Wire signals to all devices to form a bus
	Slide 17: Communicating on a bus
	Slide 18: Communicating on a bus
	Slide 19: Separate chip select line for each device
	Slide 20: Serial Peripheral Interface (SPI)
	Slide 21: A note on outdated notation
	Slide 22: SPI naming schemes
	Slide 23: SPI wiring
	Slide 24: SPI timing diagram
	Slide 25: SPI communication
	Slide 26: SPI configurations
	Slide 28: SPI data rate
	Slide 29: Daisy-chaining SPI
	Slide 30: How do we determine when peripheral has information?
	Slide 31: Use Cases
	Slide 32: SPI Pros and Cons
	Slide 33: Relevant xkcd

	I2C
	Slide 34: Outline
	Slide 35: Choosing different tradeoffs from other wired communication
	Slide 36: Bus contention could short a shared bus
	Slide 37: Disconnected I/O pins enable shared communication
	Slide 38: Inter-Integrated Circuit (I2C)
	Slide 39: I2C overview
	Slide 40: Open drain bus communication
	Slide 41: I2C transaction walkthrough
	Slide 42: I2C transaction walkthrough
	Slide 43: I2C transaction walkthrough
	Slide 44: I2C transaction walkthrough
	Slide 45: I2C transaction walkthrough
	Slide 46: I2C transaction walkthrough
	Slide 47: Bus arbitration
	Slide 48: Bus arbitration
	Slide 49: Repeated start conditions
	Slide 50: Clock stretching
	Slide 51: Real-world I2C transactions
	Slide 52: Each I2C device on a bus must have a different address
	Slide 53: Sparkfun Qwiic connect system
	Slide 54: System Management Bus (SMBus)
	Slide 55: I2C use cases
	Slide 56: I2C Pros and Cons
	Slide 57: Open Question
	Slide 58: Open Question

	Using SPI and I2C
	Slide 59: Outline
	Slide 60: Common sensor interaction pattern
	Slide 61: Example: Microbit accelerometer
	Slide 62: Register/data pattern in I2C
	Slide 63: I2C Read Transaction
	Slide 64: I2C Write Transaction
	Slide 65: nRF I2C Implementation
	Slide 66: Register/data pattern in SPI
	Slide 67: SPI Read Transaction
	Slide 68: SPI Write Transaction
	Slide 69: nRF SPI Implementation
	Slide 70: Example: ADXL345 accelerometer
	Slide 71: What fields can we access?
	Slide 72: ADXL345 SPI configuration
	Slide 73: ADXL345 SPI transactions
	Slide 74: ADXL345 I2C configuration
	Slide 75: ADXL345 I2C transactions

	Wrapup
	Slide 76: Outline

