Lecture 09
Analog Output

CE346 — Microprocessor System Design
Branden Ghena — Spring 2025

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

* Design presentations all next week!
« Happy to discuss things before then via Piazza
« I will provide individual group feedback as I get time to

 Drop deadline is Friday next week
« I'm not worried about anyone in CE346
 But if you're worried, I'm happy to talk about it.

Today’s Goals

* Explore common methods for generating analog signals
« Understand the role of Digital-to-Analog converters

« Discuss the concepts of Pulse-Width Modulation
« And the nRF52 implementation of it

Outline

 Digital-to-Analog Converters

e Pulse-Width Modulation

* NRF52 PWM

Digital-to-Analog Converters

» Generates an analog voltage

10.00

8.75

* DACs are conceptually the
inverse of ADCs

« Number of bits of resolution
choose analog step size

« Frequency determines step
duration

7.50

6.25

Amplitude
(Volts) °-00

3.75
2.50

1.25

==]6-bit Resolution

=== 3-bit Resolution

I I | >

50 100 150

Time (ms)

High resolution versus high frequency

» What role does each play in a DAC?
Which is more important?

- High resolution can accurately represent a voltage
» High frequency can accurately represent a changing voltage

» In practice:
« Need high enough resolution, then as high of frequency as possible

Infinite resolution is not sufficient

* DAC frequency corresponds
to representable signal
changes

* Rise and fall times

« Even an infinite resolution
DAC cannot represent a
signal if it is not fast
enough

reconstruction filrer

Digital ‘ 3 .Analog 3
Processing — > DAC

Low-pass filter smooths output

 Low-pass filter delays changes in
voltage and smoothly transitions Eﬁ 'U;&Y h—
between them Oups Aubg Oup
« Low-frequency signals stay i} Step Response Modeled Resuit
- High-frequency are smoothed o
» Greatly improves quality of output , | |
but must be tuned to the desired £
signal frequency < _
» Usually not included in T e
miCI‘OCOHtI‘O”er o : l:i::_

-1 L] 1 2 S 4 5
Time Seconds

Resistor string DAC

 Use series of voltage dividers
and switches to set output
voltage

» Generates equally spaced
voltages that can be selected
between

» Needs output buffer to provide
stable current

» Takes a lot of resistors
« And resistors take a lot of silicon

Vref LASB_‘ B MASB;

o N % NN
o . WL D W
TN o1
R Q:EE‘LI—
Ry | Y
" e e
b P
S EEE
R i \

—0 OUT

Resistor string example

Vre f

zresolution

* V,ut = code x

 Input code is 101

 Selects switches such
that 5/8*V is
connected to output

LSB MSB
Vre T B
f
' do dp dy dy d d
7V,/8 Reui L1 2 .1
T |
]
6V,0/8 : ~|t E : e i
. | | |
5 I/l(’f/ 8 I | I :
I
4V,,./8 —L !
I I I I
| I |
3V,,/8 ia--n—l = g :
2V,,0/8 —L | \L .
I —
Vi/8 faedaei i
R & il

10

Break + DAC applications

« What do you use an analog output for?

11

Break + DAC applications

« What do you use an analog output for?

 Audio output
 But it needs to be high quality (resolution and speed)

« Motors
 But only with a controller that actually drives them with enough current

« LED brightness

« Not Much
« And these last two can be done more easily with PWM

12

DACs are not in all microcontrollers

* Not rare, but not ubiquitous either
» Every microcontroller has GPIO
» Just about every microcontroller has an ADC

« Some microcontrollers have DACs
(the nRF52833 does not!)

* Reasons
« Hardware is complicated (but we could fit it if we wanted)
 Use cases are uncommon (and might need very high quality)
» Many devices can be controller digitally

* Pulse-Width Modulation (PWM) can emulate usably analog signals

13

Outline

» Digital-to-Analog Converters

e Pulse-Width Modulation

* NRF52 PWM

Pulse-Width Modulation e

¢ MUCh eaSier to ContrOI hlgh or IOW 75% duty cycle
than an analog output

25% duty cycle

» Idea: modify how long a signal is
high within some switching
frequency, a.k.a duty cycle

« On 50% of the time for half voltage
« On 10% of the time for tenth voltage

 Duty cycle, not frequency!

15

PWM to Analog Signal example

E-ll..'.'] N [ey | e T e P e

DA
output

averaged
analag
vollage

* PWM period should be much faster than the desired analog signal

« PWM duty cycle represents the voltage along the way
« Multiple duty cycles per output point makes it more accurate

16

Low-pass approach works here too

« Importantly, many devices are
inherent low-pass filters

» Heaters, Motors
» Low-pass by physical design
* [.e., they can't start/stop quickly

Amplitude

* LEDs are not
« But our eyes are!

reconstruction filter

Digital ‘ Analog

|G "n ‘ - L ‘ ~ '
SH
\nal

Diginized Analog
Output Analog Output
Output

Step Response Modeled Result

— Trace A [

: : : — Trace B
1 | | I

1 2 S 4 5
Time Seconds

17

Controlling PWM

» Vary duty cycle by selecting

transition points to DuryCyele="2x100%
- Time when set e -
» Time when unset -« >

f (time)

» Repeat every cycle . N
 Period much faster than signal if possible T=1/F
« Makes analog approximation more accurate

« The faster you run it, the less likely it
matters that it is not actually analog

« Example: LED switching frequency

 Duty cycle could vary cycle-by-cycle if it must

18

PWM alignment

» Can select alignment
as well

« Equivalent to a phase
delay

 Centering produces
cleaner analog output
 Less harmonics

* Not relevant for most
devices

Symmetric PWM

Center-Aligned *"J > «|»

Asymmetric PWM

F
b

Left-Aligned

Right- Aligned 'j >

|

A

M

T

PWM period PWM period PWM period PWM period

19

Every microcontroller can do PWM

* Not every microcontroller has a PWM peripheral
 But every microcontroller has timers and digital outputs

* All that is needed is a GPIO and a Timer (or two)
« Timer determines when to turn GPIO on and off
« Often can be automated in hardware rather than using an interrupt
« Connect timer expiration to GPIO toggling

20

PWM is an example of encoding data on a signal

 PWM is a pulse-width modulated signal

* There are many other ways to "modulate” a signal to transmit data
- Amplitude, Frequency, and Phase are common
 Layers data on top of an existing “carrier signa

III

 Used especially for high-speed communication
« Wired (cable lines) or Wireless (basically everything)

21

PWM applications

 Servos
 Duty cycle chooses angle or rotation speed

* Motor controllers
« Duty cycle chooses current and therefore speed

* LED brightness
« And “breathing” effect

 Audio
« Can sound okay if frequency is high enough

22

Controlling LED Matrix brightness

 Option 1: PWM peripheral
» Need to use multiple PWM peripherals to get 5 pins to control each LED
« Alternatively, could only control brightness for the entire matrix
« Then use a single PWM output to control the row
« When timer fires, change which row pin is used for PWM
« PWM frequency should be much faster than row change frequency

 Option 2: do it manually (instead of PWM peripheral)
« Need to apply duty cycle on top of the existing stepping through rows
« Add 5 new one-shot app timers, one for each column
 Fire some percentage into the time the LED is active (within the 2 ms)
 Use to toggle individual column LED back to off
 Result: the LED is on for some portion of the time it should be active

23

Break + Open Question Vo(t)

» Imagine you want to represent the
following signal with PWM

 What should the PWM period be?

., W
5us 10ps 15us

- What kinds of duty cycle values would you use? (3.3v is 100%)

24

Break + Open Question Vo(t)

» Imagine you want to represent the
following signal with PWM

 What should the PWM period be?

« Signal period is ~10 ps , ,

+ PWM period should be at least 2x that | 5us 10us 15us

« 10x faster seems like a good start
« Then if we want multiple PWM outputs per sample, that's ~20-40x faster

=1

« What kinds of duty cycle values would you use? (3.3v is 100%)
« 2/3.3 = 61% duty cycle max
* 0/3.3 = 0% duty cycle min

25

Outline

» Digital-to-Analog Converters

e Pulse-Width Modulation

- NRF52 PWM

NRF52 PWM — theory of operation

* A clock continuously adds to a counter value
* (just like the Timer peripheral does)

« When the counter value reaches COMP[n], the GPIO value on
channel n changes from high to low (or vice-versa)

« When the counter value reaches COUNTERTOP, the GPIO value on
channel n changes from low to high (or vice-versa)
« AND the counter value resets to zero

27

NRF52 PWM peripheral

 Uses internal timer to
create PWM output on
up to 4 pins
* 4 peripheral instances,
so up to 16 pins total

 Loads compare values
via DMA to rapidly
vary “analog” signal

Sequence 0
DIATA RAM Sequence 1
WM
START
SEQSTART[O]
SEQSTART[1]
[SEQ[n].REFRESH .;jT::
Decoder Eaa
NEXTSTEP B
COMPO —{<
COMP1 X
COMP2 21—
COMP3 PSEL.OUT(3] @
Carry/Reload |
Wave Counter | COUNTERTOP |
PWM_CLK PRESCALER

28

PWM example

« Counter increments up
to COUNTERTORP, resets
and continues

>

 Period/Frequency

« Chosen by COUNTEROP

and timer PRESCALER Counter
Value

One PWM period

Time

29

PWM example

« Counter increments up
to COUNTERTORP, resets
and continues

« Duty Cycle
« COMPO chooses first
toggle point for OUT[0]

« Second toggle point is
when the timer resets

(right-aligned) coOMP =

Counter
Value

COUNTERTOP — (COUNTERTOP * DutyCycle)

(left-aligned) COMP =
COUNTERTOP * DutyCycle

One PWM period

Time

30

Center-aligned PWM

« Up-and-down mode enables
center-aligned PWM

 Duty Cycle
« Comp triggers toggle on rise
« Comp triggers toggle again on fall

COMP = COUNTERTOP — (COUNTERTOP = 0.5 * DutyCycle)

31

Trading speed and accuracy

« How do you get the most accurate PWM
values?

« Select the largest COUNTERTOP possible
» Most possible COMP values
« Up to 15-bit resolution (32767 max)

* How do you get the fastest PWM frequency?
 Select the smallest COUNTERTOP possible
« PRESCALER also affects this
« 16 MHz — 128 kHz (8 possible values)

 Fastest PRESCALER + largest COUNTERTOP
equals 488 Hz

* Likely need to sacrifice resolution for speed

32

DMA with PWM

« Every N periods it loads a new configuration from RAM
« N combined with PRESCALER and COUNTERTOP chooses “analog signal” period

 Configuration sets COMP values for each output channel
 Also sets polarity (starting value: low or high)

 Application of memory loads to channels is configurable

COMPARE COMPARE COMPARE

COMPARE COMPARE COMPARE

—o 9o o

[l v M| el Ml =

COMPARE

0 COMPARE 0| COMPARE COMPARE

mo9lreo 9leo 9le oo

Waveform mode

» Also has the option to change COUNTERTOP every N PWM periods

 Allows arbitrary waveforms to be created
* Frequency changes every period
 Duty cycle can also change each period

« We don’t normally need this, as a
constant frequency with changing
duty cycle should be fine

COMPARE

COMPARE

o B3| o 2 o =

COMPARE

TOP

34

Other configurations

 How many times the entire DMA seqguence repeats
« 0 to large number, infinite with a configuration in SHORTS

« How long to delay between repeating sequence cycles
« Repeats last PWM configuration

« Two DMA sequence configurations (0 and 1)
« Can modify one while the other is playing - “"Double Buffering”
« Allows continuous signal (for example, music)

35

NRF SDK PWM driver

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk nrf5 v16.0.0%2Fgroup nrfx pwm.html

» Initialize PWM with base configuration
 Output pins, Clock frequency, COUNTERTOP, DMA grouping mode
« Handler for events from peripheral

« nrix_pwm_simple_playback(instance, sequence, count, flags)
» Instance: pointer to global variable with registers
« Sequence: struct containing sequence to be played (see next slide)
« Count: number of times (1 or more) to repeat sequence
 Flags: stop peripheral when done, loop forever, various events

36

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrfx__pwm.html

Sequence struct

Data Fields

Pointer to an array with duty cycle values. This array must be in Data RAM. More...
uintle tlength
Number of 16-bit values in the array pointed by values.

uint32 trepeats
Number of times that each duty cycle is to be repeated (after being played once). lgnored in
NRF_PWM_STEP_TRIGGERED mode.

uint32_t end_delay
Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. lgnored
in NRF_PWM_STEP_TRIGGERED mode.

« values: pointer to array of uintl6_t values (union of types)

* length: length of array

 repeats: number of times to repeat each individual value
» Sets period for “analog value” changing

37

Example, playing a note with a square wave

(@)

 Pick PWM frequency to match note frequency 0y
« Combination of PRESCALER, COUNTERTOP, and repeats
« 440 Hz for the note A
» PRESCALER 1 MHz, COUNTERTOP 2273 -> 440 Hz

 Set duty cycle of PWM to control volume
* 50% duty cycle -> COMP value of 1137

 Set sequence with an array of length 1, content is {1137} (polarity 0)
» Repeats 0, end_delay 0

« Set playback_count to 1 and flags to NRFX_PWM_FLAG_LOOP

38

Playing sine waves instead of square waves

» Sine waves sound different than
square waves /\

/\
« Sine is more smooth \/ \/ T
Sine

« Square is more harsh and buzzy San

 For better sound quality, we can play sine waves via PWM

300
T o -~ U ",
200 AT - | P e
1m - .J'.J \"-i
o

T HH__ &
h_ ar
TP, .-’
200 | e
B b o 1] - | | l U

1] [a0] oo L L] L DD 0103

39

Steps to playing a note with a sine wave

1. Calculate sine wave values for some amount of duration

« Reasonable to calculate one second of data at a time
« sin () function might be too slow here

 Instead calculate sine values in advance and interpolate into an array
based on frequency

2. Translate sine wave values into duty cycle values
* Fill an array with these duty cycle values

3. Play the array of duty cycle values
 That gets one second of audio

« For music, might change schedule a timer for when to stop current
playback and play the next note instead

40

Outline

» Digital-to-Analog Converters

e Pulse-Width Modulation

* NRF52 PWM

	Default Section
	Slide 1: Lecture 09 Analog Output

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Digital-to-Analog Converters
	Slide 4: Outline
	Slide 5: Digital-to-Analog Converters
	Slide 6: High resolution versus high frequency
	Slide 7: Infinite resolution is not sufficient
	Slide 8: Low-pass filter smooths output
	Slide 9: Resistor string DAC
	Slide 10: Resistor string example
	Slide 11: Break + DAC applications
	Slide 12: Break + DAC applications
	Slide 13: DACs are not in all microcontrollers

	Pulse-Width Modulation
	Slide 14: Outline
	Slide 15: Pulse-Width Modulation
	Slide 16: PWM to Analog Signal example
	Slide 17: Low-pass approach works here too
	Slide 18: Controlling PWM
	Slide 19: PWM alignment
	Slide 20: Every microcontroller can do PWM
	Slide 21: PWM is an example of encoding data on a signal
	Slide 22: PWM applications
	Slide 23: Controlling LED Matrix brightness
	Slide 24: Break + Open Question
	Slide 25: Break + Open Question

	nRF52 PWM
	Slide 26: Outline
	Slide 27: nRF52 PWM – theory of operation
	Slide 28: nRF52 PWM peripheral
	Slide 29: PWM example
	Slide 30: PWM example
	Slide 31: Center-aligned PWM
	Slide 32: Trading speed and accuracy
	Slide 33: DMA with PWM
	Slide 34: Waveform mode
	Slide 35: Other configurations
	Slide 36: nRF SDK PWM driver
	Slide 37: Sequence struct
	Slide 38: Example, playing a note with a square wave
	Slide 39: Playing sine waves instead of square waves
	Slide 40: Steps to playing a note with a sine wave

	Wrapup
	Slide 41: Outline

