Lecture 04 Prototyping & Digital Circuits

CE346 – Microcontroller System Design Branden Ghena – Spring 2025

Some slides borrowed from: Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

- Labs
 - See schedule of Lab hours available on Canvas for checkoffs
 - Due by end-of-day Thursday (but last office hours ends at 6pm)

- Quiz
 - Today at end of class! (tell your friends who aren't here)
 - Someone remind me at ~4:30 if I don't stop

Project Proposals

- It is time to start forming teams and working on Proposals
 - Due next week Friday! (04/25)
 - Project and proposal details will be posted to Piazza later today
 - 1-2 pages, with some specific items you MUST include

- Project teams are 2-3 students (4 under rare occasions)
 - You may NOT work alone
 - There is a partnership survey if you want us to match you with someone
 - Due by end-of-day Sunday

Today's Goals

Explore another peripheral interaction pattern: DMA

- Understand the basics of digital circuitry
 - Enough to be able to interact with the Microbit

• Discuss prototyping methods and basic circuits components

Outline

Digital Circuits

Prototyping

Components

Digital signals

- Exist in two states:
 - High (a.k.a. Set, a.k.a. 1)
 - Low (a.k.a. Clear, a.k.a. 0)
- Simpler to interact with
 - Constrained to two voltages
 - With quick transitions between the two
 - No math for voltage level
 - Either high or low

Digital circuits

- Connecting components together with digital signals
 - Mostly ICs
 - Also buttons/switches and LEDs
- Way simpler than analog circuits
 - Mostly connecting boxes with wires
 - Plus a few resistors here and there
- An abstraction
 - Not sufficient for fully understanding electronics behavior, but close

Switches

- Single Pole, Double Throw switch
 - Middle pin (Pole) connects to one of two outer pins (Throws)

- For controlling microcontrollers
 - Often connect outer pins to VCC and Ground respectively
 - Input then goes High or Low depending on switch state

Buttons

- Single Pole, Single Throw switch
 - Pole pin either connects to Throw pin or is disconnected
 - Come in normally-closed (connected) and normally-open (disconnected)

Disconnected circuits

- When button is pushed, input signal is low
- What is the value of the input when the button is unpressed?

Disconnected circuits

- When button is pushed, input signal is low
- What is the value of the input when the button is unpressed?
 - Floating! Could be any voltage
 - Solution: need to connect weakly to either high or low voltage

Current flows through the "path of least resistance"

- Simplification
 - Works well for the types of circuits we use
- Pull-up resistor
 - When button is open (disconnected), the only path is through the resistor
 - When button is closed (connected) the least resistance path is through the button to Ground

Pull-up resistors and pull-down resistors

- Resistor sets the "default" value of a wire
 - Pull-up connects to VCC
 - Pull-down connects to Ground
 - Usually 10-100 $k\Omega$
- When button is open (disconnected)
 - Connection through the resistor sets signal

- Signal is directly connected to a voltage source
- Much lower resistance means that signal dominates

Buttons on the Microbit

- Normally open buttons
 - Disconnected by default
- Active low signal
 - Activating (pushing) button creates a low signal
- Pull-up resistors
 - Set button signal high by default

LEDs

- Light Emitting Diodes
 - Generate light as current passes through them
 - Various colors available
- Diodes
 - Only allow current to go through one way
 - Not particularly relevant for LEDs
 - Treat as a digital component

- Connect anode to high voltage and cathode to ground
 - Plus a resistor to limit the total amount of current

Active state for LEDs

- LEDs can be active high or active low depending on configuration
 - Active high is how people assume they work
 - Active low is often used instead
 - GPIO pins can usually sink more current than they can source

LEDs on the Microbit

- Microphone LED
 - Active high

 Simple to use, just set the GPIO high to enable it

Ignore this other part for now

LEDs on the Microbit

- Use two GPIO pins to control each LED
 - Row high as VDD
 - Column low as Ground
- Connections on circuit schematics only exist where there are dots

Controlling the LED matrix

- Cannot individually control all LEDs simultaneously
 - Need to light one row at a time
 - Iterate rows quickly to make them appear on all the time
- We'll have a lab on these later
 - Combines GPIO and timers

Break + Question

- Should the spot in green have?
 - A. Pull-up Resistor
 - B. Pull-down Resistor
 - C. Either
 - D. Neither

Break + Question

- Should the spot in green have?
 - A. Pull-up Resistor
 - B. Pull-down Resistor (needs to pull input low by default)
 - C. Either
 - D. Neither

Outline

Digital Circuits

Prototyping

Components

Prototyping goals

- Does this thing work at all?
 - Particular IC
 - Circuit layout
 - Software design
 - etc.
- Sometimes before doing something more serious with it
 - Design a PCB, Make a product, etc.
 - Not uncommon that the prototype is as far as you'll get

Isolating tests

The goal when prototyping is to isolate the question at hand

- Do consider
 - New sensor/IC/component/whatever

- Do not consider
 - Power
 - Interference
 - Enclosure
 - Stable microcontroller
 - Soldering skills

Buying Parts

- Prototyping vendors
 - Where you look for cool stuff to buy
 - Sparkfun
 - Adafruit
 - NOT Amazon for prototyping parts
- Electronics vendors
 - Where you buy parts when you know what you need
 - Digikey
 - Mouser

Prototyping methods

- Breadboarding
 - Plug and connect components as needed
 - Build up arbitrarily complex designs from nothing
- Development kits
 - Pre-fabricated systems design for testing components
- Small-scale test PCBs
 - Design a PCB that demonstrates the thing you're interested in
 - Making a PCB is less hard than some might think (Eagle, <u>Fritzing</u>, etc.)
 - \$20-30 for small, low-speed PCBs from batch services like <u>OSHPark</u>

Breadboards for prototyping

- Reusable platform for temporary circuits
- Plug in jumper wires and through-hold components

How a breadboard works

- Component leads and wires are inserted into holes in the breadboard
- Half-rows of five holes are connected
- Vertical columns are connected for power/ground

Holes to insert wires

Breadboard LED example

Uses button to control LED

fritzing

Breadboard guidelines

- Long wires in large bird nests makes debugging very difficult
 - Shorter, constrained wires are easier to understand
 - In this class, we'll only have large jumper wires though...
- Use the minimum jumpers necessary, mostly use breadboard for connections

More permanent breadboards

Breadboards are also known as "Solderless Breadboards"

- Protoboard allows configurable circuits
 - Solder jumper wires between locations
 - Solder adjacent pads to form connection

- Usually not worth it (just make a PCB)
 - Does solve core problem of breadboards: things getting unintentionally unplugged
 - Might be useful for some projects!

When to not use breadboards

- Breadboards work great for digital circuits and simple analog!
- High voltage/current are bad for breadboards
 - Honestly, anything above 12 volts DC shouldn't be in a breadboard
 - Also avoid high-power applications above a few Watts
 - Never put AC in a breadboard!
- Sensitive analog circuits
 - Particularly anything sensitive to capacitance may not work right
 - Sets of metal holes with strips connecting them function as capacitors
- Anything in long term use

Outline

Digital Circuits

Prototyping

Components

Prototyping components

- We've talked through the theoretical notions of many parts
 - Buttons, Switches, Resistors, LEDs
- Now let's look at the real-world practicalities of working with them
 - Again, some of you will have already learned this
 - But many of you might not have used these things before

Microbit breakout

- Always connect LED matrix side up
- Breaks out various pins from board
 - Need to consult table to know which pins
 - https://tech.microbit.org/hardware/schematic/

https://www.sparkfun.com/products/13989

https://learn.sparkfun.com/tutorials/microbit-breakout-board-hookup-guide

fritzing

Resistors

- Resistors are not directional
 - Either orientation is fine and works identically

Resistor color codes

 Colored bands on resistors label the resistance value of the part

- First and second bands are the digits
- Third band is multiplier
- Fourth band is tolerance
 - Usually gold: +/- 5%

Example: determine the resistor

Example: determine the resistor

• 56 x 10 Ω = 560 Ω (±5%)

Potentiometers

- Vary resistance between zero and some maximum
 - 1 k Ω , 10 k Ω , 100 k Ω common
- Connect middle and an edge for just a changeable resistor
- Middle terminal is a movable resistor divider
 - Knob changes middle output if outer pins are VCC and Ground

Resistive Track

Construction

LEDs

Directional component: only allows current to flow one way

Shorter side is the negative one

• i.e. where current flows to

Surface-mount LED

Larger metal component inside of case or case flat spot is cathode or negative (-) lead

Shorter wire is cathode or negative (-) lead

RGB LED

- Three different colors of LED in a single large diffuser
- Short leads are negative ends
 - One for each color
- Long lead is common power
 - Common anode
- Combinations of LEDs give other colors
 - Cyan, Yellow, Violet, White

Sensors

Thermistor

Photoresistor

We'll come back to these in a future lecture

Outline

Digital Circuits

Prototyping

Components