
Lecture 03
Digital I/O and Interrupts

CE346 – Microprocessor System Design

Branden Ghena – Spring 2025

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Lab on Friday!
• Frances Searle room 2370
• See you all there!!
• Show up on-time. We are going to get started right away

• None of this 5-10 minutes late nonsense

• Bring a USB-C adapter if you need one

• Remember that you need to attend the section you registered for
in CAESAR
• If you need to switch for a day, ask me for permission in advance on

Piazza

2

Quiz coming soon

• First quiz is next week Tuesday! (April 15)
• 15-minute quiz, taken in-class on paper

• Last fifteen minutes of class

• Bring a pencil

• No notes, no calculator

• Covers material from the last two weeks, including today

• Goals:
• The quiz is not meant to be difficult. It’s meant to keep you involved

• Do review class material and make sure you actually understand it

3

Today’s Goals

• Two major parts today:

• 1. How does a microcontroller interact with peripherals?
• Already discussed Memory-Mapped I/O

• Interrupt and DMA mechanisms today

• 2. How do we interact with digital inputs and outputs?
• GPIO peripheral for Digital I/O

• GPIOTE peripheral for interrupts

4

5

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

Devices are the point of computers

• Traditional systems need to
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same
requirement, just more types of IO

6

Processor

Computer

Control

Datapath

Memory Devices

Input

Output

Devices are core to useful general-purpose computing

7

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output

Devices are essential to cyber-physical systems too

8

Computer

Lidar

Inertial
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output

Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be
able to handle
each of these
• Sometimes

needs low
overhead

• Sometimes
needs to not
wait around

9

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0

10

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

Pins

• Peripherals need to electrically connect to outside world
• Attach to pins on the exterior of the chip

• More pins allow for more connections
• At increased cost and size

• Under-chip pins can add more pins for cheaper
• But make soldering and debugging difficult

11

Internal connections to pins

• Peripherals need to connect to external pins
• Can any peripheral connect to any pin, or are there limited mappings?

• Modern microcontrollers allow any-to-any connections

• Older MCUs
had mapping
tables and
pin selection
was more
challenging

12

Pins on the nRF52833

• 73 individual pins
• Plus a big ground pad

• Some are used for special purposes
• Power (16)
• External Oscillator (2)
• Debugging (2)
• RF Antenna (1)
• USB (2)
• Not connected at all (8)

• Remaining 42 pins can be used as
General Purpose I/O (GPIO)
• Digital I/O
• Or connected to other peripherals

13

Pins

Accessing nRF52833 pins in software

• Pins are collected into “Ports”
• Each Port has 32 pins

• 42 total GPIO pins
• Port 0 – pins 0-31

• Port 1 – pins 0-9

• Referred to as P[port].[pin]
• For example: P0.20, P1.08, P0.00

14

Pins on the Microbit

• The Microbit uses the nRF52833,
and then connects individual pins
from the Microcontroller to
certain parts of the board
• Every board does this

• The only way to know this
connections is to look at the
documentation

• For example:
• BTN_A connects to P0.14

• BTN_B connects to P0.23

15

In our software library

• Header file gives names to
each pin based on how the
Microbit uses it
• https://github.com/nu-

ce346/nu-microbit-
base/blob/main/software/boards
/microbit_v2/microbit_v2.h

• You can use these names
directly in your code where
you need the pin number

16

https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h

17

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

Digital signals

• Simplest form of I/O

• Exist in two states:
• High (a.k.a. Set, a.k.a. 1)
• Low (a.k.a. Clear, a.k.a. 0)

• Simpler to interact with
• Constrained to two voltages
• With quick transitions between the

two

• No math for voltage level
• Either high or low

18

Digital signals map to voltage ranges

• Upper range
is high signal
• ~0.7*VDD

• Bottom range
is low signal
• ~0.3*VDD

• Middle is
undefined
• Only exists

during
transitions

19

http://www.sharetechnote.com/html/Electronics_CMOS.html

http://www.sharetechnote.com/html/Electronics_CMOS.html

Digital Input/Output

• Read/write from/to external pins on the microcontroller
• Two possible values: high (1) or low (0)

• Basic unit of operation for microcontrollers
• Allows them to interact with buttons and LEDs

• Every microcontroller has Digital I/O

20

Some terminology

• Pins can be inputs or outputs

• Output pins can be:
• High or Set or 1

• Low or Cleared or 0

• Input pins can read an externally connected value
• Which is translated into either High or Low

• Middle remains undefined. It’ll be High or Low though

21

Controlling Digital I/O

• Outputs
• Configure pin as an output

• Set or Clear it

• Inputs
• Configure pin as an input

• Read it

• That’s about it. Digital I/O peripherals all look something like this
• Every Digital I/O peripheral also has some “special features” of some kind

or another, which vary with the Microcontroller

22

nRF52833 GPIO Peripheral

23

nRF52 GPIO Output

• Outputs a high or low signal

• Output configurations
• High drive output (either for high, low, or both)

• Sources or sinks additional current
• For powering external devices

• Normal drive: ~2 mA

• High drive: ~10 mA

• Disconnect (a.k.a. High Impedance or High-Z)

• Wired-OR or Wired-AND scenarios (we’ll talk about these later in class)

24

nRF52 GPIO Input

• Reads in a signal as either high or low

• Input Configurations
• Input buffer connect/disconnect

• Allows the pin to be disabled if not being read from

• Pull

• Disabled, Pulldown, Pullup (we’ll discuss in a future lecture)

• Connects an internal pull up/down resistor (~13 kΩ)

• Sets default value of input

25

Electrical specifications

• High voltage range: 0.7*VDD to VDD (~2.3 volts)

• Low voltage range: Ground to 0.3*VDD (~1 volt)

• GPIO are extremely fast
• Transition time is <25 ns

• Connected directly to memory bus for faster interactions

• This allows complicated signal patterns to be replicated in software

• If they aren’t implemented as a hardware peripheral

• Known as “bit-banging”

26

GPIO Instances

• The nRF52833 has two GPIO peripheral “instances”
• Several peripherals have multiple instances. For example, multiple timers

• Each instance functions independently

• Each instance has its own copy of MMIO registers

• For the GPIO, each instance controls one Port
• Port 0 with 32 pins

• Port 1 with 10 pins

27

Pin configuration

• DIR register controls direction (input or output) for each pin
• Each bit 0-31 corresponds to pin 0-31

• Reset value: 0x00000000 -> all pins are inputs by default

28

Controlling output level

• OUT register controls whether each pin is high or low
• Only meaningful if the pin is configured as an Output
• Again, each bit is a single pin and reset is 0x00000000 (all pins low)

29

*Set/*Clear registers

• OUT works traditionally: write a 1 for high, 0 for low

• OUTSET write a 1 to set that pin (high) zero has no effect

• OUTCLR write a 1 to clear that pin (low) zero has no effect
• Lets you modify a pin without modifying the others (or reading first)

30

Reading input levels

• IN register allows you to read the value for an input pin
• Each bit 0-31 corresponds to pin 0-31

• Read-only register. Writing has no effect

• For Port1, pins >= 10 are undefined (data sheet doesn’t mention it)

31

Complex configuration

• If you want to change
other pin configurations,
you do so per pin with the
PIN_CNF[n] registers
• There are 32 of them, one

per pin

• Various fields correspond
to different groups of bits
• Direction, Input buffer,

Pullup/down, Drive
strength, Sensing
mechanism

• Bits not part of a field
should be ignored
• Do not modify them

32

Break + Question

• Reset value is 0x2

• What are the default
configurations here?

33

Break + Question

• Reset value is 0x2

• What are the default
configurations here?
• DIR: Input

• INPUT: Disconnected

• PULL: Disabled

• DRIVE: Standard 0/1

• SENSE: Disabled

34

35

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

36

This is the “polling”
model of I/O.

“Poll” the peripheral
in software repeatedly
to see if it’s ready yet.

Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND
4. while STATUS==BUSY; Wait

• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Problem: imagine a keyboard device
• CPU could be waiting for minutes before data arrives
• Need a way to notify CPU when an event occurs

• Interrupts!

37

Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a software “handler” for that event

• Then returns back to what it was doing afterwards

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”

38

Interrupts, visually

39

Some code
that’s executing

Interrupts, visually

40

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Interrupts, visually

41

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Continue
original code

ARM Nested Vectored Interrupt Controller (NVIC)

• Manages interrupt requests (IRQ)
• Stores all caller-saved registers on the stack

• So the handler code doesn’t overwrite them

• Moves execution to proper handler, a.k.a. Interrupt Service Routine (ISR)

• Restores registers after handler returns and moves execution back

42

Interrupts can
preempt other

interrupts!

Jump directly to
the interrupt

handler

Handles interrupt
entry and exit

- Stacking
- Unstacking
- Priorities

ARM Vector table

• List of function pointers to
handler for each
interrupt/exception

• First 15 are architecture-
specific exceptions

• After that are
microcontroller interrupt
signals

43

Vector table in software

• Placed in its own section
• LD file puts it first in Flash

• Reset_Handler determines
where software starts
executing

• After that are all exception
and interrupt handlers
• All function pointers to some

C code somewhere

44

Generating interrupts on the nRF52

• Peripherals can generate “events”
• 1-bit signal that get set when action occurs
• There are Event registers that store the value

• Peripherals can enable interrupts
• Which connects the Event to the NVIC
• STILL has to be enabled in the NVIC to actually get an Interrupt

• Advanced feature: Events can chain directly into Tasks
• Tasks are 1-bit actions that a peripheral can take
• Something occurring can automatically trigger something else to happen

• PPI is the peripheral that makes these connections
• (this is advanced stuff though, we’ll rarely use it if ever)

45

Example “EVENT” register

• nRF-specific concept
• Event registers record if some action has occurred

• They are always 1-bit, with a 1 meaning “the action has occurred”

• Up to the software to clear this register back to 0

46

Example “TASK” register

• nRF-specific concept
• Task registers start some action

• They are always 1-bit, with a 1 meaning “start the task”

47

ARM NVIC functionality

• NVIC functions
• NVIC_EnableIRQ(number)

• NVIC_DisableIRQ(number)

• NVIC_SetPriority(number, priority)

• Technically 256 priorities
• Only 8 are implemented

• Must enable interrupts in two places!
• Enabling event in the peripheral will generate the signal
• Enabling interrupt in the NVIC will cause signal to jump to handler

• Priority determines which interrupt goes first
• And determines how interrupts are nested

48

Nested interrupts, visually

49

Some code
that’s executing

Interrupt
triggers!

Interrupt handler

Continue
original code

Higher priority
Interrupt triggers!

continues

Interrupt handler

Break + Open Question

• When should a system use polling versus interrupts?

50

Break + Open Question

• When should a system use polling versus interrupts?

• Polling
• Great if the device is going to respond immediately (like 1 cycle)

• Important if we need to respond very quick (less than a microsecond)

• Interrupts
• Great if we’ll need to wait a long time for status to change

• Still responds pretty quickly, but not immediately

• Needs to context switch from running code to interrupt handler

51

52

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

Handling interrupts from GPIO

• Separate peripheral, GPIOTE (GPIO Task/Event)
• Manages up to 8 individual pins (8 “channels”)

• Can read input pins and trigger Events

• Also has Tasks for setting/clearing outputs pins

• Unclear to me why this is a separate peripheral
• Presumably too complicated/expensive to have 42 of them

53

Configuring individual input interrupts

• Pick an available GPIOTE channel (0-7)

• Configure it
• Port and Pin number
• Task (output), Event (input), or Disabled
• Polarity for input events

• Low-to-high
• High-to-low
• Toggle (both directions)

• Enable interrupts for channel in GPIOTE (and in NVIC!)

• Clear event in interrupt handler
• Doesn’t happen automatically!

54

What if you need more than 8 interrupt sources?

• Can trigger interrupts for a “Port event” as well
• Any pin in the Port can trigger the interrupt

• Software checks which pin(s) caused the event to occur

• Very low power operation (works with system clocks off)
• Whereas normal GPIOTE operations are not low power

55

Sensing port events

• A Port event is a coordination between GPIO and GPIOTE
peripherals

• GPIO can configure pins with a SENSE option
• Disabled

• Trigger on High level

• Trigger on Low level

• GPIOTE port event will occur if one or more pins matches their SENSE
configuration

• Software will get an interrupt (if the NVIC is configured)

• Software checks each pin to determine which one caused the event

56

Port events can also be “latched”

• Latching saves the value unless cleared

57

58

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time
consuming for transferring lots of data
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring

59

General-purpose DMA

60

Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

61

Special-purpose DMA

• nRF52 uses “EasyDMA”, which is built into individual peripherals
• Only capable of transferring data in/out of that peripheral

• Easier to set up and use in practice

• Only available on some peripherals though (no DMA for TEMP or GPIO)

62

Warning: addresses for DMA buffer MUST be in RAM!

What kinds of peripherals/devices should you use the DMA for?

• Anything where there is a lot of data coming in over a period of
time
• Either a big buffer of lots of data, like a radio message

• Or a bunch of individual samples, coming in quickly

• Devices
• Messages to/from other devices (radios, wired busses)

• Sensor readings (if read quickly/continuously)

• Canonical example from general computing: disks (HDD/SSD)

63

64

• I/O Motivation

• Pins

• Controlling digital signals: GIPO peripheral

• Interrupts

• Digital Input Interrupts: GPIOTE peripheral

• DMA (Direct Memory Access)

Outline

	Default Section
	Slide 1: Lecture 03 Digital I/O and Interrupts

	Goals
	Slide 2: Administrivia
	Slide 3: Quiz coming soon
	Slide 4: Today’s Goals

	IO Motivation
	Slide 5: Outline
	Slide 6: Devices are the point of computers
	Slide 7: Devices are core to useful general-purpose computing
	Slide 8: Devices are essential to cyber-physical systems too
	Slide 9: Device access rates vary by many orders of magnitude

	Pins
	Slide 10: Outline
	Slide 11: Pins
	Slide 12: Internal connections to pins
	Slide 13: Pins on the nRF52833
	Slide 14: Accessing nRF52833 pins in software
	Slide 15: Pins on the Microbit
	Slide 16: In our software library

	GPIO
	Slide 17: Outline
	Slide 18: Digital signals
	Slide 19: Digital signals map to voltage ranges
	Slide 20: Digital Input/Output
	Slide 21: Some terminology
	Slide 22: Controlling Digital I/O
	Slide 23: nRF52833 GPIO Peripheral
	Slide 24: nRF52 GPIO Output
	Slide 25: nRF52 GPIO Input
	Slide 26: Electrical specifications
	Slide 27: GPIO Instances
	Slide 28: Pin configuration
	Slide 29: Controlling output level
	Slide 30: *Set/*Clear registers
	Slide 31: Reading input levels
	Slide 32: Complex configuration
	Slide 33: Break + Question
	Slide 34: Break + Question

	Interrupts
	Slide 35: Outline
	Slide 36: What do interactions with devices look like?
	Slide 37: Waiting can be a waste of CPU time
	Slide 38: Interrupts
	Slide 39: Interrupts, visually
	Slide 40: Interrupts, visually
	Slide 41: Interrupts, visually
	Slide 42: ARM Nested Vectored Interrupt Controller (NVIC)
	Slide 43: ARM Vector table
	Slide 44: Vector table in software
	Slide 45: Generating interrupts on the nRF52
	Slide 46: Example “EVENT” register
	Slide 47: Example “TASK” register
	Slide 48: ARM NVIC functionality
	Slide 49: Nested interrupts, visually
	Slide 50: Break + Open Question
	Slide 51: Break + Open Question

	GPIOTE
	Slide 52: Outline
	Slide 53: Handling interrupts from GPIO
	Slide 54: Configuring individual input interrupts
	Slide 55: What if you need more than 8 interrupt sources?
	Slide 56: Sensing port events
	Slide 57: Port events can also be “latched”

	DMA
	Slide 58: Outline
	Slide 59: Direct Memory Access (DMA)
	Slide 60: General-purpose DMA
	Slide 61: Full peripheral interaction pattern
	Slide 62: Special-purpose DMA
	Slide 63: What kinds of peripherals/devices should you use the DMA for?

	Wrapup
	Slide 64: Outline

