Lecture 03
Digital I/0 and Interrupts

CE346 — Microprocessor System Design
Branden Ghena — Spring 2025

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

 Lab on Friday!

» Frances Searle room 2370 / ”
 See you all there!!
« Show up on-time. We are going to get started right away

* None of this 5-10 minutes late nonsense Q

* Bring @ USB-C adapter if you need one

« Remember that you need to attend the section you registered for
in CAESAR

. %)f_ you need to switch for a day, ask me for permission in advance on
iazza

Quiz coming soon

» First quiz is next week Tuesday! (April 15)
» 15-minute quiz, taken in-class on paper
« Last fifteen minutes of class
* Bring a pencil
* No notes, no calculator

 Covers material from the last two weeks, including today

 Goals:
* The quiz is not meant to be difficult. It's meant to keep you involved
* Do review class material and make sure you actually understand it

Today’s Goals

« Two major parts today:

1. How does a microcontroller interact with peripherals?
 Already discussed Memory-Mapped I/0
* Interrupt and DMA mechanisms today

2. How do we interact with digital inputs and outputs?
» GPIO peripheral for Digital I/O
« GPIOTE peripheral for interrupts

Outline
« I/0 Motivation

* Pins
» Controlling digital signals: GIPO peripheral

* Interrupts

» Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

Devices are the point of computers

- Traditional systems need to

Computer

receive input from users and
output responses Processor
« Keyboard/mouse [Control]
* Disk
« Network
 Graphics

[Datap ath]

Memory

Devices

=

[Output]

* Audio

 Various USB devices

» Embedded systems have the same
requirement, just more types of 10

Devices are core to useful general-purpose computing

Input Output
[Mouse] [Monitor]
4)
[Keyboard] [Headphones]
> Computer >

Ethernet Ethernet
4) \ J 4

Bluetooth Bluetooth

Devices are essential to cyber-physical systems too

Input Output

[Lidar] Throttle Control
4) ’
Inertial i]
| Measurement Unit | L LG (e)

> Computer >
Camera [Wheel Rotation]
& /

o) o)

Device access rates vary by many orders of magnitude

« Rates in bit/sec

« System must be
able to handle
each of these

« Sometimes
needs low
overhead

« Sometimes
needs to not
wait around

Device Behavior Partner Data Rate (Kb/s)
Keyboard Input Human 0.2
Mouse Input Human 0.4
Microphone Output Human 700.0
Bluetooth Input or Output Machine 20,000.0
Hard disk drive Storage Machine 100,000.0
Wireless network Input or Output Machine 300,000.0
Solid state drive Storage Machine 500,000.0
Wired LAN network Input or Output Machine 1,000,000.0
Graphics display Output Human 3,000,000.0

Outline
 I/O Motivation

* Pins
» Controlling digital signals: GIPO peripheral

* Interrupts

» Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

Pins

» Peripherals need to electrically connect to outside world
« Attach to pins on the exterior of the chip

« More pins allow for more connections
* At increased cost and size

BBEEEEE

 Under-chip pins can add more pins for cheaper
« But make soldering and debugging difficult

11

Internal connections to pins

» Peripherals need to connect to external pins
 Can any peripheral connect to any pin, or are there limited mappings?
« Modern microcontrollers allow any-to-any connections

Table 3-1. 100-pin GPIO Controller Function Multiplexing (Sheet 1 of 4)
S]
= b
= o=
: s |z 8| B
* Older MCUs 2 : =18 & GPIO Functions
. OFN |VFBEGA | OFM | VFBGA A B c D E F G
had mapplng 5 Bg 5 B9 PADOD 1] VDDIO
ta b I eS a nd 6 B [BB PAD1 1 VDDIO
SCIF 5Pl CATE
i n Se I ecti O n 12 AT 12 AT PADZ2 2 VDDIN GCLEKD NPCS0 Dis
p SPI
WaS more 19 B3 19 B3 PAD3 3 VDDIN MISO
ADCIFE USARTO EIC GLOC CATE
Cha I Ie n i n 24 A2 24 A2 PAO4 4 |VDDANA ADO CLK EXTINTZ IN1 SENSED
g g ADCIFE USARTO EIC GLOC ADCIFE CATE
25 Al 25 Ad PADS 5 |VDDAMA AD1 RXD EXTINT3 IN2 TRIGGER SENSE1
DACC USARTO ElC GLOC ACIFC CATE
30 c3 30 C3 PAOE & |VDDAMNA vouT RTS EXTIMT1 INO ACAMNO SEMSEZ2

12

Pins on the nRF52833

» /3 individual pins
« Plus a big ground pad

« Some are used for special purposes
Power (16)

External Oscillator (2)

Debugging (2)

RF Antenna (1)

USB (2)

Not connected at all (8)

« Remaining 42 pins can be used as
General Purpose I/O (GPIO)

* Digital I/O
» Or connected to other peripherals

@
[
@
@
O
@
@
@
@

699090609 ¢

13

Accessing nRF52833 pins in software

* Pins are collected into “Ports”
 Each Port has 32 pins

42 total GPIO pins
 Port 0 — pins 0-31
* Port 1 — pins 0-9

* Referred to as P[port].[pin]
« For example: P0.20, P1.08, P0.00

14

Pins on the Microbit

* The Microbit uses the nRF52833,
and then connects individual pins
from the Microcontroller to
certain parts of the board

« Every board does this

* The only way to know this
connections is to look at the
documentation

* For example:
« BTN _A connects to P0.14
« BTN_B connects to P0.23

——C56

——C57

—=—C59

TmopF Tmon Tlﬁﬂpf

VREG
50 Ohm 2
¥ »l
| @ Aézl VDD P0.00/XLI EE SPEAKER
! B} VDD PO.OL/XL2 2 SPLEXT MISO
Yo~ VDD PO.02/AINO (515 RINGO
Lo | Bl BeAND e
L ADI4 | ypp P0.0S/AINS —K2 MIC IN |
006 s UART INT RX
= AD2 , TRACHOL S [M2 ART |
= VBUS PO.OT/TRACECLK MZs¢
AD4 | i MR X SPIO2
= AD6 | n. e | 124 GHO
= ¢AD6 | PO.10/NFC2 (2 GPIOI
A PO.11/TRACEDATA2 ——————{ COL2 Y
2 ANT PO.12/TRACEDATAI =1 GPIO4
po.13 —2D SPI EXT MOSL>
| SWDCLK PO.14 i(f)?o BTN A |
SWDIO P05 (RO 5 ROW3
P0.16 2
ADI2 :
P0.17 2D SPL EXT SCK
ﬁi‘; XCl PO.18/nRESET % _
e p020 |ADIG S
e Al8 . 20 —AT1T N_
ity L BINE] BID | \'c posy ADIE == on
ted to N.C. 2 [-
: AB2 - BI17
s to n&r; N o NC. P023 BTN B asse
[oWl 2 NG P024 222 ROWA inte
. ROWI CE NC P025 A2
AL NG P026 (b
3 NC. P027 (2 _
Y23 | N Po.28/AIN4 (B
B3 | . P0.29/AINS —5=x _
DCC PO.30/AING (22
cl P0O.31/AINT R
DECI Al
.
Dﬁjg DEC3 P1.00/TRACEDATAO ﬁ%ﬂ
N4 | DECG4 PLOL X i
51| DECS P12 g%
AGs| DECS PLOS X -
=== DECUSB PLO4 5=
P10 CoL4
P1.06
B7 | vee 23
L —Lesg == ggg_m p1 08 L UART INT TX
T loaF T 100G EPAD P1.09/TRACEDATA3 —Rl ¢
nRF52833-QIAA Most U2 GPIOs are bidirectional
4 —1 because firmware could

theoretically re-purpose them.

In Our SOftwa re Iibra ry f// LED with microphone. Drive with high strength

#define LED_MIC NRF_GPIO_PIN_MAP(@,28)

° Header 'ﬁle gives names to /{/ LED Rows. Drive high to enable LED

#define LED_ROW1 NRF_GPIO_PIN_MAP(®,21)

eaCh pln based on hOW the #define LED_ROWZ NRF_GPIO_PIN_MAP(®,22)
MICI‘ObIt uses |t #define LED_ROW3 MRF_GPIO_PIN_MAP(®,15)

#define LED_ROW4 NRF_GPIO_PIN MAP(®,24)

. httpS://githUb.COm/nLl- #define LED ROWS NRF_GPIO PIN MAP(®,19)
Ce346/nu-mlcr0blt_ f LED Columns. Drive low to enable LED
baSE/bIOb/maln/SOftware/boardS :itde-Fine LED_COL1 NRF_GPIO_PIN_MAP(®,28)
/micrObit V2/micr0bit V2h #define LED_COL2 NRF_GPIO_PIN_MAP(8,11)

#define LED_COL3 NRF_GPIO_PIN MAP(®@,31)
#define LED_COL4 NRF_GPIO_PIN MAP(1, 5)
#define LED_COLS NRF_GPIO_PIN_MAP(®,38)

* YOU can use these names

#define BTN_A NRF_GPIO_PIN MAP(®,14)

dlrECtly |n y0ur COde Where #define BTN_B MRF_GPIO_PIN_MAP(@,23)
you need the pin number f// Touch sensitive pins

#define TOUCH_LOGD NRF_GPIO_PIN_MAP(1, 4)
#define TOUCH_RING® NRF_GPIO_PIN_MAP(®, 2)
#define TOUCH_RINGL NRF_GPIO_PIN_MAP(®, 3)
#define TOUCH_RINGZ NRF_GPIO_PIN_MAP(®, 4)

https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h
https://github.com/nu-ce346/nu-microbit-base/blob/main/software/boards/microbit_v2/microbit_v2.h

Outline
 I/O Motivation

* Pins
- Controlling digital signals: GIPO peripheral

* Interrupts

» Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

Digital signals
 Simplest form of I/O

* Exist in two states:
 High (a.k.a. Set, a.k.a. 1)
* Low (a.k.a. Clear, a.k.a. 0)

40.00% 2.0008/

« Simpler to interact with
» Constrained to two voltages T

« With quick transitions between the
two

« No math for voltage level f
d Elther hig h Or IOW tg: L:IL@';_ *FF = B3 | fmawl‘lfgl_lm

flt)

18

Digital signals map to voltage ranges

« Upper range sv | aav
is high signal

e ~0,7*VDD N
 Bottom range

------------------------- 5.0V
. . = Logical "1"
is low signa
Moise Margin [B T T TTTTTTTTTTTr 4.4V 2.4V
« ~0.3FVDD] i

_____________________________ 3.5V 2.0V

3.3V

Undefined _

» Middle is

e P 1.5v | 0.8v

undefined MNoise Margin_.F

« Only exists oL 2
during
transitions
0 0w

http://www.sharetechnote.com/html/Electronics CMOS.html

2.5V

CMOS

2.5V

2.3V

1.7V

0.7V

0.2v

av

1.8V
cCMOSs

1.8V

1.2V

1.17V

0.9V

0.45V

oV

1.5V
CMOS

1.5V

0.65

Voo

0.35

Voo

oV

1.2V
CMOS

1.2V

0.65

Voo

0.35

\fco

av

19

http://www.sharetechnote.com/html/Electronics_CMOS.html

Digital Input/Output

« Read/write from/to external pins on the microcontroller
 Two possible values: high (1) or low (0)

» Basic unit of operation for microcontrollers
* Allows them to interact with buttons and LEDs
» Every microcontroller has Digital I/O

20

Some terminology

* Pins can be inputs or outputs

« Qutput pins can be:
* High or Set or 1
» Low or Cleared or 0

» Input pins can read an externally connected value
« Which is translated into either High or Low
 Middle remains undefined. It'll be High or Low though

21

Controlling Digital I/O

» Outputs
 Configure pin as an output
 Set or Clear it

 Inputs
 Configure pin as an input
* Read it

« That's about it. Digital I/O peripherals all look something like this

 Every Digital I/O peripheral also has some “special features” of some kind
or another, which vary with the Microcontroller

22

NRF52833 GPIO Peripheral

ANAEN

-

DIR_OVERRIDE [>--{-----

OUT_OVERRIDE [>~

ouT >

PIN[0].OUT

PINO.DETECT I
Sense
PIN[D]_Cr\jF_SENSE PIN[0] CNFPULL 0
| PIN[O]. CNFINPUT
PIN[O]IN 0 e
IN <
INPUT_OVERRIDE[>—{------mmmmmm e ’
ANAIN <
O: output buffer I input buffer

GPIO port

PINO

PIN[0).OUT

A

PINO

PIN[O]IN

PIN[0].CNF

PIN31

PIN[31].OUT

PIN31

PIN1LIN

PIN[31].CNF

F 3

23

NRF52 GPIO Output

 Qutputs a high or low signal

 Qutput configurations
 High drive output (either for high, low, or both)

« Sources or sinks additional current
 For powering external devices

 Normal drive: ~2 mA
 High drive: ~10 mA

 Disconnect (a.k.a. High Impedance or High-2)
« Wired-OR or Wired-AND scenarios (we'll talk about these later in class)

24

NRF52 GPIO Input

« Reads in a signal as either high or low

* Input Configurations
 Input buffer connect/disconnect
* Allows the pin to be disabled if not being read from

* Pull
« Disabled, Pulldown, Pullup (we'll discuss in a future lecture)
« Connects an internal pull up/down resistor (~13 kQ)
« Sets default value of input

25

Electrical specifications

 High voltage range: 0.7*VDD to VDD (~2.3 volts)
 Low voltage range: Ground to 0.3*VDD (~1 volt)

« GPIO are extremely fast

* Transition time is <25 ns
« Connected directly to memory bus for faster interactions

 This allows complicated signal patterns to be replicated in software
« If they aren’t implemented as a hardware peripheral
« Known as "bit-banging”

26

GPIO Instances

* The nRF52833 has two GPIO peripheral “instances”
 Several peripherals have multiple instances. For example, multiple timers
« Each instance functions independently
 Each instance has its own copy of MMIO registers

 For the GPIO, each instance controls one Port

 Port 0 with 32 pins
 Port 1 with 10 pins

Instance

GPIO

PO
Pl

Base address

O 50000000

Ox 50000000
Ox 30000300

Description

General purpose input and output
This instance is deprecated.
General purpose input and output, port 0

General purpose input and output, port 1

27

Pin configuration

6.8.2.5 DIR

Address offset: Ox514

Direction of GPIO pins

ID Acce Field Value ID Description

A-f RW PINIi] (i=0..31) Pin i
Input 0 Pin set as input
Output 1 Pin set as output

* DIR register controls direction (input or output) for each pin
« Each bit 0-31 corresponds to pin 0-31
 Reset value: 0x00000000 -> all pins are inputs by default

28

Controlling output level

6.8.2.1 OUT

Address offset: 0x504

Write GPIO port

ID Acce Field Value ID Description

A-f RW PIN[i] (i=0..31) Pin i
Low 0 Pin driver is low
High 1 Pin driver is high

» OUT register controls whether each pin is high or low
« Only meaningful if the pin is configured as an Output
« Again, each bit is a single pin and reset is 0x00000000 (all pins low)

29

*Set/*Clear registers

ouT D503 Wirite GPIO port

OUTSET =503 Set individual bits in GPID port
OUTCLR D500 Clear individual bits in GPID port
IN Ox510 Read GPID port

iR Ox514 Direction of GPIO pins

CHRSET Ox518 DIR set register

CHRCLR Ox51C DIR clear register

« OUT works traditionally: write a 1 for high, 0 for low
« OUTSET write a 1 to set that pin (high) zero has no effect

* OUTCLR write a 1 to clear that pin (low) zero has no effect
* Lets you modify a pin without modifying the others (or reading first)

Reading input levels

6.8.2.4 IN

Address offset: O0x510
Read GPIO port

Low 0

D
A-f R PIN[i] (i=0..31) Pin i

P

P

High 1

* IN register allows you to read the value for an input pin
 Each bit 0-31 corresponds to pin 0-31
« Read-only register. Writing has no effect
« For Portl, pins >= 10 are undefined (data sheet doesn’t mention it)

31

| u
< Om pIeX Conflgl Iratlon Bit number 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

D EE DDD CCBA

Reset 0x00000002 0 OODOOCODOOOOOOOOODOOOOOOOOOODOOOOOT1L1O0DO

¢ If you V_Va nt tO_ Cha nge A RW DIR Pin direction. Same physical register as DIR register
Other pln Conflguratlons Input 0 Configurepinasaninpu‘tpinl
ou do so per pin with the . . 1 oo et
IN CNF [N] reg|sters o Connect input buffer
° There are 32 Of them, One Disconnect 1 Disconnect input buffer

. C RW PULL Pull configuration
per pln Disabled 0 No pull
Pulldown 1 Pull down on pin
Pullup 3 Pull up on pin
Y 1 f. I d p d D RW DRIVE Drive configuration
Va rI -O u S I e S CO rreS O r! 5051 0 Standard '0', standard '1’
to d Iffe re nt g ro u pS Of b ItS HO51 1 High drive '0', standard "1'
° 1 1 SOH1 2 Standard '0", high drive '1'
BI rileCtI Odn / In p %t 'b u ffe r’ HOH1 3 High drive '0", high 'drive "1"
u u p/ OW n 4 rlve D051 4 Disconnect '0" standard '1' (normally used for wired-or

Strength, SenSing connections)
meCha n Ism DOH1 5 Disconnect '0", high drive "1 (normally used for wired-or

connections)
SoD1 6 Standard '0". disconnect '1' (normally used for wired-and
connections)

® Bits not pa.rt Of a field HOD1 7 High drive '0", disconnect '1' (normally used for wired-and

connections)

should be ignored R
Do not modify them :

High 2 Sense for high level

Low 3 Sense for low level 32

]
Break I Ql Iestlon Bit number 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

D EE DDD cCCBA
Reset 0x00000002 0O O0OO0O0ODODODODOODODODOOOOOOOOOOOOOOOOOT11O
.
o Reset Value IS OX2 A RW DIR Pin direction. Same physical register as DIR register
Input 0 Configure pin as an input pin
Output 1 Configure pin as an output pin
B RW INPUT Connect or disconnect input buffer
Connect 0 Connect input buffer
Disconnect 1 Disconnect input buffer
- What are the default i
c RW PULL Pull configuration

Disabled 0 No pull

configurations here? 1

Pullup 3 Pull up on pin
D RW DRIVE Drive configuration
5051 0 Standard '0', standard '1’
HO51 1 High drive '0', standard "1'
S0H1 2 Standard ‘0", high drive "1'
HOH1 3 High drive '0", high 'drive "1"
DOs1 4 Disconnect '0" standard '1' (normally used for wired-or
connections)
DOH1 5 Disconnect '0", high drive "1 (normally used for wired-or
connections)
SoD1 6 Standard '0". disconnect '1' (normally used for wired-and
connections)
HOD1 7 High drive '0', disconnect '1' (normally used for wired-and
connections)
E RW SENSE Pin sensing mechanism
Disabled 0 Disabled
High 2 Sense for high level

Low 3 Sense for low level 33

]
Break I Ql Iestlon Bit number 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

D EE DDD cCCBA
Reset 0x00000002 0O O0OO0O0ODODODODOODODODOOOOOOOOOOOOOOOOOT11O
.
o Reset Va I u e I S OX2 A RW DIR Pin direction. Same physical register as DIR register
Input 0 Configure pin as an input pin
Output 1 Configure pin as an output pin
B RW INPUT Connect or disconnect input buffer
Connect 0 Connect input buffer
Disconnect 1 Disconnect input buffer
o What a re the d efa u It C RW PULL Pull configuration
- - 7 Disabled 0 No pull
conflguratlons here - Pulldown 1 Pull down on pin
Pullup 3 Pull up on pin
¢ DI R : I n p ut D RW DRIVE Drive configuration
. 5051 0 Standard '0', standard '1’
o I N PUT: D I SCO n n eCted HO51 1 High drive '0', standard "1'
. . SOH1 2 Standard ‘0", high drive "1'
¢ PU LL n Dlsa b I ed HOH1 3 High drive '0", high 'drive "1"
DOs1 4 Disconnect '0" standard '1' (normally used for wired-or
o D RIVE : Sta n d a rd O/ 1 connections)
. DOH1 5 Disconnect '0", high drive "1 (normally used for wired-or
¢ SENSE: Dlsabled connections)
SoD1 6 Standard '0". disconnect '1' (normally used for wired-and

connections)
HOD1 7 High drive '0', disconnect '1' (normally used for wired-and

connections)

E RW SENSE Pin sensing mechanism
Disabled 0 Disabled
High 2 Sense for high level

Low 3 Sense for low level 34

Outline
 I/O Motivation

* Pins
» Controlling digital signals: GIPO peripheral

» Interrupts

» Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

What do interactions with devices look like?

Registers | Status Command Data Interface

* (Need to make sure device is ready for a command) model of I/O.

Write value(s) to DATA
(s) “Poll” the peripheral

Write command(s) to COMMAND in software repeatedly
to see if it's ready yet.

while STATUS==BUSY; Wait

« (Need to make sure device has completed the request)

Read value(s) from Data

36

Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
* (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
* (Need to make sure device has completed the request)

5. Read value(s) from Data

* Problem: imagine a keyboard device
« CPU could be waiting for minutes before data arrives
* Need a way to notify CPU when an event occurs
* Interrupts!

37

Interrupts

« What is an interrupt?
« Some event which causes the processor to stop normal execution
» The processor instead jumps to a software “handler” for that event
« Then returns back to what it was doing afterwards

« What causes interrupts?
« Hardware exceptions
« Divide by zero, Undefined Instruction, Memory bus error
 Software
« Syscall, Software Interrupt (SWI)
« External hardware
 Input pin, Timer, various “Data Ready”

38

Interrupts, visually

Some code
that’s executing

39

Interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ
Interrupt handler

code

40

Interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ

Continue

original code

v

Interrupt handler
code

41

ARM |Nested|Vectored| Interrupt Controller|(NVIC)

R

Handles interrupt

Interrupts can Jump directly to entry and exit
preempt other the interrupt . Stacking

interrupts! handler - Unstacking
Priorities

« Manages interrupt requests (IRQ)
» Stores all caller-saved registers on the stack
 So the handler code doesn’t overwrite them
» Moves execution to proper handler, a.k.a. Interrupt Service Routine (ISR)
 Restores registers after handler returns and moves execution back

ARM Vector table

« List of function pointers to
handler for each
interrupt/exception

* First 15 are architecture-
specific exceptions

* After that are
microcontroller interrupt
signals

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus faulit Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

11 SVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA —

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

43

Vector table in software

 Placed in its own section
* LD file puts it first in Flash

« Reset Handler determines
where software starts
executing

« After that are all exception
and interrupt handlers

« All function pointers to some
C code somewhere

Generating interrupts on the nRF52

* Peripherals can generate “events”
- 1-bit signal that get set when action occurs
« There are Event registers that store the value

 Peripherals can enable interrupts
* Which connects the Event to the NVIC
« STILL has to be enabled in the NVIC to actually get an Interrupt

« Advanced feature: Events can chain directly into Tasks
« Tasks are 1-bit actions that a peripheral can take
« Something occurring can automatically trigger something else to happen
« PPI is the peripheral that makes these connections
« (this is advanced stuff though, we'll rarely use it if ever)

45

Example "EVENT" register

EVENTS_OVRFLW

Address offset: Ox104

Event on COUNTER overflow

Bit number 31302928 27262524 23222120 19181716 15141312 111098 7454 3210
[b] A
Reset 0x00000000 o000 OOCO0CO 0O0OCO0OO0Q OOCO0OO0 OCOO O OO0 0000 DOOC
ID R/W Field Value 1D Value Description

A BW EVENTS_OVEFLW Event on COUNTER overflow

MNotGenerated 0 Event not generated

Generated 1 Event generated

« NRF-specific concept
 Event registers record if some action has occurred

« They are always 1-bit, with a 1 meaning “the action has occurred”
 Up to the software to clear this register back to 0

46

Example “TASK" register

TASKS_START

Address offset: 0x000

Start RTC COUNTER

Bit number 31302928 27262524 23222130 19181716 15141312 111098 7654 321C
|B]
Reset Ox00000000 0000 DODODO OO0CO0OO0 OO0O0OO0 OOO0OOQ O OO0 0000 OOOC
ID R/W Field Value ID Value Description
AW TASKS_START Start RTC COUMNTER

Trigger 1 Trigger task

« NRF-specific concept
 Task registers start some action
» They are always 1-bit, with a 1 meaning "“start the task”

ARM NVIC functionality

« NVIC functions
* NVIC EnableIRQ (number)
* NVIC DisableIRQ (number)
* NVIC SetPriority (number, priority)
 Technically 256 priorities
« Only 8 are implemented

« Must enable interrupts in two places!
« Enabling event in the peripheral will generate the signal
 Enabling interrupt in the NVIC will cause signal to jump to handler

* Priority determines which interrupt goes first
« And determines how interrupts are nested

48

Nested interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ

Higher priority Interrupt handler

Interrupt triggers! Interrupt handler

continues

Continue
original code

Break + Open Question

» When should a system use polling versus interrupts?

50

Break + Open Question

» When should a system use polling versus interrupts?

» Polling
 Great if the device is going to respond immediately (like 1 cycle)
« Important if we need to respond very quick (less than a microsecond)

* Interrupts
 Great if we'll need to wait a long time for status to change
« Still responds pretty quickly, but not /mmediately
« Needs to context switch from running code to interrupt handler

51

Outline
 I/O Motivation

* Pins
» Controlling digital signals: GIPO peripheral

* Interrupts

 Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

Handling interrupts from GPIO

 Separate peripheral, GPIOTE (GPIO Task/Event)

« Manages up to 8 individual pins (8 “channels”)
« Can read input pins and trigger Events
* Also has Tasks for setting/clearing outputs pins

» Unclear to me why this is a separate peripheral
* Presumably too complicated/expensive to have 42 of them

53

Configuring individual input interrupts
* Pick an available GPIOTE channel (0-7)

 Configure it
 Port and Pin number
« Task (output), Event (input), or Disabled
« Polarity for input events
« Low-to-high
 High-to-low
 Toggle (both directions)

 Enable interrupts for channel in GPIOTE (and in NVIC!)

* Clear event in interrupt handler
« Doesn’t happen automatically!

54

What if you need more than 8 interrupt sources?

 Can trigger interrupts for a “Port event” as well
« Any pin in the Port can trigger the interrupt
 Software checks which pin(s) caused the event to occur

 VVery low power operation (works with system clocks off)
« Whereas normal GPIOTE operations are not low power

55

Sensing port events

* A Port event is a coordination between GPIO and GPIOTE
peripherals

» GPIO can configure pins with a SENSE option
- Disabled
 Trigger on High level
 Trigger on Low level

« GPIOTE port event will occur if one or more pins matches their SENSE
configuration

« Software will get an interrupt (if the NVIC is configured)
 Software checks each pin to determine which one caused the event

56

Port events can also be “latched”

e Latching saves the value unless cleared

DETECTMODE

O

DETECT <:|—g‘\E

LDETECT

PINO.DETECT

PIN1.DETECT

PIN31.DETECT

Sense
!
PIN[0].CNF SENSE

0
PIN[0].OUT —;\—D
PIN[O].IN —;—Q

. PIN[O] CNF.DRIVE

PIN[0]. CNF.PULL

PIN[D].CNF.INPUT

o

PIN[O] CNFDIR

o

O: output buffer

I- input buffer

57

Outline
 I/O Motivation

* Pins
» Controlling digital signals: GIPO peripheral

* Interrupts

» Digital Input Interrupts: GPIOTE peripheral

- DMA (Direct Memory Access)

Direct Memory Access (DMA)

» Even with interrupts, providing data to the peripheral is time
consuming for transferring lots of data
* Need to be interrupted every byte, to copy the next byte over

« DMA is an alternative method that uses hardware to do the
memory transfers for the processor
 Software writes address of the data and the size to the peripheral
 Peripheral reads data directly from memory
» Processor can go do other things while read/write is occurring

59

General-purpose DMA

CPU

@ e Dnve

1.CPU
programs DMA Disk Main
the DMA controller controller Memaory
controller Py Buffer
f.—"'-___-‘-\
Address
Count
Control 4. Ack t
$

. B
|
5. Interrupt when 2. DMA requests
done transfer to memory

| | 3. Data transferred | |

-— Bus

60

Full peripheral interaction pattern

Configure the peripheral
Enable peripheral interrupts
Set up peripheral DMA transfer
Start peripheral

Continue on to other code

i

5. Interrupt occurs, signaling DMA transfer complete
6. Set up next DMA transfer
Continue on to other code, and repeat

61

Special-purpose DMA

* NRF52 uses “"EasyDMA", which is built into individual peripherals
« Only capable of transferring data in/out of that peripheral

 Easier to set up and use in practice
 Only available on some peripherals though (no DMA for TEMP or GPIO)

AHB Multilayer Peripheral
RAM
L3
READER
AHB |
RAM - - = EasyDMA
- - - L
Peripheral
Core
WRITER
RAM
AHB
- FasyDMA =

Warning: addresses for DMA buffer MUST be in RAM!

62

What kinds of peripherals/devices should you use the DMA for?

« Anything where there is a lot of data coming in over a period of
time
« Either a big buffer of lots of data, like a radio message
 Or a bunch of individual samples, coming in quickly

 Devices
« Messages to/from other devices (radios, wired busses)
 Sensor readings (if read quickly/continuously)

 Canonical example from general computing: disks (HDD/SSD)

63

Outline
 I/O Motivation

* Pins
» Controlling digital signals: GIPO peripheral

* Interrupts

» Digital Input Interrupts: GPIOTE peripheral

« DMA (Direct Memory Access)

	Default Section
	Slide 1: Lecture 03 Digital I/O and Interrupts

	Goals
	Slide 2: Administrivia
	Slide 3: Quiz coming soon
	Slide 4: Today’s Goals

	IO Motivation
	Slide 5: Outline
	Slide 6: Devices are the point of computers
	Slide 7: Devices are core to useful general-purpose computing
	Slide 8: Devices are essential to cyber-physical systems too
	Slide 9: Device access rates vary by many orders of magnitude

	Pins
	Slide 10: Outline
	Slide 11: Pins
	Slide 12: Internal connections to pins
	Slide 13: Pins on the nRF52833
	Slide 14: Accessing nRF52833 pins in software
	Slide 15: Pins on the Microbit
	Slide 16: In our software library

	GPIO
	Slide 17: Outline
	Slide 18: Digital signals
	Slide 19: Digital signals map to voltage ranges
	Slide 20: Digital Input/Output
	Slide 21: Some terminology
	Slide 22: Controlling Digital I/O
	Slide 23: nRF52833 GPIO Peripheral
	Slide 24: nRF52 GPIO Output
	Slide 25: nRF52 GPIO Input
	Slide 26: Electrical specifications
	Slide 27: GPIO Instances
	Slide 28: Pin configuration
	Slide 29: Controlling output level
	Slide 30: *Set/*Clear registers
	Slide 31: Reading input levels
	Slide 32: Complex configuration
	Slide 33: Break + Question
	Slide 34: Break + Question

	Interrupts
	Slide 35: Outline
	Slide 36: What do interactions with devices look like?
	Slide 37: Waiting can be a waste of CPU time
	Slide 38: Interrupts
	Slide 39: Interrupts, visually
	Slide 40: Interrupts, visually
	Slide 41: Interrupts, visually
	Slide 42: ARM Nested Vectored Interrupt Controller (NVIC)
	Slide 43: ARM Vector table
	Slide 44: Vector table in software
	Slide 45: Generating interrupts on the nRF52
	Slide 46: Example “EVENT” register
	Slide 47: Example “TASK” register
	Slide 48: ARM NVIC functionality
	Slide 49: Nested interrupts, visually
	Slide 50: Break + Open Question
	Slide 51: Break + Open Question

	GPIOTE
	Slide 52: Outline
	Slide 53: Handling interrupts from GPIO
	Slide 54: Configuring individual input interrupts
	Slide 55: What if you need more than 8 interrupt sources?
	Slide 56: Sensing port events
	Slide 57: Port events can also be “latched”

	DMA
	Slide 58: Outline
	Slide 59: Direct Memory Access (DMA)
	Slide 60: General-purpose DMA
	Slide 61: Full peripheral interaction pattern
	Slide 62: Special-purpose DMA
	Slide 63: What kinds of peripherals/devices should you use the DMA for?

	Wrapup
	Slide 64: Outline

