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Administrivia

• Make sure you have your personal lab setup working
• Ask in office hours or on Piazza if you run into issues

• Labs will start this Friday!!!
• You MUST come to your scheduled lab session

• If there’s some known obligation and you give me a heads up,
I can let you move to the other section

• If you want to permanently change lab sessions (to the later lab at 3pm) 
let me know

• I’ll hand out Microbits as part of lab
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Weekly Schedule

• Office Hours
• Monday 2-3

• Tuesday 2-3, 5-6 (joint)

• Wednesday 11-1, 2-3

• Thursday 5-6

• Checkoffs and debugging
• But also ANY class question

• These are for you to use
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Today’s Goals

• Discuss challenges of embedded software

• Describe compilation and linking of embedded code
• (Actually applies to all code, but you probably never learned much about 

linking before)

• Introduce Memory-Mapped I/O as a mechanism for communicating 
with peripherals

• Explore the microcontroller boot process
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Review: C memory layout

• Stack Section
• Local variables
• Function arguments

• Heap Section
• Memory granted through malloc()

• Static Section (a.k.a. Data Section)
• Global variables
• Static function variables

• Text Section (a.k.a Code Section)
• Program code
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TextAddress  
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0xFFFFFFFFFFFFFFFF



Assumptions of embedded programs

• Expect limitations
• Very little memory
• Very little computational power
• Very little energy

• Don’t expect a lot of support
• Likely no operating system
• Might not even have error reporting capabilities

• Your code runs the entire system
• Single application on the system that runs forever

• Moral: think differently about your programs
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Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred
• In embedded, we often encourage global variables for large things

• Fail at compile time rather than run-time

• Heap section might exist but should only be used cautiously
• What do you do if the heap runs out?
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Avoiding dynamic memory

• Malloc is scary in an embedded context

• What if there’s no more memory available?
• Traditional computer

• Swap memory to disk
• Worst case: wait for a process to end (or kill one)

• Embedded computer
• There’s likely only a single application
• And it’s the one asking for more memory
• So it’s not giving anything back anytime soon

• This is unlikely to happen at boot
• Instead it’ll happen hours or days into running as memory is slowly exhausted…
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Limitations on processing power

• Typically not all that important
• Code still runs pretty fast

• 10 MHz -> 100 ns per cycle (i.e. ~100 ns per instruction)
• ~10 million instructions per second

• Controlling hardware usually doesn’t have a lot of code complexity
• Quickly gets to the “waiting on hardware” part (apps are I/O bound)

• Problems
• Machine learning

• Learning on the device is a big challenge
• Memory limitations make it hard to fit weights anyways

• Cryptography
• Public key encryption takes seconds to minutes
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Common programming languages for embedded

• C
• For all the reasons that you assume
• Easy to map variables to memory usage and code to instructions

• Assembly
• Not entirely uncommon, but rarer than you might guess
• C code optimized by a modern compiler is likely faster
• Notable uses:

• Cryptography to create deterministic algorithms
• Operating Systems to handle process swaps

• C++
• Similar to C but with better library support
• Libraries can take up a lot of code space though ~100 KB

• Some specialized versions of libraries take up less space
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Rarer programming languages for embedded

• Rust
• Modern language with safety and reliability guarantees
• Increasingly relevant in the embedded space

• But with a high learning curve

• Python, Javascript, Scratch, etc.
• Mostly toy languages
• Fine for simple things but incapable of complex operations

• Especially low-level things like managing memory

• Microbit supports all of these, play around with them sometime:
• https://makecode.microbit.org/
• https://python.microbit.org/v/3
• https://scratch.mit.edu/microbit
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What’s missing from programming languages?

• The embedded domain has several requirements that other 
domains do not

• What is missing from programming languages that it wants?
• Sense of time

• Sense of energy
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Programming languages have no sense of time

• Imagine a system that needs to send messages to a motor every 
10 milliseconds
• Write a function that definitely completes within 10 milliseconds

• Accounting for timing when programming is very challenging
• We can profile code and determine timing at runtime

• If we know many details of hardware, instructions can give timing

• Unless the code interacts with external devices
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Determining energy use is rather complicated

• Software might
• Start executing a loop

• Turn on/off an LED

• Send messages over a wired bus to another device

• Determining energy these operations take is really difficult
• Even with many details of the hardware

• Different choices of processor clocks can have a large impact

• Often profiled at runtime after writing the code

• Iterative write-test-modify cycle
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Break + Question

volatile float value = 1337.3235;

volatile float result = sqrt(value);
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• Which program takes longer to run?

printf(“Hello world!\n”);

Program 1:

Program 2:



Break + Question

volatile float value = 1337.3235;

volatile float result = sqrt(value);
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• Which program takes longer to run?

printf(“Hello world!\n”);

33 microseconds
~2112 instructions

3392 microseconds
~217088 instructions

Majority of the time 
isn’t spent in 
instructions though

Printf takes about 100x longer!!

Program 1:

Program 2:
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for code size instead of speed)
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Cross compilers compile for different architectures

• The compiler we’ll be using is a cross compiler
• Run on one architecture but compile code for another

• Example: runs on x86-64 but compiles armv7e-m

• GCC naming scheme: ARCH-VENDOR-(OS-)-ABI-gcc
• arm-none-eabi-gcc

• ARM architecture

• No vendor

• No OS

• Embedded Application Binary Interface

• Others: arm-none-linux-gnueabi-gcc, i686-pc-windows-msvc-gcc
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together

• Resolve dependencies

• Point function calls at correct place

• Connect creation and uses of global variables
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Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?
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Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?
• Standard layout for all processes
• Virtual memory allows all applications to use the same memory addresses

• Embedded solution
• Only run a single application
• Provide our own standard layout: an LD file

• Specifies memory layout for a certain system
• Places sections of code in different places in memory
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Anatomy of an LD file

• nRF52833: 512 KB Flash, 128 KB SRAM

• First, LD file defines memory regions

MEMORY {

  FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000

  RAM (rwx) :  ORIGIN = 0x20000000, LENGTH = 0x20000

} 

• A neat thing about microcontrollers: pointers have meaning
• Just printing the value of a pointer can tell you if it’s in Flash or RAM
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Anatomy of an LD file

• It then places sections of code into those memory regions

    .text : {

        KEEP(*(.Vectors))

        *(.text*)

        *(.rodata*)

        . = ALIGN(4);

    } > FLASH

    __etext = .;
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.data : AT (__etext) {

        __data_start__ = .;

        *(.data*)

        __data_end__ = .;

 } > RAM 

 .bss :    {

        . = ALIGN(4);

        __bss_start__ = .;

        *(.bss*)

        . = ALIGN(4);

        __bss_end__ = .;

 } > RAM



Sections of code

• Where do these sections come from?

• Most are generated by the compiler
• .text, .rodata, .data, .bss

• You need to be deep in the docs to figure out how the esoteric ones work

• Some are generated by the programmer
• Allows you to place certain data items in a specific way

__attribute__((section(".foo")))

int test[10] = {0,0,0,0,0,0,0,0,0,0};
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly
• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together
• Resolve dependencies

• Point function calls at correct place
• Connect creation and uses of global variables

• Output: a binary (or hex) file
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Loading the hex file onto a board

• This is a use case for JTAG
• You provide it a hex file which specifies addresses and values

• It writes those into Flash on the microcontroller

• The LD file already specified addresses
• So passing around hex files is enough to load an application

• But a hex file for one microcontroller won’t work on another with a 
different memory layout
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Example

• Demonstrated in the blink application in lab repo
• https://github.com/nu-ce346/nu-microbit-

base/tree/main/software/apps/blink
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Embedded environments

• There are a multitude of embedded software systems
• Every microcontroller vendor has their own

• Popular platforms like Arduino

• We’re using the Nordic software development libraries plus some 
extensions made by my research group
• It’ll be a week until that matters for the most part

• We’ll start off by writing low-level drivers ourselves without libraries
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Software Development Kit (SDK)

• Libraries provided by Nordic for using their microcontrollers
• Actually incredibly well documented! (relatively)

• Various peripherals and library tools

• SDK documentation
• https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/index.html

• Warning: search doesn’t really work

• Possibly more useful: the list of data structures
• Search that page for whatever “thing” you’re working with

• https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/annotated.html
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nRF52x-base

• Wrapper built around the SDK by Lab11
• Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
• Allows everything to be used with Makefiles and command line
• https://github.com/lab11/nrf52x-base

• We include it as a submodule
• It has a copy of the SDK code and softdevice binaries
• It has a whole Makefile system to include to proper C and H files
• We include a Board file that specifies our specific board’s needs and 

capabilities

• Go to repo to explain
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Break + xkcd

34https://xkcd.com/303/

https://xkcd.com/303/
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How does a computer talk with peripherals?

• A peripheral is a hardware unit within a microcontroller
• Sort of a “computer-within-the-computer”
• Performs some kind of action given input, generates output

• We interact with a peripheral’s interface
• Called registers (actually are from EE perspective, but you can’t use them)
• Read/Write like they’re data

• How do we read/write them?
• Options:

• Special assembly instructions
• Treat like normal memory
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Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to memory

• Instead they correspond to peripherals
• And any instruction that accesses memory can access them too!

• Every microcontroller I’ve
ever seen uses MMIO

37

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Memory map on nRF52833

• Flash 0x00000000

• SRAM 0x20000000

• APB peripherals 0x40000000
• Everything but GPIO

• AHB peripherals 0x50000000
• Just GPIO

• UICR – User Information Config

• FICR – Factory Information Config
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Example nRF52 peripheral placement

• 0x1000 is plenty of space for each peripheral
• 1024 registers, each 32 bits

• No reason to pack them tighter than that
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Example register layout

• 32-bit value
• Bits 0-4 are field A
• Bit 5 is field B
• Bit 31 is field C
• Others are unused
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• Each field has value ranges 
and descriptions of what it 
means



Registers can vary wildly in complexity
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Bit Masking

• How do you manipulate certain bits within a number?

• Use bit manipulation operations
• ~, &, |, <<, >>

• Steps
1. Create a “bit mask” which is a pattern to choose certain bits

2. Use & or | to combine it with your number

3. Optional: Use >> to move the bits to the least significant position
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Bit mask values

• Selecting bits, use the AND operation
• 1 means to select that bit

• 0 means to not select that bit

• Writing bits
• Writing a one, use the OR operation

• 1 means to write a one to that position

• 0 is unchanged

• Writing a zero, use the AND operation

• 0 means to write a zero to that position

• 1 is unchanged
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Select bottom four bits:
 num & 0x0F 

Set 6th bit to one:
 num | (1 << 6)

 num | (0b01000000)

Clear 6th bit to zero:
 num & (~(1 << 6))

 num & (~(0b01000000))

 num & (0b10111111)



Example: selecting bits

• Select bits 2 and 3 from a number
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Input: 0b011001000b01100100

Mask: 0b00001100

  0b01100100

 & 0b00001100

  0b00000100

Finally, shift right by two to get the 
values in the least significant position:

 0b00000001

In C:
result = (input & 0x0C) >> 2;



Manipulating a register value

• Check Port value
value = (REG >> 5) & 1
 or (REG & (1 << 5)) >> 5
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• Write port value
REG |= (1 << 5)  // set port to 0

REG &= ~(1 << 5); // set port to 1



TEMP on nRF52833 example

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller IC (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

46https://docs.nordicsemi.com/bundle/ps_nrf52833/page/temp.html

https://docs.nordicsemi.com/bundle/ps_nrf52833/page/temp.html


Interacting with the temperature peripheral
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Reading a temperature value

• 32-bit value

• 2’s complement (i.e., signed)

• 0.25 ℃ steps (so 0 = 0℃, 4 = 1℃, etc.)
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MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP
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Accessing addresses in C

• What does this C code do?

  *(uint32_t*)(0x4000C000) = 1;
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Accessing addresses in C

• What does this C code do?

  *(uint32_t*)(0x4000C000) = 1;

• 0x4000C000 is cast to a uint32_t*

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

51



Example code

• To the terminal!

• Let’s write it from scratch
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Example code (temp_mmio app)
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Using structs to manage MMIO access

• Writing simple C code and access peripherals is great!

• Problems:
• Need to remember all these long addresses

• Need to make sure compiler doesn’t stop us!

• Solution:
• Wrap entire access in a struct!

• Compilers turn it into the same thing in the end anyways
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C structs

• Collection of variables placed together in memory

typedef struct {

    uint32_t variable_one;

    uint32_t variable_two;

    uint32_t array[2];

} example_struct_t;

• Placement rules - Variables are placed adjacent to each other in memory except:

• Fields are always aligned to a multiple of their size
• Padding added to the end to make the total size a multiple of the biggest member

• Microcontrollers can usually ignore these: all registers are the same size!
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Temperature peripheral MMIO struct

typedef struct {

    uint32_t TASKS_START;

    uint32_t TASKS_STOP;

    uint32_t _unused_A[62];

    uint32_t EVENTS_DATARDY;

    uint32_t _unused_B[0x204/4 - 1];

    uint32_t INTENSET;

    uint32_t INTENCLR;

    uint32_t _unused_C[(0x508 – 0x308)/4 – 1];

    uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

56

With increasingly verbose ways to write the 
size of the “unused” space (any of these will 
do, but don’t forget the -1)



Temperature peripheral MMIO struct

typedef struct {

    uint32_t TASKS_START;

    uint32_t TASKS_STOP;

    uint32_t _unused_A[62];

    uint32_t EVENTS_DATARDY;

    uint32_t _unused_B[0x204/4 - 1];

    uint32_t INTENSET;

    uint32_t INTENCLR;

    uint32_t _unused_C[(0x508 – 0x308)/4 – 1];

    uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

// code to access

TEMP_REGS->TASKS_START = 1;

while (TEMP_REGS->EVENTS_DATARDY == 0);

float temperature = ((float)TEMP_REGS->TEMP)/4.0;
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Using MMIO structs

• Note: structs still don’t get you individual bits, they only get you 
the 32-bit registers themselves

• You’ll need to do bit manipulations to get the read/write fields you 
want

• Bit fields are an option in C that can allow access to individual bits, 
but are generally not used
• Implementation-specific details for how they actually work

• What if you need to change multiple fields simultaneously?
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Break + Question

• Are binaries portable to other microcontrollers?
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Break + Question

• Are binaries portable to other microcontrollers?

• Definitely not

• 1) Each microcontroller has its own layout of Flash and RAM, so we might 
need to put our code in different locations

• 2) Each microcontroller has its own MMIO addresses and devices
And every device works at least slightly differently

• Can sometimes get away with it for microcontrollers in the same family
• I.e., class code might work on an nRF52840 instead of our nRF52833
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How does a microcontroller start running code?

• Power comes on

• Microcontroller needs to start executing assembly code

• You expect your main() function to run
• But a few things need to happen first
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Step 0: set a stack pointer

• Assembly code might need to write data to the stack
• Might call functions that need to stack registers

• ARM: Valid address for the stack pointer is at address 0 in Flash
• Needs to point to somewhere in RAM

• Hardware loads it into the Stack Pointer when it powers on
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Step 1: set the program counter (PC)

• a.k.a. the Instruction Pointer (IP) in x86 land

• 32-bit ARM: valid instruction pointer is at address 4 in Flash
• Could point to RAM, usually to Flash though

• In interrupt terms: this is the “Reset Handler”!

• Automatically loaded into the PC after the SP is loaded

• Again, hardware does this
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Step 2: “reset handler” prepares memory

• Code that handles system resets
• Either reset button or power-on reset
• Address was loaded into PC in Step 1

• Reset handler code:
• Loads initial values of .data section from Flash into RAM
• Loads zeros as values of .bss section in RAM
• Calls SystemInit

• Starts correct clocks for the system
• Handles various hardware configurations/errata

• Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c
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https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
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Step 3: set up C runtime

• _start is provided by newlib
• An implementation of libc – the C standard library

• Startup is a file usually named crt0

• Does more setup, almost none of which is relevant for our system
• Probably is this code that actually zeros out .bss

• Sets argc and argv to 0

• Calls main()  !!!

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD
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Online writeup with way more details and a diagram

• Relevant guide!!
• https://embeddedar

tistry.com/blog/2019
/04/17/exploring-
startup-
implementations-
newlib-arm/

• Covers the nRF52!
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https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
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