Lecture 02
Embedded Software

CE346 — Microcontroller System Design
Branden Ghena — Spring 2025

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

« Make sure you have your personal lab setup working
 Ask in office hours or on Piazza if you run into issues

« Labs will start this Friday!!!
* You MUST come to your scheduled lab session

« If there’s some known obligation and you give me a heads up,
I can let you move to the other section

« If you want to permanently change lab sessions (to the later lab at 3pm)
let me know

« I'll hand out Microbits as part of lab

Weekly Schedule

» Office Hours
« Monday 2-3
 Tuesday 2-3, 5-6 (joint)
- Wednesday 11-1, 2-3
» Thursday 5-6

 Checkoffs and debugging
 But also ANY class question
« These are for you to use

10 AM

1AM

12 PM

1PM

2 PM

3PM

4PM

5 PM

& PM

Tech MGS1
Mam - 1pm

Tech MG51

Tech LG&2 Tech LG&S Tech L160
2pm, Tech LGS 2pm, Tech LG 2pm, Tech L16

Lecture
3:30 - 4:50p

Tech LRS

Tech L160
Spm, Tech L16

Lecture
3:30 - 4:50p
Tech LRS

Tech L170
Spm, Tech L174

Lab1

1- 2:50pm
2370 Frances
Searle

Lab1

3 - 4:50pm
2370 Frances
Searle

Today’s Goals

» Discuss challenges of embedded software

 Describe compilation and linking of embedded code

« (Actually applies to all code, but you probably never learned much about
linking before)

 Introduce Memory-Mapped I/O as a mechanism for communicating
with peripherals

 Explore the microcontroller boot process

Outline

- Embedded Software Overview

 Embedded Toolchain
e Lab Software Environment

« Memory-Mapped 1/0

* Boot Process

Review: C memory layout

« Stack Section
* Local variables
« Function arguments

» Heap Section
« Memory granted through malloc ()

» Static Section (a.k.a. Data Section)

 Global variables
« Static function variables

 Text Section (a.k.a Code Section)
* Program code

Address
OxFFFFFFFFFFFFFFFF =——>

Address
0x0000000000000000 =——>

Stack

Heap

Static

Text

Assumptions of embedded programs

» Expect limitations
* Very little memory
* Very little computational power
* Very little energy

* Don't expect a lot of support
* Likely no operating system
« Might not even have error reporting capabilities

* Your code runs the entire system
« Single application on the system that runs forever

« Moral: think differently about your programs

Ramifications of limited memory

« Stack and Data sections are limited
» Be careful about too much recursion
 Be careful about large local variables

 Large data structures defined globally are preferred
» In embedded, we often encourage global variables for large things
» Fail at compile time rather than run-time

« Heap section might exist but should only be used cautiously
« What do you do if the heap runs out?

Avoiding dynamic memory

» Malloc is scary in an embedded context

« What if there’s no more memory available?
 Traditional computer
« Swap memory to disk
« Worst case: wait for a process to end (or kill one)

 Embedded computer

» There’s likely only a single application
« And it’s the one asking for more memory

 So it's not giving anything back anytime soon

» This is unlikely to happen at boot
 Instead it'll happen hours or days into running as memory is slowly exhausted...

Limitations on processing power

» Typically not all that important
 Code still runs pretty fast
« 10 MHz -> 100 ns per cycle (i.e. ~100 ns per instruction)
« ~10 million instructions per second
 Controlling hardware usually doesn’t have a lot of code complexity
 Quickly gets to the “waiting on hardware” part (apps are I/O bound)

* Problems
« Machine learning
 Learning on the device is a big challenge
« Memory limitations make it hard to fit weights anyways
 Cryptography
 Public key encryption takes seconds to minutes

10

Common programming languages for embedded
. C

 For all the reasons that you assume
« Easy to map variables to memory usage and code to instructions

» Assembly
 Not entirely uncommon, but rarer than you might guess
« C code optimized by a modern compiler is likely faster
» Notable uses:
 Cryptography to create deterministic algorithms
» Operating Systems to handle process swaps

« C++
 Similar to C but with better library support
« Libraries can take up a lot of code space though ~100 KB
« Some specialized versions of libraries take up less space

11

Rarer programming languages for embedded

* Rust
« Modern language with safety and reliability guarantees
 Increasingly relevant in the embedded space
 But with a high learning curve

 Python, Javascript, Scratch, etc.
« Mostly toy languages
* Fine for simple things but incapable of complex operations
 Especially low-level things like managing memory

« Microbit supports all of these, play around with them sometime:
« https://makecode.microbit.org/
« https://python.microbit.org/v/3
« https://scratch.mit.edu/microbit

12

https://scratch.mit.edu/microbit
https://python.microbit.org/v/3
https://scratch.mit.edu/microbit

What's missing from programming languages?

* The embedded domain has several requirements that other
domains do not

« What is missing from programming languages that it wants?
 Sense of time

« Sense of energy

13

Programming languages have no sense of time
« Imagine a system that needs to send messages to a motor every

10 milliseconds
« Write a function that definitely completes within 10 milliseconds

 Accounting for timing when programming is very challenging
« We can profile code and determine timing at runtime

« If we know many details of hardware, instructions can give timing
 Unless the code interacts with external devices

14

Determining energy use is rather complicated

» Software might

» Start executing a loop
« Turn on/off an LED
« Send messages over a wired bus to another device

» Determining energy these operations take is really difficult
« Even with many details of the hardware
« Different choices of processor clocks can have a large impact

 Often profiled at runtime after writing the code
« Iterative write-test-modify cycle

15

Break + Question

» Which program takes longer to run?

Program 1:

volatile float value = 1337.3235;
volatile float result = sqgrt(value);
Program 2:

printf (“Hello world!\n”);

16

Break + Question

» Which program takes longer to run?

Program 1:

volatile float value = 1337.3235;
volatile float result = sqgrt(value);
Program 2:

printf (YHello world!\n”);

Printf takes about 100x longer!!

33 microseconds
~2112 instructions

3392 microseconds
~217088 instructions

Majority of the time
isn't spent in
instructions though

17

Outline

 Embedded Software Overview

« Embedded Toolchain
e Lab Software Environment

« Memory-Mapped 1/0

* Boot Process

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for code size instead of speed)

19

Cross compilers compile for different architectures

» The compiler we'll be using is a cross compiler
« Run on one architecture but compile code for another
« Example: runs on x86-64 but compiles armv7e-m

» GCC naming scheme: ARCH-VENDOR-(OS-)-ABI-gcc
« arm-none-eabi-gcc
* ARM architecture
* No vendor
* No OS
« Embedded Application Binary Interface
« Others: arm-none-linux-gnueabi-gcc, i686-pc-windows-msvc-gcc

20

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker

« Combine multiple C files together
 Resolve dependencies
» Point function calls at correct place
« Connect creation and uses of global variables

21

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

 How do x86-64 compilers know which addresses to use?

22

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

 How do x86-64 compilers know which addresses to use?
 Standard layout for all processes
« Virtual memory allows all applications to use the same memory addresses

« Embedded solution
« Only run a single application
 Provide our own standard layout: an LD file
 Specifies memory layout for a certain system
* Places sections of code in different places in memory

23

Anatomy of an LD file

« NRF52833: 512 KB Flash, 128 KB SRAM
* First, LD file defines memory regions

MEMORY {
FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x20000

}

* A neat thing about microcontrollers: pointers have meaning
« Just printing the value of a pointer can tell you if it's in Flash or RAM

24

Anatomy of an LD file

« It then places sections of code into those memory regions

.text | .data : AT (etext) {
KEEP (* (.Vectors)) __data start =
* (.text*) *(.data*)
x (. rodata*) __data end = .;
. = ALIGN (4); } > RAM
} > FLASH
__etext = .; .bss : {
. = ALIGN (4) ;
__bss start = .;
(.bss¥)
. = ALIGN (4) ;
__bss end = .;

} > RAM

.
L 4

25

Sections of code

 Where do these sections come from?

» Most are generated by the compiler
e .text, .rodata, .data, .bss
 You need to be deep in the docs to figure out how the esoteric ones work

« Some are generated by the programmer
* Allows you to place certain data items in a specific way

__attribute ((section(".foo")))
int testf(10] = {0,0,0,0,0,0,0,0,0,0};

26

Embedded compilation steps

« Same first steps as any system

1. Compiler
« Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker
« Combine multiple C files together
» Resolve dependencies
 Point function calls at correct place
« Connect creation and uses of global variables

 Output: a binary (or hex) file

27

Loading the hex file onto a board

* This is a use case for JTAG
* You provide it a hex file which specifies addresses and values
It writes those into Flash on the microcontroller

* The LD file already specified addresses
S0 passing around hex files is enough to load an application

« But a hex file for one microcontroller won't work on another with a
different memory layout

28

Example

« Demonstrated in the blink application in lab repo

» https://github.com/nu-ce346/nu-microbit-
base/tree/main/software/apps/blink

29

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink
https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink

Outline

 Embedded Software Overview

 Embedded Toolchain
 Lab Software Environment

« Memory-Mapped 1/0

* Boot Process

Embedded environments

« There are a multitude of embedded software systems
« Every microcontroller vendor has their own
« Popular platforms like Arduino

« We're using the Nordic software development libraries plus some
extensions made by my research group
o It'll be a week until that matters for the most part
« We'll start off by writing low-level drivers ourselves without libraries

31

Software Development Kit (SDK)

« Libraries provided by Nordic for using their microcontrollers
» Actually incredibly well documented! (relatively)
» Various peripherals and library tools

* SDK documentation

« https://docs.nordicsemi.com/bundle/sdk nrf5 v16.0.0/page/index.html
« Warning: search doesn’t really work

 Possibly more useful: the list of data structures
 Search that page for whatever “thing” you’re working with
» https://docs.nordicsemi.com/bundle/sdk nrf5 v16.0.0/page/annotated.html

32

https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/index.html
https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/annotated.html

NRF52x-base

« Wrapper built around the SDK by Lab11
« Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
 Allows everything to be used with Makefiles and command line
e https://github.com/lab11/nrf52x-base

« We include it as a submodule
» It has a copy of the SDK code and softdevice binaries
« It has a whole Makefile system to include to proper C and H files

« We include a Board file that specifies our specific board’s needs and
capabilities

GO to repo to explain

33

https://github.com/lab11/nrf52x-base

Break + xkcd

https://xkcd.com/303/

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GETBACK.
TOWoRK! -/
i

mmpru@

OH. CARRY ON. WA

34

https://xkcd.com/303/

Outline

 Embedded Software Overview

 Embedded Toolchain
e Lab Software Environment

« Memory-Mapped 1I/0

* Boot Process

How does a computer talk with peripherals?

* A peripheral is a hardware unit within a microcontroller
 Sort of a “computer-within-the-computer”
« Performs some kind of action given input, generates output

« We interact with a peripheral’s interface
« Called registers (actually are from EE perspective, but you can’t use them)
« Read/Write like they’re data

Registers | Status Command Data Interface

« How do we read/write them?
» Options:
« Special assembly instructions
 Treat like normal memory

36

Memory-mapped I/O (MMIO): treat devices like normal memory

» Certain physical addresses do not actually go to memory

» Instead they correspond to peripherals
« And any instruction that accesses memory can access them too!

Address
OXFFFFFFFF
 Every microcontroller I've | | . o |
ever seen uses MMIO LRSS m— Tata reg

0x00000000

37

Memory map on nRF52833

» Flash 0x00000000
* SRAM 0x20000000

» APB peripherals 0x40000000
 Everything but GPIO

» AHB peripherals 0x50000000
« Just GPIO

« UICR — User Information Config
« FICR — Factory Information Config

OxFFFFFFFF

0xEQ000000

0xC0000000

0xA0000000

0x80000000

0x60000000

0x40000000

0x20000000

0x00000000

System address map

Device

RAM

RAM

Peripheral

SRAM

Address map

Private peripheral bus

AHB peripherals

APB peripherals

Code

Data RAM

UICR

FICR

Code RAM

Flash

OxEO000000

0x50000000

0x40000000

0x20000000

0x10001000
0x10000000
0x00800000
0x00000000

38

Example nRF52 peripheral placement

* 0x1000 is plenty of space for each peripheral

W o=l & A

11
12
13
14
15

» 1024 registers, each 32 bits

« No reason to pack them tighter than that

Cre000S000
Cre0006000
Cre000 7000
Cre0003000

CheA000A000
Cre 000000
Cre000C000
Cre 0000000
Cre000EDOD
CreOO0FRD00

NFCT
GPIOTE

TIMER
TIMER
TIMER
RTC
TEMP
RMNG
ECBE

MNFCT
GPIOTE
SAADC
TIMERD
TIMER1
TIMER2
RTCO
TEMP
RMNG
ECB

Mear field communication tag

GPIO tasks and events

Analog to digital converter

Timer 0

Timer 1

Timer 2

Real-time counter O

Temperature sensor

Random number generator

AES electronic code book (ECB) mode block encryption

Acoelerated address resolver

39

Example register layout
PSEL.LED

Address offset: 0x51C

Pin select for LED signal

Bit number 31302928 2726

D C

Reset OxFFFFFFFF 1111 1111
ID R/W Field Value ID Value

A BRW PIN [0..31]

B RW PORT [0..1]

C BW CONMNECT
Disconnected 1

Connected 0

« 32-bit value
« Bits 0-4 are field A
e Bit 5 is field B
« Bit 31 is field C
e Others are unused

2524 23222120 19181716 15141312 111098 7654 3210

BA AAAA

1111 11711 1111 11111111 1111

Description

Pin number

Port number

Connection

Disconnect

Connect

» Each field has value ranges
and descriptions of what it
means

40

Registers can vary wildly in complexi

ouT TASKS_START

Address offset: O0x504 Address offset: 0x000
Write GPIO port Start RTC COUNTER
Bit number 31302928 27262524 23222120 19181716 15141312 111098 7654 3210 . ~ ~
Bit number 31302928 27262524 23222120 19181716 15141312 111098 7654 3210
ID fedc baZyY XWVU TSRQ PONM L KIJI HGFE DCBA
Reset 0x00000000 coco0oo0 0OO0OO0C OCOOCOO OOO0CO0O 0COO0OO0 OOO0OO0O0D OOOO D .
Reset 0x00000000 0000 OOOCO OOOCO OOO0CO0O OOO0CO0 O OO0 0000 0000
ID R/W Field Value ID Value Description
. ID R/W Field Value ID Value Description
A RW PINO Pin O
Low o Pin driver is low A W TASKS_START Start RTC COUNTER
High 1 Pin driver is high Trigger 1 Trigger task
B RW PIN1 Pin1
Low 0 Pin driver is low
High 1 Pin driver is high
C RW PIN2 Pin 2
Low 0 Pin driver is low
High 1 Pin driver is high
D RW PIN3 Pin 3
Low 0 Pin driver is low
High 1 Pin driver is high
E RW PIN4 Pin 4
Low 0 Pin driver is low
High 1 Pin driver is high
F REW PINS Pin 5
Low 0 Pin driver is low
High 1 Pin driver is high
G RW PIN6 Piné
Low 0 Pin driver is low
High 1 Pin driver is high
H RW PIN7 Pin7
Low 0 Pin driver is low
High 1 Pin driver is high

41

Bit Masking

« How do you manipulate certain bits within a number?

 Use bit manipulation operations
¢ NI &I |I <<l >>

* Steps
1. Create a "bit mask” which is a pattern to choose certain bits
2. Use & or | to combine it with your number
3. Optional: Use >> to move the bits to the least significant position

42

Bit mask values

» Selecting bits, use the AND operation
* 1 means to select that bit
* 0 means to not select that bit

» Writing bits
 Writing a one, use the OR operation
« 1 means to write a one to that position
* 0 is unchanged

» Writing a zero, use the AND operation
» 0 means to write a zero to that position
1 is unchanged

Select bottom four bits:
num & OxOF

Set 6t bit to one:
num | (1 << 6)

num | (0Ob01000000)

Clear 6t bit to zero:
num & (~(1 << 6))
num & (~(0b01000000))
num & (0b10111111)
43

Example: selecting bits

 Select bits 2 and 3 from a number

0501100100
& 0000001100

0b00000100

Input: 0001100100
Mask: 0b00001100

Finally, shift right by two to get the

In C:

result

(I1nput & 0x0C)

>> 2

values in the least significant position:

0b00000001

44

Manipulating a register value

PSEL.LED
Address offset: Ox51C

Pin select for LED signal

Bit number 31302928 27262524 23222120 19181714 15141312 111098 7654 3210
1D C BA AAAA
Reset OxFFFFFFFF 1111 1111 12111 1111 111711 1113111111 1111
ID R Field Value ID Value Description
A& RW PIN [0..31] Pin number
B RW PORT [0..1] Port number
C BRW COMNMECT Connection

Disconnected 1 Disconnect

Connected 0 Connect

* Check Port value « Write port value

value = (REG >> 5) & 1 REG |= (1 << 5) //setportto0
or (REG & (1 << 5))>>5 REG &= ~(1 << 5); // set port to 1

45

TEMP on nRF52833 example

» Internal temperature sensor
 0.25° C resolution
« Range equivalent to microcontroller IC (-40° to 105° C)
» Various configurations for the temperature conversion (ignoring)

e DOOCO00 TEMP TEMP Temperature sensor
TASES_START D00 Start temperature measurement

TASES _STOP a0 Stop temperature measurement
EVENTS_DATARDY e 100 Temperature measurement complete, data ready
INTEMSET Ohe304 Enable interrupt

INTENMCLR Ohe308 Dizable interrupt

TEMP 503 Temiperature in *C [0.25° steps)

https://docs.nordicsemi.com/bundle/ps nrf52833/page/temp.html

https://docs.nordicsemi.com/bundle/ps_nrf52833/page/temp.html

Interacting with the temperature peripheral

TASKS_START

Address offset: 0x000

Start temperature measurement

Bit number 31302928 27262524 23222120 19181716 15141312 111098 7654 3210
1Dy A
Reset 0x00000000 0000 OCOODO OO0CO0OO0 0COOOCO0Q OO0OOCQ O OO0 QOO0 QOO0
I RYW Field Value ID WValue Description
AW TASKS START Start temperature measurement

Trigger 1 Trigger task

Address offset: Ox100

Temperature measurement complete, data ready

Bit number 31302928 27262524 23222120 19181716 15141312 111098 7654 3210

1D A

Reset Ox00000000 000O0C OOCOOCO0OC DOOO OOOCO OODOO O OO0 0000 QDOO

I R/W Field Value ID Value Description

A RW EVENTS_DATARDY Temperature measurement complete, data ready
MotGenerated 0 Event not generated

Generated 1 Event generated

Reading a temperature value

TEMP

Address offset: 0x508

Temperature in °C (0.25° steps)

Bit number 31302928 27262524 23 22 21 20 19 18 17 16 15 14 13 12 11 10 2 8 76 5 4 3 2 1 (
ID AAAA AAAA A A A A A A A A A A A A A AAA AAAA AAAA
Reset Ox00000000 0000 OCOOODO O O O O 0 C 0 0 O 0 0 0O 0 000 0000 0ODO0O0OC
ID R/W Field Value ID Value Description

A R TEMP Temperature in °C (0.25% steps)

Result of temperature measurement. Die temperature in °C, 2's complement format, 0.25 °C steps.
Decision point: DATARDY

 32-bit value
 2's complement (i.e., signed)
« 0.25 °C steps (so 0 = 0°C, 4 = 1°C, etc.)

48

MMIO addresses for TEMP

« What addresses do we need? (ignore interrupts for now)
« 0x4000C000 — TASKS_START
» 0x4000C100 — EVENTS_DATARDY
« 0x4000C508 - TEMP

e DOOCO00 TEMP TEMP Temperature sensor
TASKS_START i) Start temperature measursm ent

TASES _STOP a0 Stop temperature measurame nit
EVENTS_DATARDY e 100 Temperature measurement complete, data ready
INTEMSET b0 Enable interrupt

INTEMCLR (308 Disable interrupt

TEMP 503 Temiperature in *C [0.25° steps)

Accessing addresses in C

* What does this C code do?

(uint32_t)(0x4000C000) = 1;

50

Accessing addresses in C

* What does this C code do?

(uint32_t)(0x4000C000) = 1;

* 0x4000C000 is cast to a uint32_t*
* Then dereferenced
« And we write 1 to it

* “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

51

Example code

* To the terminal!

 Let’s write it from scratch

52

Example code (temp mmio app)

4 / I B - ~ - ~ 1 - MmO o ¥ &
/ STl 1 (1 measltiiremeni
- LA L= 4 IR A 0 B &) L L -

tile uint32 :"Feady = *(uint:
('ready) {
ready — *(1I1nt3 *)(

ead data and print it
tile 1 t value = *(int32_t*)()
t temperature = ((float)value)/4.0;

printf(, temperature);

nrf_delay ms()i

53

Using structs to manage MMIO access

» Writing simple C code and access peripherals is great!

 Problems:
* Need to remember all these long addresses
* Need to make sure compiler doesn’t stop us!

» Solution:
« Wrap entire access in a struct!
« Compilers turn it into the same thing in the end anyways

54

C structs

» Collection of variables placed together in memory

typedef struct {
uint32 t variable one;
uint32 t variable two;
uint32 t array([2];

} example struct t;

« Placement rules - Variables are placed adjacent to each other in memory except:
* Fields are always aligned to a multiple of their size
 Padding added to the end to make the total size a multiple of the biggest member

 Microcontrollers can usually ignore these: all registers are the same size!

55

Temperature peripheral MMIO struct

typedef struct {

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

Register
TASKS _START

TASKS START; _
— TASKS_STOP

TASKS STOP:
- EVENTS _DATARDY

unused A[62];
-— — INTEMSET
EVENTS DATARDY ; R
_unused B[0x204/4 - 1]; '
INTENSET ; TENE
INTENCLR ;

_unused C[(0x508 - 0x308)/4 - 1];

TEMP;

} temp regs t;

Orffset Description

000 Start temperature measurement

OO Stop temperature measursrment

100 Temperature measurement complete, data ready
0303 Enable interrupt

308 Cisable intermrupt

w508 Temperature in *C {0.25° steps)

With increasingly verbose ways to write the
size of the “unused” space (any of these will
do, but don't forget the -1)

volatile temp regs t* TEMP REGS = (temp regs t*) (0x4000C000) ;

56

Temperature peripheral MMIO struct

typedef struct ({ -
. TASES _START 000 Start temperature measurement
uint32 t TASKS START; _
. - - TASES _STOP OO Stop temperature measursrment
uint32_t TASKS STOP; EVENTS_DATARDY e 100 T I da dy
— —— ' A emperature measurement complete, data rea
uint32 t unused A[62]; ~ W. ’
. I g INTEMNSET Ohe304 Enable interrupt
uint32 t EVENTS DATARDY; NTENCLE 2 Dicabie
— —_—] T30 it
uint32 t unused B[0x204/4 - 1]; e
- - — TEMP On%038 Temperature in *C {0.25° steps)

uint32_t INTENSET ;
uint32_t INTENCLR;
uint32 t unused C[(0x508 - 0x308)/4 - 1];
uint32_ t TEMP;

} temp regs t;

volatile temp regs t* TEMP REGS = (temp regs t*) (0x4000C000) ;
// code to access

TEMP_REGS->TASKS START = 1;

while (TEMP_REGS ->EVENT S_DATARDY == 0);

float temperature = ((float)TEMP REGS->TEMP)/4.0;

57

Using MMIO structs

 Note: structs still don’t get you individual bits, they only get you
the 32-bit registers themselves

* You'll need to do bit manipulations to get the read/write fields you
want

» Bit fields are an option in C that can allow access to individual bits
but are generally not used
« Implementation-specific details for how they actually work
« What if you need to change multiple fields simultaneously?

/4

58

Break + Question

* Are binaries portable to other microcontrollers?

59

Break + Question

 Are binaries portable to other microcontrollers?

 Definitely not

1) Each microcontroller has its own layout of Flash and RAM, so we might
need to put our code in different locations

« 2) Each microcontroller has its own MMIO addresses and devices
And every device works at least s/ightly differently

« Can sometimes get away with it for microcontrollers in the same family
« I.e., class code might work on an nRF52840 instead of our nRF52833

60

Outline

 Embedded Software Overview

 Embedded Toolchain
e Lab Software Environment

« Memory-Mapped 1/0

 Boot Process

How does a microcontroller start running code?

* Power comes on
 Microcontroller needs to start executing assembly code

* You expect your main() function to run
« But a few things need to happen first

62

Step 0: set a stack pointer

» Assembly code might need to write data to the stack
 Might call functions that need to stack registers

« ARM: Valid address for the stack pointer is at address 0 in Flash
» Needs to point to somewhere in RAM

« Hardware loads it into the Stack Pointer when it powers on

63

Step 1: set the program counter (PC)

* a.k.a. the Instruction Pointer (IP) in x86 land

« 32-bit ARM: valid instruction pointer is at address 4 in Flash
» Could point to RAM, usually to Flash though
 In interrupt terms: this is the "Reset Handler”!

« Automatically loaded into the PC after the SP is loaded
 Again, hardware does this

64

Step 2: “reset handler” prepares memory

» Code that handles system resets
« Either reset button or power-on reset
« Address was loaded into PC in Step 1

« Reset handler code:
« Loads initial values of .data section from Flash into RAM
« Loads zeros as values of .bss section in RAM
 Calls SystemlInit
« Starts correct clocks for the system
« Handles various hardware configurations/errata
« Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/gcc startup nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/system nrf52.c

65

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

e _start is provided by newlib
« An implementation of libc — the C standard library
o Startup is a file usually named crt0

« Does more setup, almost none of which is relevant for our system
 Probably is this code that actually zeros out .bss
« Sets argcand argvto 0
 Calls main() !

https://sourceware.org/git/qgitweb.cqi?p=newlib-cygwin.qgit;a=blob plain;f=libgloss/arm/crt0.S;hb=HEAD

66

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

 Relevant guide!!

« https://embeddedar
tistry.com/blog/2019

/04/17/exploring-
startup-
implementations-
newlib-arm/

« Covers the nRF52!

v!-

Key

Reset_Handler Syareminit
2 |y N
> meams et
4:
hardware_init_hook
>
bart 5
foware_ini k
. 50 _imir_hoo
B: 7
> atexit > __register_exitproc
10: |y 8: 9:
—libe_init_array _imit
»> i >
Frain
11: * 12
__rcall_sxitprocs
_'p
exit
13: 14:
_eHit _kill_shared
»> »>

nRF52

Mewlib

Application

67

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

Outline

 Embedded Software Overview

 Embedded Toolchain
e Lab Software Environment

« Memory-Mapped 1/0

* Boot Process

	Default Section
	Slide 1: Lecture 02 Embedded Software

	Goals
	Slide 2: Administrivia
	Slide 3: Weekly Schedule
	Slide 4: Today’s Goals

	Embedded Software
	Slide 5: Outline
	Slide 6: Review: C memory layout
	Slide 7: Assumptions of embedded programs
	Slide 8: Ramifications of limited memory
	Slide 9: Avoiding dynamic memory
	Slide 10: Limitations on processing power
	Slide 11: Common programming languages for embedded
	Slide 12: Rarer programming languages for embedded
	Slide 13: What’s missing from programming languages?
	Slide 14: Programming languages have no sense of time
	Slide 15: Determining energy use is rather complicated
	Slide 16: Break + Question
	Slide 17: Break + Question

	Embedded Toolchain
	Slide 18: Outline
	Slide 19: Embedded compilation steps
	Slide 20: Cross compilers compile for different architectures
	Slide 21: Embedded compilation steps
	Slide 22: Informing linker of system memory
	Slide 23: Informing linker of system memory
	Slide 24: Anatomy of an LD file
	Slide 25: Anatomy of an LD file
	Slide 26: Sections of code
	Slide 27: Embedded compilation steps
	Slide 28: Loading the hex file onto a board
	Slide 29: Example

	Lab software environment
	Slide 30: Outline
	Slide 31: Embedded environments
	Slide 32: Software Development Kit (SDK)
	Slide 33: nRF52x-base
	Slide 34: Break + xkcd

	Memory-Mapped IO
	Slide 35: Outline
	Slide 36: How does a computer talk with peripherals?
	Slide 37: Memory-mapped I/O (MMIO): treat devices like normal memory
	Slide 38: Memory map on nRF52833
	Slide 39: Example nRF52 peripheral placement
	Slide 40: Example register layout
	Slide 41: Registers can vary wildly in complexity
	Slide 42: Bit Masking
	Slide 43: Bit mask values
	Slide 44: Example: selecting bits
	Slide 45: Manipulating a register value
	Slide 46: TEMP on nRF52833 example
	Slide 47: Interacting with the temperature peripheral
	Slide 48: Reading a temperature value
	Slide 49: MMIO addresses for TEMP
	Slide 50: Accessing addresses in C
	Slide 51: Accessing addresses in C
	Slide 52: Example code
	Slide 53: Example code (temp_mmio app)
	Slide 54: Using structs to manage MMIO access
	Slide 55: C structs
	Slide 56: Temperature peripheral MMIO struct
	Slide 57: Temperature peripheral MMIO struct
	Slide 58: Using MMIO structs
	Slide 59: Break + Question
	Slide 60: Break + Question

	Boot process
	Slide 61: Outline
	Slide 62: How does a microcontroller start running code?
	Slide 63: Step 0: set a stack pointer
	Slide 64: Step 1: set the program counter (PC)
	Slide 65: Step 2: “reset handler” prepares memory
	Slide 66: Step 3: set up C runtime
	Slide 67: Online writeup with way more details and a diagram

	Wrapup
	Slide 68: Outline

