
Northwestern CE346​
Spring 2025

1

Lab 2 - Virtual Timers
Goals

●​ Use the timer peripheral to get an interrupt
●​ Build a virtualized driver allowing any number of timers

Equipment

●​ Computer with build environment
●​ Micro:bit and USB cable

Documentation

●​ nRF52833 datasheet:
https://docs-be.nordicsemi.com/bundle/ps_nrf52833/attach/nRF52833_PS_v1.7.pdf

○​ Online version: https://docs.nordicsemi.com/bundle/ps_nrf52833/page/keyfeatures_html5.html
●​ Microbit schematic:

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.
0_S_schematic.PDF

●​ Lecture slides are posted to the Canvas homepage

Github classroom link: https://classroom.github.com/a/FoytHaDB

https://docs-be.nordicsemi.com/bundle/ps_nrf52833/attach/nRF52833_PS_v1.7.pdf
https://docs.nordicsemi.com/bundle/ps_nrf52833/page/keyfeatures_html5.html
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://classroom.github.com/a/FoytHaDB

2

Table of Contents
Lab 2 - Virtual Timers

Table of Contents
Lab 2 Checkoffs
Lab Steps
Part 1: Setup

1. Find a partner
2. Create your Github assignment repo
3. Set up an additional Git remote
4. Find the app starter files for this lab

Part 2: Virtual Timers
1. Enable and Read a Hardware Timer
2. Create a Non-Virtualized Timer
3. Start Virtualizing a Single Timer
4. Check your understanding
5. Create a Repeated Timer
6. Cancel the Repeated Timer
7. Handle Multiple Virtual Timers

Part 3: Clock Time
1. Implement Clock Time library

3

Lab 2 Checkoffs
You must be checked off by course staff to receive credit for this lab. This can be the instructor,
TA, or PM during a Friday lab session or during office hours.​

●​ Part 2: Virtual Timers
a.​ Demonstrate your application reading the timer and printing it out
b.​ Demonstrate your timer interrupt handler firing
c.​ Demonstrate your timer callback turning on an LED
d.​ How many virtual timers could your system support?
e.​ Demonstrate your LED blinking due to repeated timer callbacks
f.​ Demonstrate that your LED only blinks for 5 seconds
g.​ Show your virtual timer code in virtual_timer.c

■​ Including how you handle edge cases
h.​ Demonstrate your final application with multiple repeating virtual timers​

●​ Part 3: Clock Time

a.​ Demonstrate your clock time library and application

4

Lab Steps​

Part 1: Setup

1.​ Find a partner
●​ Rule: you can pick any partner you want, but you can’t pick the same partner twice
●​ You MUST work with a partner

○​ If you can’t find someone, ask course staff for help

2.​ Create your Github assignment repo
●​ There is a github classroom link on the first page of this document. Click it!
●​ Pick a team name
●​ Pick your partner
●​ Generally, do what it says
●​ At the end, it should create a new private repo that you have access to for your code

○​ Be sure to commit your code to this repo often during class!
●​ That link might 404. If it does, you first have to go to https://github.com/nu-ce346-student

and join the organization
●​ Important: both of you should join the repo before you can do the next step

3.​ Set up an additional Git remote
●​ Open a terminal if you haven’t yet
●​ cd into your “nu-microbit-base” repo
●​ At the top right of your shiny new private repo on the Github website, there is a green

button that says “Code”. If you set up an SSH key, you can click the SSH tab to get that
URL, otherwise you should get the HTTPS URL. Either way, copy the URL so you can
enter it into terminal

●​ git remote add lab2 <YOUR-REPO-URL-HERE>
○​ This adds a “remote” repo hosted on github as a source for this repo

●​ ONLY ONE OF YOU should do the following steps
○​ git fetch lab2

■​ This gets the most recent commits from the new remote source
○​ git checkout lab2/main

■​ This changes your current commit to the remote source’s main branch
○​ git switch -c lab2-code

■​ This makes a new branch for your lab code
○​ git push -u lab2 lab2-code

■​ This tells the new branch to push code to the new remote source

https://github.com/nu-ce346-student

5

■​ From now on, you can just pull, commit, and push as normal
●​ THE OTHER STUDENT should do this AFTER the first student finished the above steps:

○​ git fetch lab2
○​ git switch lab2-code

●​ BOTH STUDENTS should do this
○​ git submodule update --init --recursive

■​ Makes sure all git submodules are initialized and updated

4.​ Find the app starter files for this lab
●​ cd software/apps/virtual_timers/

○​ This lab will use the files in this directory. Most of your changes will be in main.c
and virtual_timer.c (with a few changes in
virtual_timer_linked_list.h).

○​ The last section of the lab will update clock_time.c as well.

6

Part 2: Virtual Timers

1.​ Enable and Read a Hardware Timer

●​ Configure the TIMER4 peripheral.​
​
In virtual_timer.c inside the virtual_timer_init() function, you should configure
the TIMER4 peripheral to be a 32-bit timer that increments at 1 MHz. Then you should
clear the timer and start the timer.​

○​ Find the Timer peripheral in the nRF52833 manual and look at the registers.
○​ You can access the TIMER4 peripheral registers with the code

NRF_TIMER4->REGISTER (where REGISTER is replaced with the register name)
○​ The Timer can be cleared with NRF_TIMER4->TASKS_CLEAR = 1;

■​ And started with the TASKS_START register
○​ For now you do not need to enable interrupts​

●​ Implement the read_timer() function​

​
When a value of 1 is written to one of the TASKS_CAPTURE[n] register, the value of the
timer is copied to the corresponding CC[n] register. Use the TASKS_CAPTURE[1] and
CC[1] registers to implement the read_timer() function.​

●​ Print the elapsed time from the timer​
​
Inside main.c inside the main() function, initialize TIMER4 and then print its value once
per second. You can do this inside the while loop of main() with nrf_delay_ms(1000)
and read_timer().

●​ CHECKOFF: demonstrate your application printing out the elapsed time

○​ Question: what are the units of the number that is printing?
○​ Question: are the printed numbers what you expected?

7

2.​ Create a Non-Virtualized Timer

●​ You’ll implement the steps for starting a timer in virtual_timer.c in the private
timer_start() helper function​

●​ Enable the TIMER4 interrupt​
​
Choose a capture/compare channel that is different from the one you have already used
to read the timer. You’ll use this register as a Compare to trigger an interrupt.​

○​ In virtual_timer_init(), enable interrupts for this channel in the INTENSET
register

■​ Warning: read that register definition in the datasheet to figure out what
bit to set!

○​ Using NVIC_EnableIRQ(), enable interrupts for TIMER4_IRQn in the NVIC ​

●​ Use a single hardware timer​

Implement part of the timer_start() function such that an interrupt fires at the correct
number of microseconds after this function call​

○​ An interrupt will fire when the value of the timer is equal to the value of CC[n]
where n is the number of the capture/compare channel you enabled.

■​ Be sure to set the CC[n] register to the duration plus the current timer
value

■​ If only there was a function you’d just written that got you the current timer
value…

○​ For now you can ignore the callback and repeated arguments of this function.
○​ You can ignore overflow in this lab.​

●​ Set a timer for two seconds in the future and print “Timer Fired!” in the interrupt handler

when it occurs.
○​ Note: You cannot call timer_start() directly as it is an internal helper function.

The virtual_timer_* functions are external and can be used in main.c
○​ You’ll need to set the cb argument to something, but for now it can just be NULL.

●​ You might want to keep the once-a-second print of read_timer() from the last section,
as it will be helpful when debugging.

●​ CHECKOFF: demonstrate your timer interrupt handler firing

8

3.​ Start Virtualizing a Single Timer
For now, we’re just going to go through the virtualization process with a single timer.
We’ll handle multiple timers later after a few more improvements are made.​

●​ Understand and modify the existing linked list node​

The linked list node is defined in virtual_timer_linked_list.h. Every node has a
pointer to the next node as well as a timer value.

●​ Add a callback function field to the linked list node.
​
Rather than placing code directly in the interrupt handler, we would like to call a callback
function associated with each timer. A callback function is a function that is called when
the event occurs. The application provides the desired callback function to your library as
a function pointer it passes into virtual_timer_start().

So we can call the appropriate callback function when the event fires, we’ll need to store
it in the linked list node for the timer. The appropriate type is defined in
virtual_timer.h: virtual_timer_callback_t.​

○​ Edit the linked list structure in virtual_timer_linked_list.h to add a field for
the stored callback function pointer.

●​ Store the timer in a list

Now edit the code in timer_start() to store information in the linked list.​

○​ Create a new linked list node_t using malloc(). The syntax is as follows:​
my_type_t* my_type_pointer = (my_type_t*)malloc(sizeof(my_type_t));​

○​ Store the timer expiration time in the linked list node as timer_value
■​ This should be the duration plus the current timer value

○​ Also store the callback function in the linked list node
○​ Place the timer in the list using list_insert_sorted()

■​ You may need to take a look at the helper functions in
virtual_timer_linked_list.h

●​ Return a unique ID from timer_start()​

​
Each timer needs a unique identifier. Hint: malloc() returns a unique address each time
you call it. You could use that address as an identifier.

9

●​ Call the associated callback when the timer interrupt fires​
​
When the timer fires, you should call the callback associated with that timer within the
interrupt handler.​

○​ First you’ll need to get the timer from the linked list using list_remove_first()
○​ You can call the callback as: my_timer_node->my_callback_variable();
○​ Don’t forget to free() the node before returning
○​ You might want to create a helper function to put all of this code into and call it

from the interrupt handler.​

●​ Add code to main.c to create a timer which toggles an LED on the Microbit​

○​ For now, you should only have one call to virtual_timer_start() in main.c
○​ You should be using one of the callback functions, such as led1_toggle() to

toggle the LED.​

●​ CHECKOFF: demonstrate your timer callback turning on an LED
○​ Question: what did you change in your code to make this work?

4.​ Check your understanding
●​ What is the size of a single allocated timer structure? You can use sizeof() to

find out if you aren’t sure how to calculate it.
○​ Assume that a virtual timer uses no Heap memory other than a linked list

node, and that heap allocation requires no more space than needed for
that request.

●​ By default for our software setup, the size of the Heap section in memory is 4096

bytes. How many virtual timers could your system support?

●​ Checkoff: How many virtual timers could your system support?​

10

5.​ Create a Repeated Timer

●​ Modify virtual_timer_linked_list.h to add necessary information into the linked list
node definition.

○​ There are various things that you might add here.​

●​ Modify timer_start() in virtual_timer.c to properly initialize the node based on
whether the timer is repeated or not.​

●​ Handle a repeated timer in the interrupt handler.​
​
You must detect if a timer is repeated, and if so update its expiration time in both the
linked list and the compare register. Make sure to reinsert the timer into the linked list.​
​
Important: make sure you’re re-inserting the same linked list node (with updated
parameters) rather than malloc-ing a new node. That way the timer ID persists. So
don’t just call timer_start() in the interrupt handler.​
​
Although there are many ways to implement repeated timers, do NOT do so by resetting
the hardware timer. While that solution would work for this particular problem, it does not
scale to solving multiple virtual timers for later in the lab.​

●​ In main.c create a repeated timer that toggles an LED on the Microbit every second.​

●​ CHECKOFF: demonstrate your LED blinking due to repeated timer callbacks​

6.​ Cancel the Repeated Timer

●​ Implement virtual_timer_cancel() in virtual_timer.c​

To cancel a timer, you must remove it from the linked list. Use the list_remove() function
to accomplish this. Remember to free() the memory!​
​
You should also ensure that the capture/compare register is updated so that the interrupt
does not fire for a removed timer.​

●​ In main.c cancel the repeated timer that toggles the LED after five seconds have
elapsed.​

●​ CHECKOFF: demonstrate that your LED now only blinks for five seconds

11

7.​ Handle Multiple Virtual Timers

●​ Improve your implementation so it can handle multiple virtual timers.​
​
Currently, your implementation may not do so, but it is probably close. To handle multiple
timers you must ensure that the compare register is always set to the soonest expiring
timer in your linked list. Note that each of the timers may be repeating or not. You can
continue ignoring overflow.​
​
You may want to check the functions available in virtual_timer_linked_list.h as
some of them will be helpful for this larger implementation. Also be sure that you
properly handle a list with no timers.​

○​ Properly set the capture/compare register to the soonest expiring timer in
timer_start()

○​ Properly set the capture/compare register to the soonest expiring timer when
handling a timer interrupt

○​ Properly set the capture/compare register to the soonest expiring timer when
removing a timer from the list

○​ Creating helper functions for repeated functionality is a good idea​

Note: You are only allowed to use a single CC[n] register for interrupts (and an
additional register for reading the current time). The point is to virtualize a single CC[n]
register so it can handle any number of timers.​
​
If you run into trouble, take a look at the list_print() function in
virtual_timer_linked_list. Printing out the linked list contents once per second from the
while loop in main() can be very informative.

●​ Edge case: timers firing very close to the same time​

​
Timers firing at very close to the same time and very short timers may be missed.
Specifically, think about what may happen if you set the capture/compare register to the
expiration time at the head of the list even when the timer’s internal counter has already
moved past this time.​
​
To catch this case, you need to make sure that you never exit the timer library, or set the
capture/compare register, without handling and calling already-expired timers. Moving
some code into a helper function may make this easier.​

●​ Edge case: avoid concurrency issues​

12

The linked list library is not safe for reentrancy, and your code probably isn’t either.
Consider the case where a timer occurs while you are inserting another timer. The
checks for which value should be set in the capture/compare register could be incorrect
(maybe you were dealing with the second timer in the list before the timer fired, but now
it is the first timer in the list).​
​
To prevent this, disable interrupts while modifying the linked list. You can use
__disable_irq() and __enable_irq() to do so (that’s two underscores before the
function name). Interrupts that triggered while disabled will run when re-enabled. But
now this means that the interrupt handler could be triggered even when the soonest
expiring timer in the list should not be fired (because it was canceled). So you will need
to check whether the head of the linked list should be expiring or not inside of the
interrupt handler.​
​
Make sure that you disable interrupts before any code that modifies the linked list and
re-enable them afterwards. There may be multiple functions that you need to fix up. One
function you don’t need to fix is the interrupt handler itself. You won’t be interrupted while
the interrupt handler is running because interrupts don’t preempt themselves (same
priority!).

●​ Edge case: check for NULL pointers
​
One additional concern is that the list could eventually become empty. Whenever you
are interacting with the linked list, you should check whether the returned node is NULL.
If you don’t check for this properly, you’ll get a hardfault when removing the last timer
from the list...​

●​ Add code to main.c which starts three separate repeating timers, each of which should
control a single LED. Set one timer for 1 second, one for 2 seconds, and one for 4
seconds in duration. After 16 seconds, cancel the 2-second and 4-second timers. After
four more seconds, cancel the 1-second timer.​

●​ Checkoff: explain your code in virtual_timer.c to course staff
○​ Including how you handle edge cases​

●​ Checkoff: demonstrate your main.c application to course staff

Heads up: this lab can’t be used in your final projects. And you wouldn’t want to anyways.
There’s a decent library that virtualizes timers in the SDK. You should use that instead
(APP_TIMER), and we’ll use it in future labs.

13

Part 3: Clock Time

1.​ Implement Clock Time library

●​ Now that we have virtual timers, we can build a library on top of them that tracks “clock
time”: real-world time in terms of current Hours, Minutes, and Seconds.​
​
To do so, we’ll use the __TIME__ C macro provided by GCC. It provides compilation
time as an 8-character string.
https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html​

●​ You will need to implement clock_time_init() which initializes its internal sense of
the current real-world clock time and uses the virtual timer library to continuously update
it.

○​ You’ll need to convert strings to numbers somehow. The atoi() function can do
this, but it’s not recommended as it has undefined behavior if not successful.
Modern C programmers use strtol()
https://en.cppreference.com/w/c/string/byte/strtol​

○​ Make sure you handle seconds, minutes, or hours overflowing acceptable values.
25:61:90 o’clock doesn’t exist.​

○​ The __TIME__ macro only updates when the file containing it is recompiled. So
you’ll need to save clock_time.c and run make again to get an updated
timestamp. Resetting the Microbit will just restart the code with the old timestamp
value.​

●​ Add code to main() to use your library and print the current time each second in the
main loop.

○​ There’s a way to tell printf() to always print 2 characters and pad with zeros.
Do that so it looks nice.​

●​ Checkoff: demonstrate your clock time library and application​

○​ The demonstration should show seconds overflowing and the current minute
updating.​

https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
https://en.cppreference.com/w/c/string/byte/strtol

	Lab 2 - Virtual Timers
	
	Table of Contents
	Lab 2 Checkoffs
	
	Lab Steps​
	Part 1: Setup
	1.​Find a partner
	2.​Create your Github assignment repo
	3.​Set up an additional Git remote
	4.​Find the app starter files for this lab

	Part 2: Virtual Timers
	1.​Enable and Read a Hardware Timer
	2.​Create a Non-Virtualized Timer
	3.​Start Virtualizing a Single Timer
	4.​Check your understanding
	5.​Create a Repeated Timer
	6.​Cancel the Repeated Timer
	7.​Handle Multiple Virtual Timers

	Part 3: Clock Time
	1.​Implement Clock Time library

