
Northwestern CE346​
Spring 2025

Lab 0 - Software Setup
Goals

●​ Get a build environment configured for the future labs and project
●​ Run C code on the Microbit
●​ Simple debugging in an embedded context

Equipment

●​ Computer that you will use for labs
○​ If Windows: needs at least 20 GB of space
○​ USB ports

●​ Micro:bit and cables (you can do all of the setup except testing without this)

This lab is required, but not held in person. Every individual student needs to work through it to
have a working setup. If you run into problems, please reach out on Piazza or during Office
Hours and I will provide help!!

It’s always possible that these instructions have bugs, or commands that are out-of-date. If you
encounter any issues, let me know on Piazza and I’ll update this document to fix it.

There’s no submission here to prove you’ve completed this. Just be sure to do it before we have
our first lab session!!

Github classroom link: https://classroom.github.com/a/MxUNOWvf

Index:

●​ MacOS Instructions
●​ Windows Instructions
●​ Linux Instructions​

https://classroom.github.com/a/MxUNOWvf

MacOS Instructions
The good news here is that MacOS natively supports all of the software we need. Since it’s not
a clean installation though (presumably you’ve been using your Mac for other programming
tasks) some of these steps might fail, or react differently. Power through as best you can and
ask questions whenever you need!

To my knowledge this will all work great on both Intel and ARM Macs. I have a personal Intel
Macbook that can program these boards (although I installed all the stuff years and years ago). I
tested all of these instructions on an ARM M1 Macbook Air.​

●​ Open a terminal window
○​ We’ll run all of the following green commands in the terminal window

●​ Install MacOS command line developer tools by running xcode-select --install

○​ You may have to agree to some terms and conditions
○​ This might complete immediately if it’s already installed. If not, it’ll take a few

minutes to finish (and it’s just terrible at estimating the time remaining for some
reason)

●​ Install Homebrew by running: /bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.s
h)" (that’s all one command)

○​ If that’s too much to type, you can go here and copy the “Install Homebrew”
command, it’s the same thing: https://brew.sh/

○​ You should also be able to copy-paste from here into terminal. You’ll have to use
Cmd+Shift+V to paste, or right click and choose “Paste”.

○​ You’ll have to type your password in to run it. Note that it won’t show you any
feedback when you type, just type the password anyways and hit enter

○​ This shouldn’t take all that long to install​

●​ Homebrew might say “Run these two commands in your terminal to add Homebrew to
your PATH:”. If it does, run both of those commands.

○​ You can highlight, right click, copy, and then paste it to run it
○​ They add things to PATH so you can find executables later. We can always fix

after-the-fact if we need to. You’ll know things are broken if it can’t find the
arm-none-eabi-gcc executable even after you install it.​

●​ Install our compiler with brew install gcc-arm-embedded
​

https://brew.sh/

●​ Install our JTAG tools with brew install open-ocd​

●​ Install our serial console with pip3 install pyserial
○​ You might get a warning that “blah blah is not on PATH”. You’ll need to add it to

your PATH. If you don’t know how to do this, the following will work:​
echo "export PATH=\"`python3 -m site
--user-base`/bin:\$PATH\"" >> ~/.zshrc

■​ All one command
■​ If you’re using Bash, that should either be ~/.bashrc or ~/.profile instead of

~/.zshrc
■​ Then you’ll need to close your terminal and open a new one

○​ For more modern systems, you’ll get a big complaint about how you should use
pipx instead. Here are the steps:

■​ brew install pipx
■​ pipx install pyserial
■​ pipx ensurepath

●​ Create your Github assignment repo
●​ There is a github classroom link on the first page of this document. Click it!
●​ Pick a group name “really really doesn’t matter for this assignment”
●​ Generally, do what github classroom says
●​ At the end, it should create a new private repo that you have access to for your

code
●​ That link might 404. If so, you first have to go to

https://github.com/nu-ce346-student and join the organization
●​ Before you clone your repo: you must also create an SSH key. SSH keys are

well-explained here and there are instructions to add the key to Github

●​ Clone the github classroom repo with git clone <YOUR-REPO-SSH-URL-HERE>

●​ cd into the repo and then run git submodule update --init --recursive
○​ This is the magic command that fixes all git submodule issues
○​ This will take a hot minute to run. There’s lots of stuff to download​

●​ cd into “software/apps/blink” and run make

○​ This should compile the code if everything is working!!
○​ You’re done! There’s some bonus stuff below though.

●​ IF COMPILING DOESN’T WORK:

○​ It could be an issue with things not being in your PATH. That would result in it not
finding certain executables you installed, like arm-none-eabi-gcc. Try figuring

https://github.com/nu-ce346-student
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

out where they installed and add them to your PATH.​

○​ It could be an issue with a Space character in the file path. None of the
directories including the code may have a space character (or other special
character like plus or colon). They break Makefiles hard. A common issue here is
if your username has a space in it. The solution is to move the directory to
somewhere without any spaces in the folder names.​

●​ If you have a microbit already, you can run make flash and that will actually load the
program onto the board. The LED should start blinking

●​ Also make sure you have some editor installed that you’re happy with. You’ll use

terminal to compile and flash the board, but you don’t have to edit files in terminal if you
don’t want to.

Windows Instructions
We don’t support native Windows, so you really need to have Linux instead. There are two
options here: Windows Subsystem for Linux (WSL) or a virtual machine. Either is totally fine, but
I think WSL is probably preferred at this point.

WSL Instructions
For WSL setup, I can’t write better instructions that Microsoft already did:

●​ https://learn.microsoft.com/en-us/windows/wsl/install
○​ Just follow that. Only the first part is really necessary​

●​ https://learn.microsoft.com/en-us/windows/wsl/connect-usb

○​ You’ll need to follow this too to install the usbipd service​

●​ You will also need to run commands to connect USB devices to WSL. Unfortunately,
you’ll have to run these every time you use WSL. It’s not too much work though. You can
test that once you have a board.

○​ Note: You run the usbipd commands on Windows not in WSL​

●​ Once you’ve got stuff installed, you should jump to the Linux instructions and do all of
that to install stuff for lab. No need for the rest of these Windows instructions.

Virtual Machine Instructions
If WSL doesn’t work for you, or you want to do a virtual machine instead

This really isn’t all that bad. There are a few steps here, but most of it is being careful to select
the right options in dialog boxes and then waiting for stuff to install.

Heads up: this does require some storage space. On the order of 20 GB of space.

1.​Install a Virtual Machine
A virtual machine (VM) allows you to run an operating system inside a windowed environment
while running windows. Basically, it creates a “virtual” computer inside your computer. This has
some consequences about speed and security (see CS343), but works great for our needs.
​
We previously used VirtualBox as our VM software, but it’s got some really annoying flaws. I
personally use VMWare Workstation, so I’m hoping it works much better for this quarter.

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/connect-usb

●​ Install VMWare Workstation. This is annoyingly so much harder than it needs to be.​

●​ First, You can download it:

○​ Wow, this is way harder than it should be
○​ Go here: https://support.broadcom.com/group/ecx/free-downloads

■​ Make an account and verify it and everything
○​ Go here again with an account this time:

https://support.broadcom.com/group/ecx/free-downloads
○​ Click “VMware Workstation Pro” in the bottom right.
○​ Click “VMware Workstation Pro 17.0 for Windows”

■​ Pick the newest release number
■​ Should be 17.6.3 right now

○​ You’ll need to agree to terms and conditions in the top right and then hit the
download “cloud” button

○​ Then you’ll need to add an address and certify that you’re in the US
■​ For no particular reason, Tech’s address is:​

2145 Sheridan Road, Evanston, IL 60208
○​ Then you can download the exe file

●​ Double-click the exe to start the installation​

●​ Follow the installation instructions to install it

○​ The defaults are all fine. Just keep hitting “yes” for a while.​

●​ Finally, open it. It’ll ask for a license and you should select the “...for Personal Use” radio
button and hit Continue.

2.​Install Linux on the Virtual Machine
Many flavors of Linux would work just fine, but we’re going to use Ubuntu. It’s very popular and
widely used with lots of support on the internet.

●​ Download Ubuntu: https://ubuntu.com/download/desktop
○​ Download the most recent LTS (Long Term Support) version. At time of writing

this was 24.04.2 LTS
○​ This is about 6 GB in size, so it’s going to take a while to download.
○​ Be sure to delete it after you’re done with this setup if you’re short on space!

●​ Open VMWare and click the “Create a New Virtual Machine” button on the homepage

○​ Choose “Typical”
○​ Point the “Installer Disc image file (iso)” at the Ubuntu image you downloaded

https://support.broadcom.com/group/ecx/free-downloads
https://support.broadcom.com/group/ecx/free-downloads
https://ubuntu.com/download/desktop

■​ It should say “This operating system will use Easy Install” which lets you
skip a bunch of steps

○​ Enter a username and password
■​ Your username MUST NOT have a space character in it
■​ DO NOT forget this password. You’ll need it to install things

○​ You can name your machine whatever you like and the default installation
directory is probably fine.

■​ I use the theming of mythological gods. Professor Dinda’s group uses
fancy cheeses. My first internship used Decepticons until they ran out,
then used Care Bears. Pick a naming scheme that makes you happy.

○​ Set “Maximum disk size” to at least 100 GB (I usually pick 200 GB)
■​ This isn’t necessarily how much space it’ll use. Just the maximum. It’s

totally possible to increase later, but it’s a bit of a pain. So, picking a big
size now is likely worthwhile.

■​ You should keep the disk split into multiple files (the default)
○​ That should reach the “Ready to Create Virtual Machine” window.​

DON’T HIT ANYTHING YET THOUGH. Continue to the next step.​

●​ Edit the VM Hardware
○​ If you are still on the “Ready to Create Virtual Machine” window, you can hit the

“Customize hardware” button. Otherwise you’ll need to go to “VM->Settings” in
the menubar.

○​ For “Memory”, pick half of the RAM available on your computer. So if you have 8
GB, pick 4096. Or if you have 16 GB, pick 8192.

○​ For “Processors”, the default is probably fine, although you could again pick half
of your cores.

■​ Do select “Virtualize Intel VT-x/EPT or AMD-V/RVI” if you can. It should
make the VM run faster. Although it might give you a weird error when
you try to boot the VM for the first time if the option isn’t also enabled
already in your BIOS. If that’s the case, you can just turn this off again.

○​ For “USB Controller”, you’re going to want “USB compatibility” set to “USB 3.1”
○​ The rest of the settings should be fine as-is
○​ If you’re still on the “Ready to Create Virtual Machine” window, you can now hit

finish.​
​

●​ Let the VM install stuff for a while. Eventually it’ll hit a screen asking you for input that
says “Choose your language”

○​ The defaults are fine for the first few: Language, Accessibility, Keyboard Layout,
Connect to the Internet, Install Ubuntu, Interactive Installation, Default Selection

○​ I choose to “Install recommended proprietary software” and check both of those
boxes

○​ “How do you want to install Ubuntu?” the default is fine.
■​ It’ll erase the disk file it created, not your actual disk.

○​ “Create your account” You’ll have to enter those details again including
password.

■​ Remember that your username MUST NOT have a space in it.
■​ Uncheck the “Require my password to log in” box. Someone will already

need to be logged into your computer to open this anyways, so you don’t
need the extra login requirement.

○​ “Timezone” automatically worked for me.
○​ Hit the “Install” button and let stuff run for a while. This will take probably 10-15

minutes.
○​ When it’s done, hit the “Restart Now” green button

​

●​ Once it reboots, it should log you in automatically. You’ll have to click through a
“Welcome to Ubuntu” dialogue for a bit. Nothing important there.

​

●​ To make your life better:
○​ First, hit the x button on that yellow pop-up at the bottom of VMware so that goes

away forever
○​ Second, you can resize the VMWare window, and the Ubuntu desktop will resize

as well
○​ Third, in VMware View->Customize you can deselect “Library” and “Tabs” to get

rid of cruft you don’t need onscreen
○​ Fourth, back in Ubuntu, right click the desktop and choose “Display Settings”

then “Power” on the right. Set “Screen Blank” to Never.
​

●​ Open a terminal in Ubuntu
○​ You can click the desktop and hit “Ctrl+Alt+T”
○​ Or you can click the Terminal icon on the left bar

●​ Update Ubuntu

○​ Run sudo apt update
○​ Run sudo apt upgrade​

​

●​ You should now have a “usable” Ubuntu installation. Continue on to the “Linux”
instructions to actually get the stuff installed that you need for lab.

Linux Instructions
This part is pretty easy. If you’ve got Linux you’re only a few quick steps away from having a
working setup.

●​ Install various pre-requisites: sudo apt install build-essential
python3-pip python3-serial git vim emacs micro meld screen

●​ Install our compiler: sudo apt install gcc-arm-none-eabi

●​ Install our JTAG tools with: sudo apt install openocd

●​ Create your Github assignment repo

●​ There is a github classroom link on the first page of this document. Click it!
●​ Pick a group name “really really doesn’t matter for this assignment”
●​ Generally, do what github classroom says
●​ At the end, it should create a new private repo that you have access to for your

code
●​ That link might 404. If so, you first have to go to

https://github.com/nu-ce346-student and join the organization
●​ Before you clone your repo: you must also create an SSH key. SSH keys are

well-explained here and there are instructions to add the key to Github
○​ Warning: if you’re running Windows, make sure you create your key

within your Linux VM, not in Windows. At the top of that URL you can pick
which OS you want instructions for: choose Linux

●​ Clone the github classroom repo with git clone <YOUR-REPO-SSH-URL-HERE>

●​ cd into the repo and then run git submodule update --init --recursive

○​ This is the magic command that fixes all git submodule issues
○​ This will take a hot minute to run. There’s lots of stuff to download​

●​ cd into “software/apps/blink” and run make

○​ This should compile the code if everything is working!!
○​ You’re done! There’s some bonus stuff below though.

●​ IF COMPILING DOESN’T WORK:

○​ It could be an issue with things not being in your PATH. That would result in it not
finding certain executables you installed, like arm-none-eabi-gcc. Try figuring
out where they installed and add them to your PATH.​

○​ It could be an issue with a Space character in the file path. None of the
directories including the code may have a space character (or other special

https://github.com/nu-ce346-student
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

character like plus or colon). They break Makefiles hard. A common issue here is
if your username has a space in it. The solution is to move the directory to
somewhere without any spaces in the folder names.​

●​ If you have a microbit already, you can run make flash and that will actually load the
program onto the board. The LED should start blinking

○​ If you’re using a VM, before flashing when you first plug in the Microbit, you’ll
need to go in the VM to “Devices->USB” and check the box next to “Arm BBC
micro:bit” to attach it to the VM

●​ Also make sure you have some editor installed that you’re happy with. You’ll use

terminal to compile and flash the board, but you don’t have to edit files in terminal if you
don’t want to. VSCode is totally fine, for instance.

	Lab 0 - Software Setup
	MacOS Instructions
	

	Windows Instructions
	WSL Instructions
	Virtual Machine Instructions
	1.​Install a Virtual Machine
	2.​Install Linux on the Virtual Machine

	Linux Instructions
	

