
Lecture 17
Energy Management

CE346 – Microprocessor System Design

Branden Ghena – Spring 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Brandon Lucia (Carnegie Mellon)

Administrivia

• Quiz 4 is available
• Due Friday

• Demo details coming on Wednesday

• ~9 days to complete your project

2

Today’s Goals

• Consider energy and microcontroller systems
• What are the energy sources?

• What are the energy sinks?

• Understand sleep mode on a microcontroller

• Discuss software for low-energy operation

3

4

• Energy Sources

• Energy Management
• Sleep

• Intermittent computing

Outline

Energy sources

• Need some way to gain energy to power system

• Choices affect mobility, lifetime, software design, and capabilities
• Is the device tied to its power source?

• Must a human manually provide more energy?

• How do I write software to ensure “progress” is made?

• What sensors/actuators can the device run?

5

Measuring energy use

• Base equations
• Power = Current * Voltage (Watts)
• Energy = Power * Time (Joules)

• Energy = volts * amps * seconds
• Voltage is usually constant for a system
• Time is how long you are running for / measurement period

• Current changes based on activities being done
• Often energy is presented as a current draw
• Maybe an average current draw
• With Voltage and Time implicit

6

Example current trace during wireless communication

7

Wired power through USB

• Provides 5v at up to 500 mA (USB 2.0) or 900 mA (USB 3.0)
• Or power delivery specifications, which can do far more power

• Must be converted to different voltage to use
• Voltage regulator takes in 5v and spits out 3.3v

• Has its own maximum current!

• System is limited by the minimum of USB or regulator power
• Microbit: regulator gives 3.3v at up to 600 mA

• USB 2.5 Watts, Regulator 1.98 Watts ⇨ System 1.98 Watts

• This is a max! Stay 15-30% below regulator limit

8

Thinking about energy

• Batteries often list energy in mA*h (milliamp – hours)
• Coin cell battery: 3v at 220 mAh
• 2x AA battery: 3v at 2000 mAh
• iPhone 11 battery: 3.7v at 3000 mAh

• Also usually limited by regulator
• Sometimes just directly connected to system
• We can run at 3v just fine! (3.7v is no good though)

• Voltage can vary with charge
• But only a little, right before battery is depleted
• Example: coin cell goes down to ~2.7 volts

9

How are batteries measured?

• Measuring energy remaining is a difficult problem
• Many questions to be handled

• How much did it start with?
• How much energy has been used?
• What type of battery is it?

• Energy is not as constant a quantity as one would hope
• Pulling out lots at once has an overhead penalty

• Coulomb Counter (aka Battery Fuel Gauge)
• Designed for a specific battery “chemistry”
• Monitors charge flowing in each direction
• I2C interface for reading battery state

• Accuracy is not exact, more of an educated guess

10

How are batteries managed?

• Usually a dedicated IC for charging and managing battery packs
• Recharges battery with appropriate amount of current

• Monitors issues of battery health

• Various status monitoring
• Overcharge, undercharge

• Overcurrent

• Overtemperature, undertemperature

• Will go so far as to cut off the system to protect the battery

• Takeaway: complicated problem, approach with caution!
• Best to reuse an existing design, if possible

11

Microbit only uses battery energy in a simple way

• Battery input connects directly to regulator
• No protection for battery health

• No battery charging capabilities

• Usually this is fine for simple, low-power systems

12

Energy harvesting

• Grab energy from the environment and use that!
• Could augment with a battery and use energy to recharge

• Could go entirely batteryless and live on harvested energy alone

• Sources
• Light (outdoor or indoor. most successful)

• Airflow (outdoor or air vents)

• Motion (on human body)

• Temperature differential (difficult in practice)

• RF (very low energy source)

13

Temperature harvesting from hot pipes

• Peltier junctions create a voltage from temperature differential
• Challenge: needs a large differential for more energy

14

Managing harvested energy

• Often uses an IC to pull in energy and provide to system

• Harvested voltage/current are often very small
• Signal in millivolts is pretty common

• Need to accumulate over time to power system

• Fill up a capacitor

• Need particular load for maximum power
• ICs often implement

Maximum Power Point Tracking (MPPT)

• Varies load automatically to always
harvest the most possible energy

15

16

• Energy Sources

• Energy Management
• Sleep

• Intermittent computing

Outline

Thinking about energy

• Battery energy
• Coin cell battery: 3v at 220 mAh

• 2x AA battery: 3v at 2000 mAh

• iPhone 11 battery: 3.7v at 3000 mAh

• nRF52833 active current: 5.6 mA (at 3v)
• Coin cell: 40 hours -> ~2 days

• 2x AA: 360 hours -> ~15 days

• iPhone 11: 535 hours -> ~22 days

• So how does any of this work???

17

Sleep mode power draw

18

Microcontroller sleep modes

• Sleep mode
• Processor stops running
• Most peripherals are disabled
• Continues until an interrupt occurs and wakes the microcontroller

• Usually a timer or GPIO input

• nRF52833 sleep mode current: 1.8 μA (GPIO port event only)
• Coin cell: 122222 hours -> ~5000 days -> ~14 years

• Low-power systems shoot for less than 1% duty cycle
• Average current of ~100 μA or less
• Warning: other stuff on the board counts!!

• LEDs are 1-10 mA each… Power is not a concern of the Microbit

19

Microbit current draw (microcontroller)

• Active CPU
• 5.6 mA (executing from Flash)
• 1.8 μA (sleep mode with RAM retention)

• Transmitting RF packet
• 15.5 mA (+8 dBm)

• Other peripherals
• SAADC: 1.37 mA
• Timer: 729 μA (for any Timer peripheral)
• I2C: 6.6 mA (pull-down resistors when transmitting 0 bit)
• Everything else is handfuls of μA

20

Microbit current draw (non-microcontroller)

• KL27 (JTAG interface microcontroller)
• 2 μA sleep, 8 mA active

• Speaker
• 0-27.5 mA (changes with input signal)

• Microphone
• 0-120 μA (activated with GPIO pin)

• Accelerometer/Magnetometer
• 2-212 μA (depends on sensing rates, 200 is magnetometer)

• LEDs
• 0-230 mA (can be activated individually)

• Everything else
• 0-1 mA (mostly due to pull-up resistors)

21

Max and min current for Microbit

• Maximum current: 280 mA at 3.3 volts (~1 W)
• With everything active

• Well within limits of regulator

• Minimum current
• ~15 mA (always-on power LED)

• If you removed the power LED:

• <100 μA (with everything off)

22

nRF52 sleep mode

• Triggered with assembly instruction
• WFI (Wait For Interrupt) or WFE (Wait For Event)

• Stops processor until woken by interrupt, exception, or event

• On nRF52 automatically disables high frequency clock if unneeded

23

Software stops when the processor does, but peripherals continue

• Problem: when the processor is off, no code is running

• Solutions
• Peripherals can wake it up again

• Can probably go for milliseconds to minutes without any actions

• Timer interrupt can wake processor to do things

• Have hardware handle some parts in the background without the
processor’s involvement

• DMA

• PPI

24

Controlling peripherals while processor sleeps

• DMA (Direct Memory Access)
• Set up a pointer to memory and a length

• Peripheral can load/store memory without processor’s involvement

• Usually use completion interrupt to wake processor

• PPI (Programmable Peripheral Interconnect)
• Any Event can be tied to any Task within the nRF52

• Allows for complicated actions to be chained together

25

nRF52 Tasks and Events

• Tasks are used to perform
some operation
• Often written to by software

• Events change value when
some change in status occurs
• Often used to trigger interrupts

• PPI peripheral can connect
any TASK to any EVENT

26

Example: Timer peripheral

nRF52 PPI peripheral

• Connects Events to
Tasks via hardware

• Each channel gets one
Event pointer and up to
two Task pointers
• Must point to Event/Task

registers

27

Example PPI use case

• Automatic high-speed ADC sampling

• Software configures and sleeps
• ADC (buffer and enable)
• Timer (prescaler, compare value, short from compare to clear, and start)

• PPI: When Timer fires (EVENTS_COMPARE[0]),
• Sample ADC (TASKS_SAMPLE)

• PPI: When ADC buffer full (EVENTS_END),
• Stop Timer (TASKS_STOP)
• Fork: wake processor (via software interrupt from EGU)

28

29

• Energy Sources

• Energy Management
• Sleep

• Intermittent computing

Outline

Reducing energy consumption even further

• If sleep isn’t enough, you can power things off completely
• Transistor can be used to turn off the sensor

30

Energy harvesting can lead to intermittent computing

31

Disabling the microcontroller

• Even 2 μA sleep current might be too much for energy harvesting
• Can turn off microcontroller periodically

• Enable it again once VCC returns

• Problem: how do you write software to deal with intermittency?
• Run-to-completion with relatively quick code

• Initialize, sample sensor, send packet, turn off again

• Code checkpointing

• Save state from code and restore when power resumes

• Might be as little as which state the system is in, plus some samples

• Might be as much as saving entire stack state

• Needs low-energy, nonvolatile storage (FRAM or MRAM help!)

32

Programs may not finish

E
x
e
cu

ti
o
n
 T

im
e

count++

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

33

Programs may not finish

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

34

count++;

buf[count] = accel()

.

.

.

Power fail

Programs may not finish

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

Power fail

.

.

.

35

Need to latch execution

state periodically!

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

Power fail

.

.

.

36

Need to latch execution

state periodically!

count++

buf[count] = accel()

Power fail

Checkpoint

Execute with

checkpoints

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

Power fail

.

.

.

37

Need to latch execution

state periodically!

count++

buf[count] = accel()

buf[count] = accel()

avg = sum(buf)/count

transmit-

Power fail

Power fail

Checkpoint

Checkpoint

Execute with

checkpoints

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

count++;

buf[count] = accel();

avg = sum(buf)/count;

transmit(avg);

}

Power fail

.

.

.

38

Need to latch execution

state periodically!

count++

buf[count] = accel()

buf[count] = accel()

avg = sum(buf)/count

transmit-

Power fail

Power fail

Checkpoint

Checkpoint

transmit(avg)

Execute with

checkpoints

Checkpointing goals

• Have the compiler automatically insert checkpoints as needed
• Human doesn’t have to think about them when programming

• Limit checkpointing overhead while maximizing forward progress
• Checkpointing will take time to perform, so want to do it rarely

• Rarer checkpoints mean more progress is lost in average outage

• Need to compromise on the two based on available energy

39

40

• Energy Sources

• Energy Management
• Sleep

• Intermittent computing

Outline

