
Lecture 07
Driver Design

CE346 – Microprocessor System Design

Branden Ghena – Spring 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Today’s Goals

• Explore two aspects of device driver design
• Virtualization

• Non-blocking vs Blocking interfaces

• Discuss how interrupts interact with these
• Event-loop as a partial alternative

2

3

• Virtualized Drivers

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Choosing resource amounts is a problem

• Problem: applications may require any number of resources
• Particularly in this case: peripherals

• For example, how many timers should there be?

• But hardware has to pick some number to provide
• More is wasted cost

• Too few and applications cannot succeed

• Solution: virtualize the resource

4

Virtualization pattern

• Create a queue of requests and a pool of resources
• N requests to M resources

• Application requests are queued when they come in
• Rather than serviced immediately

• While a resource is available
• Pop request from queue (by some priority)

• Service with hardware

• Wait until another resource is available

5

Example: sending serial messages

• Serial messages (such as printf() strings) are sent via UART
• UARTE peripheral (we’ll talk about this later)

• nRF52 has two UARTE peripherals
• Can be attached to any output pins

• Changing pins is a quick operation

• What if we want to talk to three serial devices?
• Console (printf output)

• GPS (NMEA)

• WiFi radio (AT commands)

6

Virtualized UART

7

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

Empty

Virtualized UART: serves request with hardware

8

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

Virtualized UART: serves until resources are full

9

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

Virtualized UART: additional requests are queued

10

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Virtualized UART: moves to next item when complete

11

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Virtualized UART: moves to next item when complete

12

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Challenges to making virtualization work

• How fast are requests coming in?
• Requests more quickly than service are an unsatisfiable system

• How long does it take to reconfigure the resource?
• Long delays could mean high latency
• Might want to optimize for requests with same configuration first

• Need to ensure all of the configuration changes
• Common bug: forget to modify part of one register and system works most of

the time, but not in all cases

• Need ability to queue requests
• Usually stored in a linked list structure
• Dynamically… But we generally want to avoid dynamic memory

13

Dynamic resource allocation options

1. Create a queue with a maximum size in Virtual Driver
• Some number larger than the hardware picked, based on app knowledge
• Still either runs out or wastes memory

2. Just use malloc()
• Is actually possible on the nRF52 with newlib (libc implementation)
• Might run out, but then just wait for requests to complete

3. Create list nodes individually as global variables
• Application decides how many it needs at compile time
• Passes them into the Virtual Driver at first use

• “Here’s my request and a linked list node to store it in”

14

Another example: managing multiple timers

• You often have tasks that look like this:

• Most easily thought about as three separate timers
• But maybe the system doesn’t have that many timers to spare!

• Virtualization can help

15

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

16

Timer Requests
1. 10010
2. 10050
3. 10110
4. 20000

time

CC Register: 10010

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

17

Timer Requests
1. 10010, A
2. 10050, B
3. 10110, C
4. 20000, D

time

CC Register: 10010

10010 10050 10110 20000

Call timer handler A!
Update CC register and list

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

18

Timer Requests

1. 10050, B
2. 10110, C
3. 20000, D

time

CC Register: 10050

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

19

Timer Requests

1. 10050, B
2. 10110, C
3. 20000, D

time

CC Register: 10050

10010 10050 10110 20000

Call timer handler B!
Update CC register and list

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

20

Timer Requests

1. 10110, C
2. 20000, D

time

CC Register: 10110

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

21

Timer Requests

1. 10100, E
2. 10110, C
3. 20000, D

time

CC Register: 10100

10010 10050 10110 20000

New request arrives for 10100
Enqueue and sort queue
Update CC if first request has changed

Enqueuing timer requests

• Timer requests come in the form: {N seconds from now}
• timer_request(duration, handler);

• Requests are always relative to the current time

• Need to enqueue by expiration time
• Duration + Current Time

• Allows for a globally sortable list

• Need to decide how to handle overflow logic in real world

22

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

23

Timer Requests

1. 10100, E
2. 10110, C
3. 20000, D

time

CC Register: 10100

10010 10050 10110 20000

Handle 10100 event, Call E

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

24

Timer Requests

1. 10110, C
2. 20000, D

time

CC Register: 10110

10010 10050 10110 20000

Update list
Update CC register
Oh no! That’s in the past!!

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

25

Timer Requests

1. 20000, D

time

CC Register: 20000

10010 10050 10110 20000

Call C manually
Update list and CC register again

Some timers are periodic

• Repeating timers are easy to add to this system
• Include a Boolean for “repeating” and the duration in the request

• When timer expires
• If not repeating, just call handler and then drop it

• If repeating,

• First reinsert based on duration and new current time

• Then call the handler
• Don’t want the latency of the handler to slow us down

26

Concurrency safety

• Modifying the request structure in an interrupt context is
dangerous
• New request might be in the middle of getting added

• Interrupt would run right in the middle of that

• Literally an OS data race example

• Solution: disable interrupts during critical section
• Whenever editing request structure

• Enable interrupts after, which may result in an event

• Note: Interrupt handler might now fire but have no work to do. Should
always check if something should actually be handled first

27

28

• Virtualized Drivers

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Callback functions

• timer_start(duration, my_timer_handler, context);

• Driver interfaces often provide a callback mechanism
• Caller provides a function which should be executed when complete

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function

• Often a pointer to a position in a structure or a shared variable to modify

29

Function pointers in C

• Harder than in Javascript or C++. Can’t define anonymous function inline
• Instead create a pointer to an existing function in your code

void myfun (int a) {

// do something here

}

void main() {

void (*fun_ptr)(int) = &myfun;

fun_ptr(10); // dereference happens automatically

}

30

Callbacks usually run in an interrupt context

• If the interrupt handler calls the callback, the callback will be
within that same interrupt context

• Be careful which variables you modify!!
• Same concurrency problems mentioned before

• Starts to get pretty annoying
• Embedded systems deal with concurrency issues just like OS

31

Blocking function calls

• Alternative option: blocking calls
• Do not return until request is complete

void myfun (void* context) {

(boolean)context = true; // context is the flag pointer

}

void timer_start_blocking(duration) {

boolean flag = false;

// duration, pointer, context

timer_start(duration, &myfun, &flag);

while (!flag) { }

}

32

Temp driver example

nu-microbit-base/software/apps/temp_driver/

33

34

• Virtualized Drivers

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Interrupts are frustrating

• We do not want to block on every call

• We also do not want to deal with concurrency issues

• Alternative: one main event loop
• Polls necessary sensors

• Iterates through state machine and determine actions

• Runs at a certain frequency

35

Event loop

• Rather than polling a single driver, poll all of them
• Each time through the loop check all relevant inputs

• Respond to events that are necessary

• Sleep until ready to start again

while (1) {

time start = get_time();

boolean result = check_timer();

if (result) { check_gps(); }

adjust_throttle();

sleep(1ms – (get_time() – start));

}

36

Top-half / Bottom-half handler design

• Top half
• Implements interface that higher layers require

• Performs logic to start device requests

• Wait for I/O to be completed

• Synchronously (blocking) or asynchronously (return to event loop)

• Handle responses from the device when complete

• Bottom half
• Interrupt handler

• Continues next transaction

• Or signals for top half to continue (often with shared variable)

37

38

• Virtualized Drivers

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

