
Lecture 06
Timers

CE346 – Microprocessor System Design

Branden Ghena – Spring 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Today’s Goals

• Understand the role of clocks in a microcontroller

• Explore functionality of various timer peripherals on the Microbit

2



3

• Clocks

• Timers

• Real-Time Counter

• Watchdog

Outline



What are clocks?

• Clock signals, in the microcontroller context, are oscillating square 
wave signals used to latch inputs

• A clock MUST be running for (almost) anything on a 
microcontroller to function (processor and peripherals)
• Exceptions:

• Low-power input interrupts
• GPIOTE port interrupt, Analog LPCOMP interrupt, NFC sense interrupt, USB power interrupt

• Reset signal

4



Generating clocks

• External crystal oscillator
• Creates clock signal
• Chunk of quartz
• Behaves like RLC circuit but 

uses less energy

• Internal mechanisms
• RC oscillator

• Creates clock signal
• Less accurate and higher 

energy than crystal
• Phase-Locked Loop (PLL)

• Multiply input to create 
new higher frequency 
clocks

5



Microbit crystal for nRF52833

6



Clocks and energy

• Fundamental tradeoff
• Faster clock gets things done faster but uses more energy

• Slower clock uses less energy but gets things done slower

• Which to use depends on the situation

• CPU bound: faster clock, IO bound: slower clock

7

Chiang et al. “Power Clocks: Dynamic Multi-Clock Management for Embedded Systems” EWSN 2021

Example of clock selection for a 
mixed load (part IO, part CPU)

Energy consumed becomes a 
horizontal line when the task is 
completed

https://www.amitlevy.com/papers/2021-ewsn-chiang.pdf


Controlling clocks

• Some microcontrollers provide extremely fine-grained control over 
clocks
• Really complicated section of code to get working

• Many combinations are invalid

• Manually enable/disable clocks as needed

• nRF52 instead gives almost no control but is easier to use
• One 64-MHz clock for processor

• Multiple peripheral clocks, but (most) peripherals are hardwired to one

• 16 MHz for almost all peripherals (PDM and I2S are 32 MHz)

• Low-frequency 32 kHz clock for low-power peripherals

• Automatically enables/disables clocks

8



nRF52833 clocks

9

Optional: for lower energy 
and higher accuracy



Electrical characteristics

• Active power of clocks
• 32 kHz crystal run current: 0.23 μA

• 32 kHz RC oscillator run current: 0.70 μA

• 32 MHz crystal average run current: 300-700.00 μA

• 32 MHz standby current: 110.00 μA

• Startup time for external crystals
• 32 kHz crystal: 250-500 ms (milliseconds!!!)

• 32 MHz crystal:  60-200 μs

• Beware: switching can lead to delays and instability

• nRF52 uses RC oscillator while crystal is not yet ready

10



11

• Clocks

• Timers

• Real-Time Counter

• Watchdog

Outline



Timer peripherals

• Common need for embedded systems: sense of time
• Start this behavior after a certain amount of time

• Stop this behavior after a certain amount of time

• Measure how much time passed between two events

• Timer peripherals
• Input is one of the system clocks

• Counts up a register at each clock tick

• Looking at register at start and end can give real-world duration

• Compare to saved value and trigger interrupt on match

• Allows interrupts to be scheduled in the future

12



Timer peripheral on nRF52833

13



Input and Prescaler

𝑓TIMER = 
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

• Prescaler is a 4-bit number
• Possible timer input clocks: 16 MHz – 488 Hz

• Ticks counted with (up to) 32-bit internal Counter:
• Minimum 268 seconds until overflow (at 62.5 ns per tick)

• Maximum 101 days until overflow (at 2.04 ms per tick)

14



Alternate input source for counter mode

• Counter mode works 
with non-timer inputs
• E.g. GPIO input event

• Count anything!

15



Capture/Compare registers (CC)

• 32-bit storage registers (each timer has multiple)
• Uses: capturing or comparing

• On Capture[n] event
• Internal Counter value copied to CC[n]

• Capture used to measure durations of events
• Capture can be triggered by software or by Events from other peripherals

• Multiple registers to measure multi-part events

16



Comparing with CC registers

• When internal Counter value equals a CC register
• Corresponding Compare[n] event is triggered

• Can trigger interrupts

• Usually written to in advance to start/stop behavior
• Toggle LED every second

• Sample sensor every five minutes

• Refresh LED matrix every 1/60 seconds

17



The nRF52833 has multiple Timer instances

18



Bonus concept: shorts

• Reminder: Tasks are inputs and Events are outputs

• Shorts connect an Event to a Task within a peripheral
• Tasks and Events are fairly nRF specific

• Timer shorts
• Connect Compare[n] to Clear

• Connect Compare[n] to Stop

19



Usage: how do we set a one second timer?

• Assume timer is already running

1. Get current time from timer

2. Add 1 second worth of ticks to it

•
16000000
2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

is the number of ticks per second

3. Set an unused Compare register to value

4. Enable interrupts for that Compare event

20

Warning: what if 
you’re setting a 1 us 
timer instead? Or a 
100 ns timer?

Timer could expire 
before software writes 
it to the peripheral.



Check your understanding

• Prescaler value is 4

• Current internal Counter value is 0x1000

• Want a 0.5 second timer

• What do you set the CC[0] register to? (32-bits)

21

𝑓TIMER = 
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅



Check your understanding

• Prescaler value is 4

• Current internal Counter value is 0x1000

• Want a 0.5 second timer

• What do you set the CC[0] register to? (32-bits)
• 1 MHz Timer frequency -> 500,000 ticks in 0.5 seconds

• 500000 -> 0x7A120

• Plus initial value of counter = 0x7B120

22

𝑓TIMER = 
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅



23

• Clocks

• Timers

• Real-Time Counter

• Watchdog

Outline



Real-time Counter

• Low-power (32 kHz) version of Timer
• Only a 24-bit internal Counter

• Note: abbreviated RTC, but that already means something else (Real-Time Clock)

24



Differences between Real-Time Counter and Timer

• Runs off of LFCLK instead of HFCLK
• With smaller prescaler value (4096 vs 32768)

• 24-bit counter vs 32-bit counter for Timer

• Can read the Counter value directly
• No need for Capture task

• Otherwise extremely similar. Just a low-power version of Timer

25



Time resolution for Real-Time Counter

𝑓TIMER = 
32 KHz

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟+1

• Resolution
• Minimum: 30.517 μs, overflows in 512 seconds (24-bit Counter)

• Maximum: 125 ms, overflows in 582 hours

• Not as precise as the Timer (62.5 ns best precision)
• Possible design: use both

• Real-Time Counter for most of the waiting

• Chained into Timer for precise remaining amount of time

26



27

• Clocks

• Timers

• Real-Time Counter

• Watchdog

Outline



Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

28



Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

• Resets “state” to original values, which are likely good

• Startup is often well-tested

• It’s long-running code interacting in unexpected ways that leaves 
systems in a broken state

29



Watchdog timer (WDT)

• Focused on failures where the system “hangs” forever
• Maybe software, maybe hardware!

• Can’t know for certain the system is hung, but can know practically
• Select a timeout that is the maximum amount of time you expect the 

system to ever go without looping in main()

• Multiply it by 2-10

• Set a watchdog timer to that value

• If watchdog timer ever expires, it resets the system (in hardware)

30



Watchdog configuration

timeout (seconds) = 
Counter Reload Value + 1

32768

• Configure watchdog
• Can choose whether to count down during Sleep mode or Debug mode

• Set a Counter Reload Value (CRV, 32-bits)

• Start the watchdog timer
• Loads internal Counter to CRV value

• Starts counting down at 32 kHz

31



Running applications with a watchdog timer

• Need to periodically reset the watchdog to keep it from expiring
• Known as “feeding” the watchdog or “kicking” the watchdog

• Reload Request register
• Must write sequence 0x6E524635 to reload watchdog
• Incredibly unlikely to happen by accident

• While running, watchdog is protected from modification
• Configure once, run forever (at least until a reboot)
• Only option is to make periodic Reload Requests

• Default off on the nRF52833 (default on for the MSP430!)

32



33

• Clocks

• Timers

• Real-Time Counter

• Watchdog

Outline


