
Lecture 04
Input and Output

CE346 – Microprocessor System Design

Branden Ghena – Spring 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Today’s Goals

• How does a microcontroller interact with peripherals to perform 
input and output operations?
• Memory-Mapped I/O

• Interrupts

• DMA

• Explore reliable use of MMIO

• Discuss interaction patterns for Interrupts and DMA

2



3

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• DMA

Outline



Devices are the point of computers

• Traditional systems need to 
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same 
requirement, just more types of IO

4

Processor

Computer

Control

Datapath

Memory Devices

Input

Output



Devices are core to useful general-purpose computing

5

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output



Devices are essential to cyber-physical systems too

6

Computer

Lidar

Inertial 
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output



Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be 
able to handle 
each of these
• Sometimes 

needs low 
overhead

• Sometimes 
needs to not 
wait around

7

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0



8

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• DMA

Outline



How does a computer talk with peripherals?

• A peripheral is a hardware unit within a microcontroller
• Sort of a “computer-within-the-computer”
• Performs some kind of action given input, generates output

• We interact with a peripheral’s interface
• Called registers (actually are from EE perspective, but you can’t use them)
• Read/Write like they’re data

• How do we read/write them?
• Options:

• Special assembly instructions
• Treat like normal memory

9



Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to memory

• Instead they correspond to peripherals
• And any instruction that accesses memory can access them too!

• Every microcontroller I’ve
ever seen uses MMIO

10

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Memory map on nRF52833

• Flash 0x00000000

• SRAM 0x20000000

• APB peripherals 0x40000000
• Everything but GPIO

• AHB peripherals 0x50000000
• Just GPIO

• UICR – User Information Config

• FICR – Factory Information Config

11



Example nRF52 peripheral placement

• 0x1000 is plenty of space for each peripheral
• 1024 registers, each 32 bits

• No reason to pack them tighter than that

12



TEMP on nRF52833 example

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller IC (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

13



MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP

14



Example code

• To the terminal!

15



Example code

16



Using structs to manage MMIO access

• Writing simple C code and access peripherals is great!

• Problems:
• Need to remember all these long addresses

• Need to make sure compiler doesn’t stop us!

• Solution:
• Wrap entire access in a struct!

• Compilers turn it into the same thing in the end anyways

17



C structs

• Collection of variables placed together in memory

typedef struct {

uint32_t variable_one;

uint32_t variable_two;

uint32_t array[2];

} example_struct_t;

• Placement rules - Variables are placed adjacent to each other in memory except:

• Variables are always placed at a multiple of their size
• Padding added to the end to make the total size a multiple of the biggest member

• Microcontrollers can usually ignore these: all registers are the same size!

18



Temperature peripheral MMIO struct

typedef struct {

} temp_regs_t;

19



Temperature peripheral MMIO struct

typedef struct {

uint32_t TASKS_START;

uint32_t TASKS_STOP;

uint32_t _unused_A[62];

uint32_t EVENTS_DATARDY;

uint32_t _unused_B[64+64+1];

uint32_t INTENSET;

uint32_t INTENCLR;

uint32_t _unused_C[64+64];

uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

20



Temperature peripheral MMIO struct

typedef struct {

uint32_t TASKS_START;

uint32_t TASKS_STOP;

uint32_t _unused_A[62];

uint32_t EVENTS_DATARDY;

uint32_t _unused_B[64+64+1];

uint32_t INTENSET;

uint32_t INTENCLR;

uint32_t _unused_C[64+64];

uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

// code to access

TEMP_REGS->TASKS_START = 1;

while (TEMP_REGS->EVENTS_DATARDY == 0);

float temperature = ((float)TEMP_REGS->TEMP)/4.0;

21



22

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• DMA

Outline



What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

23

This is the “polling” 
model of I/O.

“Poll” the peripheral 
in software repeatedly 
to see if it’s ready yet.



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Imagine a keyboard device
• CPU could be waiting for minutes before data arrives

• Need a way to notify CPU when an event occurs

• Interrupts!

24



Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a handler for that event

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”

25



Interrupts, visually

26

Some code
that’s executing



Interrupts, visually

27

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code



Interrupts, visually

28

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code

Continue
original code



ARM Nested Vectored Interrupt Controller (NVIC)

• Manages interrupt requests (IRQ)
• Stores all callee saved registers on the stack

• So the handler code doesn’t overwrite them

• Moves the PC to the proper handler, a.k.a. Interrupt Service Routine (ISR)

• Restores registers after handler returns and moves PC back

29

Interrupts can 
preempt other 

interrupts!

Jump directly to 
the interrupt 

handler

Handles interrupt 
entry and exit

- Stacking
- Unstacking
- Priorities



ARM Vector table

• List of function pointers to 
handler for each 
interrupt/exception

• First 15 are architecture-
specific exceptions

• After that are 
microcontroller interrupt 
signals

30



Vector table in software

• Placed in its own section
• LD file puts it first in Flash

• Reset_Handler determines 
where software starts 
executing

• After that are all exception 
and interrupt handlers
• All function pointers to some 

C code somewhere

31



NVIC functionality

• NVIC functions
• NVIC_EnableIRQ(number)
• NVIC_DisableIRQ(number)
• NVIC_SetPriority(number, priority)

• Technically 256 priorities
• Only 8 are implemented

• Must enable interrupts in two places!
• Enabling interrupt in the peripheral will generate the signal
• Enabling interrupt in the NVIC will cause signal to jump to handler

• Priority determines which interrupt goes first
• And determines how interrupts are nested

32



Nested interrupts, visually

33

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler

Continue
original code

Higher priority
Interrupt triggers!

continues

Interrupt handler



34

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• DMA

Outline



Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time 
consuming
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the 
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring

35



General-purpose DMA

36



Special-purpose DMA

• nRF52 uses “EasyDMA”, which is built into individual peripherals
• Only capable of transferring data in/out of that peripheral

• Easier to set up and use in practice

• Only available on some peripherals though (no DMA for TEMP)

37

Warning: addresses for DMA 
MUST be in RAM!



Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

38



39

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• DMA

Outline


