
Northwestern CE346
Spring 2021

1

Lab 6 - I2C Sensors
Goals

● Implement an I2C driver using an nRF SDK library
● Interpret sensor data into meaningful information

Equipment
● Computer with build environment
● Micro:bit and USB cable

Documentation
● nRF52833 datasheet: https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf
● Microbit schematic:

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.
0_S_schematic.PDF

● Lecture slides are posted to the Canvas homepage
● LSM303AGR datasheet:

https://drive.google.com/file/d/1wLJlkEFv2RNPashABxo6drEbNSQXtdQU/view?usp=sha
ring

● Using an Accelerometer for Inclination Sensing app note:
https://www.analog.com/media/en/technical-documentation/app-notes/an-1057.pdf

Lab Steps

1. Update your local repository
● cd into the base of your repo
● git pull https://github.com/nu-ce346/nu-microbit-base.git

● git submodule update --init --recursive

○ There may be no changes

● cd software/apps/i2c_sensors/

○ This lab will use the files in this directory. Your changes will be in main.c and
lsm303agr.c

● You will be interacting with the LSM303AGR today. I recommend you download the
datasheet for it so that you can have a local copy open while working on the lab.
LSM303AGR Datasheet

https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://drive.google.com/file/d/1wLJlkEFv2RNPashABxo6drEbNSQXtdQU/view?usp=sharing
https://drive.google.com/file/d/1wLJlkEFv2RNPashABxo6drEbNSQXtdQU/view?usp=sharing
https://www.analog.com/media/en/technical-documentation/app-notes/an-1057.pdf
https://github.com/nu-ce346/nu-microbit-base.git
https://drive.google.com/file/d/1wLJlkEFv2RNPashABxo6drEbNSQXtdQU/view?usp=sharing


2

2. Understand and double-check the I2C sensor

● Confirm that you have the correct I2C sensor

Your board should look like this, with the black IC for the accelerometer between the two
leftmost holes. There is also a 3-pin transistor to the right of it and above it.

If your board instead has an IC to the left of this, above the leftmost hole, let the course
staff know immediately!! (I don’t think this will happen to anyone)

● Today we’ll be interacting with the LSM303AGR accelerometer and magnetometer.
Actually, this chip functions as two independent sensors both connected to the same I2C
bus. The two sensors have different I2C addresses.

The accelerometer’s address is where all accelerometer and temperature sensor
commands and reads go.

The magnetometer’s address is where all magnetometer commands and reads go.

See the picture below for a conceptual diagram of the sensor.



3



4

3. Implement I2C reads

● Create the proper transfer in the helper function

In the file lsm303agr.c there is a helper function i2c_reg_read() which performs a
1-byte read operation of a given I2C register for a given I2C device. You’ll need to fill in
the transfer that needs to occur.

○ I2C registers are addresses within the device where data is located. A list of I2C
registers for the LSM303AGR can be found in Chapters 7 and 8 (starting on
Page 43) of the datasheet.

○ The transfer consists of a Write (to write the register address), a repeated start
condition, and then a Read (to read the register value) as described in Table 22
of the datasheet (Page 38).

○ We are using the nRF TWI Manager library to interact with I2C devices.
Initialization of the library has been done for you in main(). Calling
nrf_twi_mngr_perform() actually runs a transaction. It expects a pointer to an
array of nrf_twi_mngr_transfer_t structs, which are the actions it will perform.
The easiest way to create these structs is with the NRF_TWI_MNGR_WRITE() and
NRF_TWI_MNGR_READ() macros.

○ You’ll need to add two things to the array:
■ First, a write operation where the data value is the register address you

want to read. That write operation should include a flag to ensure that it
doesn’t stop communication (which will create the repeated start
condition).

■ Second, a read operation where the data pointer should be a pointer to
the rx_buf. This operation should end with a normal stop condition (flags
can be set to zero).

● Test that I2C reads work with the WHOAMI registers

A WHOAMI register always returns a constant value. You can read the value and
confirm it has the expected value in order to confirm that I2C reads are working. We read
the registers for you in lsm303agr_init().

○ The list of I2C registers for the LSM303AGR can be found in Chapters 7 and 8
(starting on Page 43) of the datasheet. There you’ll find WHO_AM_I_A, which is
the LSM303AGR Accelerometer’s WHOAMI as well as WHO_AM_I_M, which is
the LSM303AGR Magnetometer’s WHOAMI.

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__twi__mngr.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__twi__mngr.html&anchor=gaaa38a9084593ec4b031a99f6d0580451
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__twi__mngr.html&anchor=gae09ae43666ce070fd045a61c08fec6e1


5

○ Check both of the values in lsm303agr_init() and print a message about
whether they are correct or not.

○ If things aren’t working, try physically unplugging and replugging your Microbit. A
reset is enough to reset state on your Microcontroller, but it doesn’t affect the
sensor chip. So if that gets in a bad state, the only way to fix it is with a power
cycle.

● No checkoff: continue to the next step



6

4. Read temperature from the sensor

● The I2C sensor has an internal temperature sensor so it can adjust its measurements
based on temperature. We can read it as a test of our library.

● First, we need to get I2C writes working as well in order to configure the temperature
sensing capability.

i2c_reg_write() is a helper function that should perform a 1-byte I2C write to a given
device address and register. Implement this function so it performs the proper
transaction.

○ This is very similar to i2c_reg_read(). One key difference is that the transaction
array only needs to perform a single action now: a two-byte write where the first
byte is the register address and the second byte is the value to write to it. Note
that you will need to change the arguments to perform...

● The best test of whether I2C writes are working is to implement the
lsm303agr_read_temperature() function. It only uses calls to i2c_reg_read(), but the
resulting data will always have a value of zero (25° C) if the write to configure the
temperature sensor at the end of lsm303agr_init() has not occurred correctly.

○ The registers to read from are OUT_TEMP_L_A and OUT_TEMP_H_A, the least
significant 8 bits and most significant 8 bits of a signed temperature value. You
can find definitions of those register addresses in lsm303agr.h

○ You’ll need to perform two I2C read operations, one for each register value. Then
combine them together into a single int16_t

○ To convert to a temperature reading, first cast the value into a float, then multiply

by the sensitivity, , and add the bias, 25.0. The end result is a temperature
1.0

256.0
in degrees Celsius.

● Test your temperature sensor reading by printing the value periodically in main()

It should increase if you put your finger on the I2C sensor, and generally is expected to
be a little bit above room temperature as the entire sensor will heat up a little while
running.

If you always read a value of 25.0, that means the I2C write to configure the sensor did
not work properly and you’ll need to go back and look at that.



7

● No checkoff: continue to the next step



8

5. Read from the accelerometer and magnetometer

● You should fill in the functions lsm303agr_read_accelerometer() and
lsm303agr_read_magnetometer(). The sensors have already been configured for you
in lsm303agr_init().

○ You can find the proper registers to read from in the datasheet. Like with
temperature you’ll need to read two different registers for each axis and combine
them to create a measurement.

○ The combined measurement is a 10-bit signed value.
■ For the accelerometer, this 10-bit value is left-aligned, which means you

must first store it, and then shift it right 6 bits to get the proper value.
■ For the magnetometer, this 10-bit value is right-aligned, which means that

just storing it is sufficient. No shifting needed.

○ There is no bias, but there is a scaling factor for each sensor value. They can be
found in Table 3 on page 13 of the datasheet. They are listed in values of
UNIT/LSB, which is to say “scaling per least significant bit”. You can multiply your
value by them to get mg and mgauss respectively.

■ For the accelerometer, it is configured at +/- 2g in normal mode
■ For the magnetometer, the sensitivity is one number regardless of

configuration

○ Further convert the sensor values into meaningful units.
■ The accelerometer readings are expected to be returned as g (rather

than mg)
■ The magnetometer readings are expected to be returned as μT

(microteslas). You can divide by 10 to convert from milligauss to
microtesla

○ The values should be returned in the lsm303agr_measurement_t struct, which is
defined in lsm303agr.h

● Test your sensor reading implementations by printing the values periodically in main()

○ The accelerometer measures the force of gravity while static. Gravity measures
as “1 g” on the sensor. By default, you should read 1 g on the z-axis with the
speaker side of the Microbit up and -1 g on the z-axis with the LED matrix side of
the Microbit up. Other axes measure values when the Microbit is rotated.

○ The magnetometer readings are hard to put into perspective. If you have a
magnet handy (or most headphones have magnets in them), you can hold it



9

close to the sensor to show a change in readings. Generally, you should be
getting values in the 1-100 μT range with no magnet nearby. A nearby magnet
will record values of thousands of μT.

● No checkoff: continue to the next step



10

6. Convert acceleration to tilt angle

● Knowing that the force of gravity creates a constant downwards 1 g acceleration, we can
use the readings on the axes of the Microbit to determine its tilt angle.

● Implement a function to determine tilt angle from acceleration

This application note explains how to convert accelerometer measurements into tilt
angle. We want to implement triple-axis tilt measurements, using the technique
described in the left column of page 7 of the application note.

○ The angles Theta (θ), Psi (Ψ), and Phi (Φ) are angle offsets from the X, Y, and Z
axes respectively and correspond to Pitch, Roll, and Yaw respectively. Assuming
the Microbit is usually held face-up or face-down, the most important of these
from our perspective is Phi (Φ), which measures tilt from the Z axis.

○ You should implement this as a helper function in lsm303agr.c that either takes
in accelerometer data and returns an angle measurement or reads the
accelerometer itself and then returns an angle measurement

○ Use equation 13 to calculate Phi. The atan() and sqrt() functions in math.h

will be useful here.

○ The resulting value will be in radians, so convert it into degrees before returning it

● Test your conversion by printing the tilt value of the Microbit periodically in main()

○ The Phi value should be close to zero if the Microbit is face up or face down, and
close to +/- 90 degrees if the Microbit is held vertically (in any orientation). Sign
tells you which side is up (positive for the speaker or negative for LED matrix).

● Checkoff: demonstrate your code and application to course staff

○ It should print out Temperature, Acceleration, Magnetic Field Strength, and Tilt
Angle

https://www.analog.com/media/en/technical-documentation/app-notes/an-1057.pdf
https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://www.cplusplus.com/reference/cmath/atan/
https://www.cplusplus.com/reference/cmath/sqrt/


11

Lab Checkoffs
You must be checked off by course staff to receive credit for this lab. This can be the instructor,
TA, or PM during a Friday lab session or during office hours.

● Demonstrate your application code and lsm303agr library code
● Demonstrate that the application responds appropriately

Also, don’t forget to answer the lab questions assignment on Canvas.


