
Northwestern CE346
Spring 2021

1

Lab 3 - LED Matrix
Goals

● Use timers and GPIO to control the LED matrix
● Display text on the LED matrix

Equipment
● Computer with build environment
● Micro:bit and USB cable

Documentation
● nRF52833 datasheet: https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf
● Microbit schematic:

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.
0_S_schematic.PDF

● Lecture slides are posted to the Canvas homepage

Lab Steps

1. Update your local repository
● cd into the base of your repo
● git pull https://github.com/nu-ce346/nu-microbit-base.git

● git submodule update --init --recursive

○ There may be no changes

● cd software/apps/led_matrix/

○ This lab will use the files in this directory. Your changes will be in main.c,
led_matrix.c, and led_matrix.h

https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/nu-ce346/nu-microbit-base.git


2

2. Control a single row of LEDs

● Initialize row and column pins and set default values for them in led_matrix_init()

○ To do so, you can use the nRF GPIO library
■ An example of using this library can be found in

apps/virtual_timers/main.c and in
apps/app_timer_example/main.c

■ You do not have to use this library, and may use your own instead if you
prefer

○ Each LED row and column pin will need to be set as an output (10 total) using
the nrf_gpio_pin_dir_set() function

■ You can refer to row pins as LED_ROW1, LED_ROW2, etc.
■ You can refer to column pins as LED_COL1, LED_COL2, etc.
■ These values are defined in

software/boards/microbit_v2/microbit_v2.h

○ Rows and columns should default as cleared
■ You can control LEDs with nrf_gpio_pin_clear(),

nrf_gpio_pin_set(), nrf_gpio_pin_toggle(), and
nrf_gpio_pin_write()

○ If you want, you could create an array of row LEDs and an array of col LEDs and
use that to get the pin numbers. Something like uint32_t row_leds[] =

{LED_ROW1, LED_ROW2, LED_ROW3, LED_ROW4, LED_ROW5};

● Set initial values for the LEDs in led_matrix_init()

○ To activate an LED, ensure that its corresponding row pin is high and its
corresponding column pin is low

○ To inactivate an LED within an active row, set its corresponding column pin to
high

● Test your code to make sure that you understand how to choose which LEDs are active
in a row

○ led_matrix_init() is already called in main() for you

● No checkoff: continue to the next step

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/group__nrf__gpio__hal.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=gaebd00458ddee2f537b40b5e9979e08c4
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=ga5c671adfb6b44f32c9d99d3156aff2b1
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=gadfd30c1e5321180f1e333cf5642058e8
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=gac7f7bf539f5bb053b4a313ec51d8157e
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=ga2ad9c02e0534e3ab6679f45c6f42dcdd


3

3. Use an App Timer to modify LEDs in a single row

● Review the example App Timer code in apps/app_timer_example/

○ This example uses the nRF App Timer Library

■ You could use your own Virtual Timer library, but you’re probably better off
using the nRF App Timer library so you can practice using nRF libraries.
Also so you don’t run into any bugs.

○ APP_TIMER_DEF() is a macro that creates a global timer variable
■ This is how the library handles making multiple timers. Instead of using

malloc(), it expects users to create each timer as a separate global
variable

○ app_timer_init() initializes the timer library

○ app_timer_create() initializes a specific timer
■ Arguments are: a pointer to the timer variable, the timer mode (either

APP_TIMER_MODE_SINGLE_SHOT or
APP_TIMER_MODE_REPEATED), and a callback function

○ app_timer_start() starts a timer
■ Arguments are: the timer variable (not a pointer!), the number of ticks until

expiration, and a void* pointer to pass to the callback function (usually
just NULL)

■ The App Timer uses the RTC with a Prescaler of 0, so Period in seconds
equals Ticks divided by 32768

● Initialize an App Timer and start it in led_matrix_init()

○ For now, you can just set it to fire once per second in
APP_TIMER_MODE_REPEATED mode

● In the App Timer callback function, modify the active LEDs for the given row

○ Make sure the row pin is high, and set some column pins to high and some
column pins to low so that some LEDs are active

● Test your code to make sure that you can actually modify the active LEDs. Change
which row is active and which columns are active a few times to test your understanding

○ led_matrix_init() is already called in main() for you

● No checkoff: continue to the next step

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/group__app__timer.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__app__timer.html&anchor=gaf8712d5f21788ee57a694e9d3303d9ee
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__app__timer.html&anchor=ga6dfeb220d038adefe101dd483c48d036
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__app__timer.html&anchor=ga5c31f03a2b9d4bf2a3cd629e6603e72e
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__app__timer.html&anchor=gaa2e52b98d7c4030d5e283ddfe50c81c7


4

4. Control arbitrary LEDs

● Keep track of the desired state for each LED in the matrix

You can implement this any way you want to. However, here are some suggestions:

○ You probably want to keep your state as a global variable so multiple functions
can interact with it

○ You can use any method you want to keep track of LED states
■ You could use a 2D matrix of boolean values, one for each LED. That

would look something like bool led_states[5][5] = {false};

■ Or alternatively you could use a 1D matrix of row values, where each row
corresponds to an 8-bit value (5 bits for LEDs and 3 bits of padding)

■ Or alternatively you could use a single uint32_t to contain the state of
the LED matrix (25 bits for LEDs and 7 bits of padding)

● Each time the App Timer callback function triggers, modify a different row of the LED
matrix.

Only one row of the LED matrix can be active at a time, but by lighting up one row at a
time and very quickly iterating through the rows, human perception will make it look as
though all LEDs are active simultaneously.

○ You might need a global variable (or static function variable) to keep track of the
current row being displayed

○ Inactivate the current row, then change the column pin states, then enable the
next row

■ If you do this in a different order, it will briefly light the wrong LEDs

○ First get writing each row working at low speed, and then when you can see rows
are changing correctly, increase the frequency in the next sub-step

○ nrf_gpio_pin_write() may be a useful function here

● Modify the App Timer to run fast enough to refresh the LED matrix imperceptibly

○ Each LED row needs to refresh at 100 Hz or higher in order to not flicker when
viewed. Because only one row is active at a time and there are five rows, this
means the App Timer should fire at least 500 times per second.

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrf__gpio__hal.html&anchor=ga2ad9c02e0534e3ab6679f45c6f42dcdd


5

○ Don’t go below ~20 ticks for the interrupt period, or else your callback handler
might take long enough that you will miss interrupts.

● Test your code to make sure you can write an arbitrary pattern to the LED matrix

○ An X pattern is a good test to ensure that everything is working
■ It would be impossible to draw without going row-by-row as we are doing
■ You can make this test part of led_matrix_init() so it runs immediately

and automatically

○ Only the LEDs you selected should light up
■ If other LEDs are very very dimly lit up, you probably enabled the next row

before modifying the columns

○ The refresh rate should be fast enough that you cannot detect the LEDs
changing state

■ You might need to increase the configuration of the App Timer

● No checkoff: continue to the next step



6

5. Display a single character

● Create a function that takes in a character and displays it on the LED matrix

This will need to access the font array in font.c in order to determine which LEDs to
light for a given character. It contains LED active/inactive states for the first 128 ASCII
characters including uppercase and lowercase letter, numbers, and various punctuation.
The first 32 ASCII characters that are not representable are left blank. Here is a
visualization of the font.

The font array is a 2D array, indexed first by character (for any character from 0 to 127).
The second dimension has 5 values, one corresponding to each row (1-5). The value at
a combination of character index and row index is an 8-bit value, corresponding to the 5
LED states, padded with 3 zeros (in the most-significant bits).

For example:
font[82][0] corresponds to the first row for the letter ‘R’ and has the value of
0x0F, which means the LEDs in column 1, 2, 3, and 4 should be active (and
column 5 should be inactive).

font[82][1] corresponds to the second row for the letter ‘R’ and has the value
of 0x11, which means the LEDs in column 1 and 5 should be active.

Generally, 0x1F means all LED columns are active while 0x00 means all LED
columns are inactive

○ The font array is already included in led_matrix.c via font.h

○ You will need to decode the 5 rows of the character and use them to modify your
LED state (which will then lead to the display changing when the timer next fires)

■ Beware: the font row and bits are zero-indexed, while the LED matrix
rows and columns are one-indexed

● Test your code to actually display the character

○ You will need to add the function to led_matrix.h in order to call it from main()

○ If everything from before is working, that should be sufficient to draw the
character on the display

■ Be sure to test with characters that are not horizontally symmetrical and
also with characters that are not vertically symmetrical

● No checkoff: continue to the next step

http://www.asciitable.com/
http://www.asciitable.com/
https://github.com/ChrisG0x20/five-pixel-font/blob/master/images/fpf_texture_atlas_6x_size.png


7

6. Display arbitrary strings

● Create a function that takes in a string and displays it on the LED matrix

I’m going to leave the implementation here up to you. As long as the string is displayed
in a readable fashion, you’ll get credit for this lab.

Some things to consider:
○ You should support the user modifying the text that is being displayed, likely by

calling this function a second time
■ You could provide a callback function when the text is finished
■ You could turn this function into a blocking function that doesn’t return

until the text is complete
■ You could just return automatically after being configured

○ You likely need to keep an additional global variable or two (or possibly a struct)
to contain information about the string currently being displayed and your offset
within it

○ You almost certainly want a second timer to control when to move to the next
character in the string

○ You can decide if you want to make the speed at which text is displayed publicly
configurable

■ You could include the speed at which characters move as part of the
public interface for the function if you want to

■ Or alternatively you could include the total duration in which to display the
entire string

■ Or alternatively you could choose one default speed for moving between
letters and not give the user any control

○ You can decide if you want to make the string repeat once it is complete
■ You could stop displaying anything once the string is completed
■ You could repeat the string automatically whenever it completes
■ You could include a boolean flag in the public interface to choose whether

it repeats

○ You can decide how to move text on the display
■ Text could move like a marquee, which should be the most readable

method, but also means handling part of two letters on the display
simultaneously

■ Text could simply be written letter-by-letter, with only one displayed at a
time

https://www.w3docs.com/uploads/media/default/0001/03/c375a4baa5cf19473934495a91b4a3799b3baae1.gif


8

■ You could add even more complicated transforms, like fade-in or fade-out

● Make the display say “Hi CE346!”, then several seconds later write “It works!”

○ You will need to add the function to led_matrix.h in order to call it from main()

● Checkoff: demonstrate the working application to course staff
○ Also show them your code and walk through the interesting parts

Lab Checkoffs
You must be checked off by course staff to receive credit for this lab. This can be the instructor,
TA, or PM during a Friday lab session or during office hours.

● Make the display say “Hi CE346!”, then several seconds later write “It works!”

● Show your code and walk through the interesting parts

Also, don’t forget to answer the lab questions assignment on Canvas.


