Lecture 12
Wired Communication:
SPI and 12C

CE346 — Microcontroller System Design
Branden Ghena — Fall 2024

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Sparkfun

Northwestern

Administrivia

» I've got so much hardware to distribute today
« Mostly from stuff I had on-hand already

 I'll bring stuff that I get to lecture and labs
 You can also grab from me in my office, if I'm around

« What did I give you:
« What you ordered
« Unless I messed it up
« Or I thought something else I had on hand was “better” than what you ordered
« Sometimes I add “extra” stuff that seems like it could be useful
« S0, double-check the stuff I gave you

« You might also need batteries, jumper wires, breadboards, etc.
« I tried to remember some of this, but didn’t always
« I have that stuff on hand, but you'll have to grab it

Today’s Goals

» Discuss additional wired communication protocols: SPI and I12C

 Understand tradeoffs in design
« UART, SPI, and I2C are each useful for different scenarios

 Explore real-world usage of SPI and I2C

Outline
 SPI

« [2C

» Using SPI and 12C

UART Pros and Cons

* Pros
* Only uses two wires
* No clock signal is necessary
 Can do error detection with parity bit

» Cons
« Data frame is limited to 8 bits (20% signaling overhead)
« Doesn’t support multiple device interactions (point-to-point only)
« Relatively slow to ensure proper reception

* Let’s get rid of all the cons (by sacrificing on all the pros)

Synchronous UART

Transmitter Receiver

» USART

» Synchronous/Asynchronous
» Just add a clock line

« Common peripheral in many microcontrollers to allow adaptable
communication

 Could build various protocols (like SPI or UART) on top of it

« Still point-to-point limited in this form

Synchronous serial communication with a single device

Device 1

Microcontroller
Device 2

Device 3

Want bi-directional communication, so three wires

Device 1

Microcontroller

Device 2

Device 3

Wire signals to all devices to form a bus

Device 1

Data In
Data Out

Clock

Microcontroller
Device 2

Data Out Data In
R AP U Data Out

Data In
I B AP U

Clock
II Device 3
Data In

Ul N - O
U

Communicating on a bus

How do you distinguish which device you are talking to?

1. GPIO pin for each device
« Signal which device is being communicated with
* Only activates communication on transition of “select” line
« Needs a separate pin for each device

2. Address for each device

 Devices must always listen and then discard messages that aren’t for them
« Need to define packet format so it's clear where the address is
« Need a method for addressing devices

10

Separate chip select line for each device

Device 1

Data In
Data Out
Clock

Chip Select

Microcontroller

Device 2

Data Out Data In
o L1 | e

Data IN s I PG W
Clock Clock
11 Chip Select

(2) Chip Select —
(1) Chip Select .

lI Device 3
Data In

U D .
U

Chip Select

(3) Chip Select

11

Serial Peripheral Interface (SPI)

« Serial, synchronous, bus
communication protocol

» Single controller with Microcontroller
multiple peripherals
« Within a circuit board

Serial Clock
Chip Select
Chip Select
Chip Select

 High-speed
communication
« Multiple Mbps

Device 1

Serial Data In
Serial Data Out
Serial Clock
Chip Select

Device 2

Serial Data In

=eidDAAON pu, S AP W I
: Serial Data Out
Serial Data IN ey . U W — Serial Clock

1Y @ v —
Chip Select
B B P

l I Device 3

Serial Data In

U :
Serial Data Out
U -
Serial Clock

Chip Select

12

A note on outdated notation

« Master/Slave paradigm
« Master is the "Computer” and is in charge of interaction
» Slave is the "Device” and has little control over interaction parameters
« Really common notation in EE side of the world.
« Not intended to be harmful, but also literally inconsiderate.

* Field is changing for the better. It's going to take some time.
« Controller/Peripheral
 Central/Peripheral
 Device/Peripheral
e Master/Minion
 Primary/Secondary

13

SPI naming schemes

» Historical SPI Naming
« MISO — Master In Slave Out
« MOSI — Master Out Slave In
« SS — Slave Select

 Revised SPI Naming
« SDI — Serial Data In -> also known as CIPO (Controller In, Peripheral Out)
« SDO - Serial Data Out -> also known as COPI (Controller Out, Peripheral In)
« CS — Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi signal names

14

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names
https://www.sparkfun.com/spi_signal_names

SPI wiring

« 3+/V wires for N peripherals

« SDI — input to the chip

« SDO — output from the chip
« SCK — Serial ClocK

« CS — Chip Select

* Active low signal

« Names are always relative to
this particular chip

« SDO connects to SDI
* SDI connects to SDO

Device 1

Microcontroller
Device 2

SDI
>0 S AP W .

SDI
-1 1. o5
SCK o - ScK

CS
CS
CS

15

SPI timing diagram

 CS goes low to start
transaction and SCK
high to end

SDO

 Data is sent
synchronously with P!
clock signals

CS

 Capable of full-
duplex transfers

* Both directions at
the same time

16

SPI communication — l—__-sc.(
COPI 4o COPI
CIPO CIPO

» Transactions usually cs cs
in multiples of bytes
(aS many as needed) COntroller to Peripheral Peripheral to COntroller
SCK
Controller ‘ | L . :
 Either bit endianness 01234567 01234567
iSpOSSibIe cort
* NRF can do LSb first ~ Sanreteriowt | oom
OR MSD first 0x53 = ASCII 'S’
C|Po e - - . ’
- No need for framing peripherat-out
bits (start/stop)
* CS handles that cs

Chip Select

SPI configurations

CPHA =0 CPHA =1
o !
o n | | | I |
- I
g O | \ / *
%‘ - | | Mode 0 Mode 1 | |
= I Lo om=Er g vedel | I
[l | Mode2 | Mode3 ! |
a3 | | ! |
o |
© © \ / \ /
G o | | | | |
o I I | I I

Sampling Toggling i Toggling Sampling
Edge Edge Edge Edge

« CPOL — is the clock default low or default high
« CPHA —is data read on first edge or second edge
* Peripherals tell you what their configuration is

18

Clock Phase (CPHA)

CPHA=0 CPHA =1
=
5 1 | | |
- N A W
O o
> ! ! Mode O | Mode1 | '
s _ | ' Mode2 | Mode3 | !
T | | I |
3 2 _____W_____}F____' _____1_____/F____'
5 &£ | | | |
© I ! I |
Sampling Toggling Toggling Sampling
Edge Edge Edge Edge

oot Y ot Y ot Y ol Y ot Y bam (o Y oo)

Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling
Edge Edge Edge Edge Edge Edge Edge Edge

SPI data rate

» No particular requirements
« Speed can go as fast as your clock and line capacitance can handle

 Datasheet for devices will specify their speeds
« Sort of standards (less so than UART, for example)

« 700 kbps

« 3.4 Mbps

« 10 Mbps

20

Daisy-chaining SPI

 SPI can also be formed into a ring bus

» Doesn’t save on pins, but does reduce wires...
« At the cost of reliability and speed

» Fairly rare in practice

SDO sDI SDO |—{SDI SDO
MICROCONTROLLER m U1 U2
MISO SCLK CS CS SCLK| | CS SCLK
. |
-

How do we determine when peripheral has information?

 Controller starts/stops SPI

transfers
» Could ask peripheral FUNCTIONAL BLOCKDIAGRAN
periOd ica I Iy ADXL345 CI‘:OWET
]

» Peripherals often add i T o P e e
interrupt outputs to signal o I o I Il il S
controller that an event has d ij* 15T
occurred Rl I v

* More pins, yay! O é

22

Use Cases

 High-speed peripherals
« Microphone, External ADC
* Displays!

» External memory
« Memory chips
« SD cards
* All SD cards support a SPI communication mode

« QSPI — Quad SPI (four SDO lines for more throughput)
« Often used for communication with external memory

23

SPI Pros and Cons

* Pros
 Faster throughput (and no overhead)
 No restrictions on data frame
« No addressing requirements or word size assumptions
 Full duplex transfers

» Cons
« Many pins: 3+ /N (for N peripherals)
 CS line scales linearly (other signals are a bus)
 Controller must initiate all transfers
 Not designed for multi-controller scenarios

24

Break + relevant xkcd

HOW STANDARDS PROUFERATE:

(< A/C CHARGERS, CHARACTER ENCODINGS, INSTRNT MESSAGING, ETC)

SITUATION:

THERE ARE
4 COMPETING
STANDPRDS.

W7 RiDICULOULS]

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

\ O)

)

SO0N:

GITUATION:

THERE ARE
|5 COMPETING
STANDPRDS.

https://xkcd.com/927/

25

Outline
* SPI

« I2C

» Using SPI and 12C

Choosing different tradeoffs from other wired communication

* Things we like from SPI
« Communication over a bus
« Synchronous communication

« Things we want from new protocol
« Fewer I/O pins
 Use a single data line for bi-directional communication
« Needs addressing and more specified data frame

 Multiple controllers sharing the bus
* Needs a bus contention solution

27

Bus contention could short a shared bus

. | it ecyratineg
« Want to enable multiple controllers narrmal MOS autputs
| orl ’
* Problem B output
« What if they each try to transmit different data?
« At some point, there will be a short-circuit .
| o ff
% L output
| orl

Shart-circut between
porwver supphy and GHD

28

Disconnected I/O pins enable shared communication

| it egyrating Wired ANDing
- I/0 pins often have three states nermal MO ewtputs apen-drain autputs
* High
* Low |Dﬂ H cutput
» Disconnected | ot |5ﬁ
(also known as High-Impedance/High-2)
—0
» We can use this third state to enable
communication over a shared line 54 .
« Low or Disconnected r RS |i B
« Wired-AND
- 1 if they are all disconnected : :
e 0if any are low Shart-circult betieen L 15 cutput

ponver sUpply and GhD either is L {on),

29

Wired-AND solves the shared-bus short-circuit

Wired AND1ng
apen-drain outputs

)
)

L is output if
either is L (on).

 Possible states
« Both are Low
« Signal connected to Ground multiple times
« Output value is Low

 Both are Disconnected
» Signal pulled-up to Vcc once
 Output value is High

* One Low and one Disconnected
» Signal connected to Ground AND pulled-up to Vcc
« Output value is Low (pull-up is a weak connection)

30

Inter-Integrated Circuit (I12C)

SDA <«——¢———>» SDA

Controller 1 Peripheral 1
SCL > SCL

» Two-wire, synchronous, bus communication
 Ubiquitous in the embedded world o los elom
« De-facto standard for sensors ol I W L

 Invented and patented by Phillips (now NXP)
 Patent expired in 2004

* Also known as Two-Wire Interface (TWI)

« Occasionally as System Management Bus (SMBus or SMB) but that's
actually a related but separate thing

31

[2C overview

- SDA — Serial Data %_g
« SCL — Serial Clock Controlir 1 I Serial data line
+ Usually 100 kHz or 400 kHz L I [SCL ¢ rial clock line
i Dorice

1 2

« Communication is a
shared bus between all
controller(s) and
peripheral(s)

* Pull-up resistors for open-
drain communication

32

Open drain bus communication

adalthdalall ™ N] MremT ' 1 T
CONTROLLER ‘ PERIPHERAL
' © ' o

3 b |
» SDA and SCL are open-drain . P_uII-qu resistor to provide high
_ . sigha
* 1- hlg_h-lmpedance, let line Low enough resistance that current
float high tgan flow in a reasonable amount of
ime

« 0 — active drive, pull line low « Common value: 4.7 kQ

33

[2C transactions

SDA ¢ \

SCL

T ackdrens bty I dsta om

A3 | A2 | A1 .X.A.O_. X;;z‘;yg\yg@/ \]{ ’gi;’X'o.eX osXmeon .61'Xb'q\@(cigﬂ /—'
cosy"" 7 *ve > e @ ale > @ o =8 o '.') :

art conditon: 1"+ Canerolier iy requestisg dw* ¢ ADKNACK A 'Y Inthis paution L ':359 rendpon. -
v - Controdler & seadirg data " dicates that the sddrensd - ST poes high ather SCL
periphersl dd rot respord or
WS raiie 1o process the request

SDA goes law before 500

 Default
 Both lines float high (pull-up resistor)

« Start condition
» Drive SDA low while SCL is still high

34

I2C transactions

« 1 data sin
SDA - \ a6 as | aa]as]az]a X AQ Xﬁi}i{\&’;k'{ \ .f'(j?’X D6 XDSX MX D3X D2 X D1 Xbb,k'e'c@/_\’ z :
. i | Y | TR) b i | LY TR | « s = nfh -~ '.1 - .
SCLW_/U_[U_[\ : v/ J

ol condnton:
SDA goes law befiore 500

* First byte is chip address + R/W indication

« Address: 7-bit value that needs to be different for each participant
« R/W: 1 for read, O for write

» Values are sent MSb first (reverse of other protocols (&))

35

[2C transactions

SDA \ 746 | As | aa | a3 ”X’“ X"«’:Xﬁ@kﬁ@%f \ -f@fx%XDSXDAXDsXDz mXbb'kacis{_\" f ’
, o | Y | PV - take | e , T | W Y I | R | w4 :

T ackdrems bty fdata om

SCL

. 4 -ty r . ,y ¥ \ ‘. * Cas -
:M.l!‘ﬂ.l:() - 2 1" - Coneroller i requestisg das* : AONACK A 'Y In this poultion .- _'”-P '_-"3”!" O
DA goes law before 500 v - Controller i seading data ndcates that the sddrensd . yIA poes high ater SCL

peripheral dd not respord or
WS Unaiie 0o process the reqeest

» Acknowledgement from peripheral follows each byte
 Controller lets line float high
 Peripheral drives line low to signal receipt of message

36

[2C transactions

- R (IR | FEELTREEE | /‘

¢OADKNACKC A 'Y nths ;.u ulion “ Siep cendmon

Mot consnton: 1" - Coneroller i requestisg dws’
SDA goes law tefore 501 U - Controller & seading data * Indicates that the :5 e . S0A poes high ater 51
periphers Ad r ,’.nd ar

~yl rlc(ﬂf‘\ equest

« Data frame(s) follow
 Sent as entire bytes, plus and ACK
« As many as needed before Stop condition

» Stop condition
« SDA goes high while SCL is high (normally data only changes when clock is low)

37

Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

38

Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

« Low bit wins! (so smaller address or data wins)

« Each controller constantly checks whether SDA matches the
voltage level it expects
 Stops attempting to transmit if it ever does not
* (Only actually needs to check high signals)

39

Repeated start conditions

« Repeated start conditions

Despite the idle state of the bus, After the repeated start, a new
d I IOW the bUS tO be . Used no other controller may assert transfer, complete with address frame(s),
aga|n Wh||e arb|trat|on Was control of the bus during this period. ~ must begin. .
won ¥ s %
o *l * KRS - " =58

- Trigger another Start | SDA."X D7 \Aé{‘/ \ / A6 X AS X A4X~*.
condition without triggering : : 3 . :

Stop condition _/‘\j_/‘_/ ;

« Send address again SCL".
~~4-' \l‘.sl ‘._Y...

- -
e 8 TP ==~

* Frequently used for write : . g
then read pattern Last data frame No stop condition Another start occurs-

. - of prior transfer is present this is the "repeated start"
« Write which value you want
« Then repeated start and read

40

Clock stretching

» Clock is an open-drain
line too

 Either device could
keep it low

« Transaction can be
briefly paused by
holding SCL low

ACK/NACK occurs as normal, bu
we can assume ACK, or no clock
stretch would have occurred.

-
-
-
-

- =
ry -~

-
-
-~
-

= ¥ *.\
SDA .'Dz X D1 X DO \

t

The data frame can be completed
as normal, either with a stop condition,
another data frame, or a repeated start.

’
’

- .
o -
.
.
- .

ACK

U\/\ /\

Data transfer is completed as
normal, with 8 bits being
transferred.

\

-~

-

The peripheral is not ready for more
data so it buys time by holding the

-

* clock low. The controller will wait for

the clock line to be released before
proceeding to the next frame.

41

Real-world I2C transactions

Write Read
7-bit 7-bit
Bl : ACK Data ACK I ACK Dpata NACK
S [1001011{0 [OOOOOOOOE]Stop bomonb]@] @ootoouﬁ] Stop

....“...rt ‘ T T N e e

123456789 123456789 123456789 123456789

Each I2C device on a bus must have a different address

 Shared addresses would cause both to 038y Vog T0 381
respond OV TOVee
.j_ 1 uF
. T .
» ICs often have one or more address pin(s) = g““‘“é'“"ﬂ ?“‘
used to select bit(s) of address o
0 pins: only one may be on bus
1 pin: two may be on bus GND sl .
« 2 pins: four may be on bus ‘_ _
*— Al INT L
- If no address pins (or not enough), need | msrssos
an I2C address translator chip AQ is low: address 1001010x
« Translates addresses for one or more A0 is high: address 1001011x

peripheral chips
I have a bunch of these on hand, just in case

43

Sparkfun Qwiic connect system

 System for wiring multiple prototyping boards together

 Four-pin connector
« VCC (3.3 volts)
« Ground
* SDA
« SCL

« Daisy-chains through boards
« Actually connects to chips in parallel as a bus

https://www.sparkfun.com/gwiic

44

https://www.sparkfun.com/qwiic

System Management Bus (SMBus)

 Related communication specification
* A little more strict in places, but generally interoperable

» Adds ability to broadcast or unicast messages
« Generic addresses for Controller and various peripherals (Battery)

« Adds an open-drain shared interrupt signal
 High-impedance or pull low, just like SDA and SCL
 Allows any device to alert a controller
 Controller has to probe bus to determine which device wants attention

45

[2C use cases

* Various sensors
 Usually low to medium speed
 Even relatively high speed stuff often has I2C for convenience
 Accelerometers and microphones
 Often with intelligent filtering built in

« Communication between microcontrollers
« Either can act as the Controller when necessary

« Commonly exists internally within smartphones and laptops too
« Light sensors, Temperature sensors, etc.

46

[2C Pros and Cons

* Pros
« Wiring is simple
* Only uses two pins
 Very widely supported

» Cons
» Relatively slow communication rate
« Speed versus power use tradeoff (due to pull-down resistor)
« Open collector makes debugging difficult

47

Break + Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

48

Break + Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

* Too slow:
 Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

 Not robust:
« No effort put into the electrical encoding of data or error checking
 Long external cables lead to additional errors

» Overall: they're too simple

49

Outline
* SPI

« [2C

« Using SPI and 12C

Common sensor interaction pattern

* First write one byte to the device
 This selects what data you want to interact with, called a “register address”

» Second read/write one (or more) bytes
 This is the actual data

 SPI and I2C devices both work this way

« Datasheet will have a list of registers you can read/write
 Each register will have some address: that’s the first byte you write

51

Example: Microbit accelerometer

Table 26. Register address map

Register address

Name Type! Default Comment
Hex Binary

Reserved 00 - 06 Reserved
STATUS_REG_AUX_A R 07 000 0111
Reserved R 08-0B Reserved
OUT_TEMP_L_A R 0C 000 1100 Output
OUT_TEMP_H_A R 0D 000 1101 Output Output registers
INT_COUNTER_REG_A R OE 000 1110
WHO_AM_I_A R OF 000 1111 | 00110011 | Dummy register
Reserved 10 -1E Reserved
TEMP_CFG_REG_A R/W 1F 001 1111 | 00000000
CTRL_REG1_A R/W 20 010 0000 0000011
CTRL_REG2_A R/W 21 010 0001 | 00000000
CTRL_REG3_A R/W 22 010 0010 | 00000000 | Accelerometer control
CTRL_REG4_A R/W 23 010 0011 00000000 |registers
CTRL_REGS5_A R/W 24 010 0100 00000000
CTRL_REG6_A R/W 25 010 0101 00000000

register on
later pages
show you the
structure of
the data read
or written

 Details of each

52

Register/data pattern in 12C

« [2C is the more difficult of these

* Need some way to tell the device “this transaction is still going”, but switch
from writing to reading

* This is the use of the “repeated start” option
e Continues the “transaction” PR W YU SO—

no other controller may assert transfer, complete with address frame(s),
control of the bus during this period. must begin. .

d oy B /’AGX AS X A4 X

Last data frame No stop condition Another start occurs-
of prior transfer is present this is the "repeated start"

53

[2C Read Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Read From One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Device (Slave) Address (7 bits) Data Byte From Register N (8 bits)
A A
(A 4 N 4 h 4 N\

S |A6 |AS | A4 | A3 [A2 | Al | AD B7 | B6|B5| B4 |B3|B2|B1|B0 Sr|AB| A5 | Ad| A3 | A2 | Al | AD D7|De|D5| D4 | D3| D2| D1 | DO | NA

! U f 1 T

START R/W=0 ACK Y& '@l Repeated START R/W=1 ACK NACK STOP

» First, write the address of the register you want
* Then, repeated start
» Finally, read the data from the device

54

[2C Write Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Write to One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Data Byte to Register N (8 bits)
A A
() 4 N A
S |A6|A5|Ad4|A3|A2|A1|A0| 0| A |B7|B6|B5|B4|B3|B2|B1|BO| A |D7|D6|DS|D4|D3|D2|D1|DO| A | P
1 T 1 t Tt

START R/W=0 ACK ACK ACK STOP

» Just write the data. No need to change modes in the middle

« Some devices also allow “repeated start” in the middle of write transactions
« But it's not necessary

NRF I2C Implementation

*nrf twi mngr driver: I2C (Two-Wire Interface) manager
 Expects transactions to occur and is set up to run those

 Takes in an array of “transfer” operations as an argument

« Each operation is either a read or a write

 Includes a device address, includes a pointer to data and length
» Includes flags like NRF TWI MNGR NO STOP which does not execute a
stop bit (and instead does a repeated start for the next operation)

* Your job is to set up the array of transfer operations
» Then the driver will make it happen

56

Register/data pattern in SPI

« SPI is easier to implement transactions for
 No indication of reading/writing by default
* You can just hold Chip Select low and stop clocking if you want to pause

* Need some way to indicate to the peripheral whether you're
reading or writing though
 Possibly different register addresses for read versus write
 Possibly 7-bit addresses, with a bit leftover for read/write specification

57

SPI Read Transaction

 Chip select goes low to select the device
» First byte is the register address and read/write selection
« Next bytes are the data to write

s\ [

YAV AYAVAVAVAVAVAVAVAVAVAVAVAVAY AR
SDO X) [

RNV MS ADS AD4 AD3 ADZ AD1 ADO

SbL LA A A A A A

DO DO6 DOs DO4 DO3 DO2 DO DOO

SPI Write Transaction

 Chip select goes low to select the device
» First byte is the register address and read/write selection
« Next bytes are the data to write

cs |\ /[

SOV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVY
SDO XX X R X e X e X X X

RW MS ADS AD4 AD3 AD2 AD1 ADOD DI7 DI6 DIS DI4 DI3 DI2 DI DIO

NRF SPI Implementation

* nrfx spim driver: nRF SPI Master (Controller)

« Expects data in "XFER" (transfer) operations
 Can either be read, write, or read AND write (both simultaneously)

» Flags control whether CS pin goes high afterwards or if it stays low
 Or you could just manually control the CS pin

60

Outline
* SPI

« [2C

» Using SPI and 12C

	Default Section
	Slide 1: Lecture 12 Wired Communication: SPI and I2C

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	SPI
	Slide 4: Outline
	Slide 5: UART Pros and Cons
	Slide 6: Synchronous UART
	Slide 7: Synchronous serial communication with a single device
	Slide 8: Want bi-directional communication, so three wires
	Slide 9: Wire signals to all devices to form a bus
	Slide 10: Communicating on a bus
	Slide 11: Separate chip select line for each device
	Slide 12: Serial Peripheral Interface (SPI)
	Slide 13: A note on outdated notation
	Slide 14: SPI naming schemes
	Slide 15: SPI wiring
	Slide 16: SPI timing diagram
	Slide 17: SPI communication
	Slide 18: SPI configurations
	Slide 19
	Slide 20: SPI data rate
	Slide 21: Daisy-chaining SPI
	Slide 22: How do we determine when peripheral has information?
	Slide 23: Use Cases
	Slide 24: SPI Pros and Cons
	Slide 25: Break + relevant xkcd

	I2C
	Slide 26: Outline
	Slide 27: Choosing different tradeoffs from other wired communication
	Slide 28: Bus contention could short a shared bus
	Slide 29: Disconnected I/O pins enable shared communication
	Slide 30: Wired-AND solves the shared-bus short-circuit
	Slide 31: Inter-Integrated Circuit (I2C)
	Slide 32: I2C overview
	Slide 33: Open drain bus communication
	Slide 34: I2C transactions
	Slide 35: I2C transactions
	Slide 36: I2C transactions
	Slide 37: I2C transactions
	Slide 38: Bus arbitration
	Slide 39: Bus arbitration
	Slide 40: Repeated start conditions
	Slide 41: Clock stretching
	Slide 42: Real-world I2C transactions
	Slide 43: Each I2C device on a bus must have a different address
	Slide 44: Sparkfun Qwiic connect system
	Slide 45: System Management Bus (SMBus)
	Slide 46: I2C use cases
	Slide 47: I2C Pros and Cons
	Slide 48: Break + Open Question
	Slide 49: Break + Open Question

	Using SPI and I2C
	Slide 50: Outline
	Slide 51: Common sensor interaction pattern
	Slide 52: Example: Microbit accelerometer
	Slide 53: Register/data pattern in I2C
	Slide 54: I2C Read Transaction
	Slide 55: I2C Write Transaction
	Slide 56: nRF I2C Implementation
	Slide 57: Register/data pattern in SPI
	Slide 58: SPI Read Transaction
	Slide 59: SPI Write Transaction
	Slide 60: nRF SPI Implementation

	Wrapup
	Slide 61: Outline

