Lecture 12
Wired Communication:
SPI and 12C

CE346 — Microcontroller System Design
Branden Ghena — Fall 2024

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Sparkfun

Northwestern



Administrivia

» I've got so much hardware to distribute today
« Mostly from stuff I had on-hand already

 I'll bring stuff that I get to lecture and labs
 You can also grab from me in my office, if I'm around

« What did I give you:
« What you ordered
« Unless I messed it up
« Or I thought something else I had on hand was “better” than what you ordered
« Sometimes I add “extra” stuff that seems like it could be useful
« S0, double-check the stuff I gave you

« You might also need batteries, jumper wires, breadboards, etc.
« I tried to remember some of this, but didn’t always
« I have that stuff on hand, but you'll have to grab it



Today’s Goals

» Discuss additional wired communication protocols: SPI and I12C

 Understand tradeoffs in design
« UART, SPI, and I2C are each useful for different scenarios

 Explore real-world usage of SPI and I2C



Outline
 SPI

« [2C

» Using SPI and 12C




UART Pros and Cons

* Pros
* Only uses two wires
* No clock signal is necessary
 Can do error detection with parity bit

» Cons
« Data frame is limited to 8 bits (20% signaling overhead)
« Doesn’t support multiple device interactions (point-to-point only)
« Relatively slow to ensure proper reception

* Let’s get rid of all the cons (by sacrificing on all the pros)



Synchronous UART

Transmitter Receiver

» USART

» Synchronous/Asynchronous
» Just add a clock line

« Common peripheral in many microcontrollers to allow adaptable
communication

 Could build various protocols (like SPI or UART) on top of it

« Still point-to-point limited in this form



Synchronous serial communication with a single device

Device 1

Microcontroller
Device 2

Device 3




Want bi-directional communication, so three wires

Device 1

Microcontroller

Device 2

Device 3




Wire signals to all devices to form a bus

Device 1

Data In
Data Out

Clock

Microcontroller
Device 2

Data Out Data In
R AP U Data Out

Data In
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Clock
II Device 3
Data In
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Communicating on a bus

How do you distinguish which device you are talking to?

1. GPIO pin for each device
« Signal which device is being communicated with
* Only activates communication on transition of “select” line
« Needs a separate pin for each device

2. Address for each device

 Devices must always listen and then discard messages that aren’t for them
« Need to define packet format so it's clear where the address is
« Need a method for addressing devices
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Separate chip select line for each device

Device 1

Data In
Data Out
Clock

Chip Select

Microcontroller

Device 2

Data Out Data In
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Data IN s I PG W
Clock Clock
11 Chip Select

(2) Chip Select —
(1) Chip Select .

lI Device 3
Data In

U D .
U

Chip Select

(3) Chip Select
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Serial Peripheral Interface (SPI)

« Serial, synchronous, bus
communication protocol

» Single controller with Microcontroller
multiple peripherals
« Within a circuit board

Serial Clock
Chip Select
Chip Select
Chip Select

 High-speed
communication
« Multiple Mbps

Device 1

Serial Data In
Serial Data Out
Serial Clock
Chip Select

Device 2

Serial Data In

=eidDAAON pu, S AP W I
: Serial Data Out
Serial Data IN ey . U W — Serial Clock

1Y @ v —
Chip Select
B B P

l I Device 3

Serial Data In

U :
Serial Data Out
U -
Serial Clock

Chip Select
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A note on outdated notation

« Master/Slave paradigm
« Master is the "Computer” and is in charge of interaction
» Slave is the "Device” and has little control over interaction parameters
« Really common notation in EE side of the world.
« Not intended to be harmful, but also literally inconsiderate.

* Field is changing for the better. It's going to take some time.
« Controller/Peripheral
 Central/Peripheral
 Device/Peripheral
e Master/Minion
 Primary/Secondary
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SPI naming schemes

» Historical SPI Naming
« MISO — Master In Slave Out
« MOSI — Master Out Slave In
« SS — Slave Select

 Revised SPI Naming
« SDI — Serial Data In -> also known as CIPO (Controller In, Peripheral Out)
« SDO - Serial Data Out -> also known as COPI (Controller Out, Peripheral In)
« CS — Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi signal names
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SPI wiring

« 3+/V wires for N peripherals

« SDI — input to the chip

« SDO — output from the chip
« SCK — Serial ClocK

« CS — Chip Select

* Active low signal

« Names are always relative to
this particular chip

« SDO connects to SDI
* SDI connects to SDO

Device 1

Microcontroller
Device 2

SDI
>0 S AP W .

SDI
-1 1. o5
SCK o - ScK

CS
CS
CS
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SPI timing diagram

 CS goes low to start
transaction and SCK
high to end

SDO

 Data is sent
synchronously with P!
clock signals

CS

 Capable of full-
duplex transfers

* Both directions at
the same time
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SPI communication — l—__-sc.(
COPI 4o COPI
CIPO CIPO

» Transactions usually cs cs
in multiples of bytes
(aS many as needed) COntroller to Peripheral Peripheral to COntroller
SCK
Controller ‘ | L . :
 Either bit endianness 01234567 01234567
iSpOSSibIe cort
* NRF can do LSb first ~ Sanreteriowt | oom
OR MSD first 0x53 = ASCII 'S’
C|Po e - - . ’ . . . .
- No need for framing  peripherat-out
bits (start/stop)
* CS handles that cs

Chip Select




SPI configurations

CPHA =0 CPHA =1
o !
o n | | | I |
- I
g O | \ / *
%‘ - | | Mode 0 Mode 1 | |
= I Lo om=Er g vedel | I
[ l | Mode2 | Mode3 ! |
a3 | | ! |
o |
© © \ / \ /
G o | | | | |
o I I | I I

Sampling Toggling i Toggling Sampling
Edge Edge Edge Edge

« CPOL — is the clock default low or default high
« CPHA —is data read on first edge or second edge
* Peripherals tell you what their configuration is
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Clock Phase (CPHA)

CPHA=0 CPHA =1
=
5 1 | | |
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SPI data rate

» No particular requirements
« Speed can go as fast as your clock and line capacitance can handle

 Datasheet for devices will specify their speeds
« Sort of standards (less so than UART, for example)

« 700 kbps

« 3.4 Mbps

« 10 Mbps
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Daisy-chaining SPI

 SPI can also be formed into a ring bus

» Doesn’t save on pins, but does reduce wires...
« At the cost of reliability and speed

» Fairly rare in practice

SDO sDI SDO |—{SDI SDO
MICROCONTROLLER m U1 U2
MISO SCLK CS CS SCLK| | CS SCLK
. |
-




How do we determine when peripheral has information?

 Controller starts/stops SPI

transfers
» Could ask peripheral FUNCTIONAL BLOCKDIAGRAN
periOd ica I Iy ADXL345 CI‘:OWET
]

» Peripherals often add i T o P e e
interrupt outputs to signal o I o I Il il S
controller that an event has d ij* 15T
occurred Rl I v

* More pins, yay! O é
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Use Cases

 High-speed peripherals
« Microphone, External ADC
* Displays!

» External memory
« Memory chips
« SD cards
* All SD cards support a SPI communication mode

« QSPI — Quad SPI (four SDO lines for more throughput)
« Often used for communication with external memory
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SPI Pros and Cons

* Pros
 Faster throughput (and no overhead)
 No restrictions on data frame
« No addressing requirements or word size assumptions
 Full duplex transfers

» Cons
« Many pins: 3+ /N (for N peripherals)
 CS line scales linearly (other signals are a bus)
 Controller must initiate all transfers
 Not designed for multi-controller scenarios
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Break + relevant xkcd

HOW STANDARDS PROUFERATE:

(< A/C CHARGERS, CHARACTER ENCODINGS, INSTRNT MESSAGING, ETC)

SITUATION:

THERE ARE
4 COMPETING
STANDPRDS.

W7 RiDICULOULS]

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

\ O )

)

SO0N:

GITUATION:

THERE ARE
|5 COMPETING
STANDPRDS.

https://xkcd.com/927/
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Outline
* SPI

« I2C

» Using SPI and 12C




Choosing different tradeoffs from other wired communication

* Things we like from SPI
« Communication over a bus
« Synchronous communication

« Things we want from new protocol
« Fewer I/O pins
 Use a single data line for bi-directional communication
« Needs addressing and more specified data frame

 Multiple controllers sharing the bus
* Needs a bus contention solution
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Bus contention could short a shared bus

. | it ecyratineg
« Want to enable multiple controllers narrmal MOS autputs
| orl ’
* Problem B output
« What if they each try to transmit different data?
« At some point, there will be a short-circuit .
| o ff
% L output
| orl

Shart-circut between
porwver supphy and GHD
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Disconnected I/O pins enable shared communication

| it egyrating Wired ANDing
- I/0 pins often have three states nermal MO ewtputs apen-drain autputs
* High
* Low |Dﬂ H cutput
» Disconnected | ot |5ﬁ
(also known as High-Impedance/High-2)
—0
» We can use this third state to enable
communication over a shared line 54 .
« Low or Disconnected r RS |i B
« Wired-AND
- 1 if they are all disconnected : :
e 0if any are low Shart-circult betieen L 15 cutput

ponver sUpply and GhD either is L {on),

29



Wired-AND solves the shared-bus short-circuit

Wired AND1ng
apen-drain outputs

)
)

L is output if
either is L (on).

 Possible states
« Both are Low
« Signal connected to Ground multiple times
« Output value is Low

 Both are Disconnected
» Signal pulled-up to Vcc once
 Output value is High

* One Low and one Disconnected
» Signal connected to Ground AND pulled-up to Vcc
« Output value is Low (pull-up is a weak connection)
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Inter-Integrated Circuit (I12C)

SDA <«——¢———>» SDA

Controller 1 Peripheral 1
SCL > SCL

» Two-wire, synchronous, bus communication
 Ubiquitous in the embedded world o los elom
« De-facto standard for sensors ol I W L

 Invented and patented by Phillips (now NXP)
 Patent expired in 2004

* Also known as Two-Wire Interface (TWI)

« Occasionally as System Management Bus (SMBus or SMB) but that's
actually a related but separate thing
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[2C overview

- SDA — Serial Data %_g
« SCL — Serial Clock Controlir 1 I Serial data line
+ Usually 100 kHz or 400 kHz L I [ SCL ¢ rial clock line
i Dorice

1 2

« Communication is a
shared bus between all
controller(s) and
peripheral(s)

* Pull-up resistors for open-
drain communication
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Open drain bus communication

adalthdalall ™ N ] MremT ' 1 T
CONTROLLER ‘ PERIPHERAL
' © ' o

3 b |
» SDA and SCL are open-drain . P_uII-qu resistor to provide high
_ . sigha
* 1- hlg_h-lmpedance, let line  Low enough resistance that current
float high tgan flow in a reasonable amount of
ime

« 0 — active drive, pull line low « Common value: 4.7 kQ
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[2C transactions

SDA ¢ \

SCL

T ackdrens bty I dsta om

A3 | A2 | A1 .X.A.O_. X;;z‘;yg\yg@/ \ ]{ ’gi;’X'o.eX osXmeon .61'Xb'q\@(cigﬂ /—'
cosy"" 7 *ve > e @ ale > @ o =8 o '.' ) :

art conditon: 1"+ Canerolier iy requestisg dw* ¢ ADKNACK A 'Y Inthis paution L ':359 rendpon. -
v - Controdler & seadirg data " dicates that the sddrensd - ST poes high ather SCL
periphersl dd rot respord or
WS raiie 1o process the request

SDA goes law before 500

 Default
 Both lines float high (pull-up resistor)

« Start condition
» Drive SDA low while SCL is still high
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I2C transactions

« 1 data sin
SDA - \ a6 as | aa]as]az]a X AQ Xﬁi}i{\&’;k'{ \ .f'(j?’X D6 XDSX MX D3X D2 X D1 Xbb,k'e'c@/_\’ z :
. i | Y | TR ) b i | LY TR | « s = nfh -~ '.1 - .
SCLW\_/U\_[U\_[\ : v/ J

ol condnton:
SDA goes law befiore 500

* First byte is chip address + R/W indication

« Address: 7-bit value that needs to be different for each participant
« R/W: 1 for read, O for write

» Values are sent MSb first (reverse of other protocols (&))
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[2C transactions

SDA \ 746 | As | aa | a3 ”X’“ X"«’:Xﬁ@kﬁ@%f \ -f@fx%XDSXDAXDsXDz mXbb'kacis{_\" f ’
, o | Y | PV - take | e , T | W Y I | R | w4 :

T ackdrems bty fdata om

SCL

. 4 -ty r . ,y ¥ \ ‘. * Cas -
:M.l!‘ﬂ.l:() - 2 1" - Coneroller i requestisg das* : AONACK A 'Y In this poultion .- _'”-P '_-"3”!" O
DA goes law before 500 v - Controller i seading data ndcates that the sddrensd . yIA poes high ater SCL

peripheral dd not respord or
WS Unaiie 0o process the reqeest

» Acknowledgement from peripheral follows each byte
 Controller lets line float high
 Peripheral drives line low to signal receipt of message
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[2C transactions

- R (IR | FEELTREEE | /‘

¢OADKNACKC A 'Y nths ;.u ulion “ Siep cendmon

Mot consnton: 1" - Coneroller i requestisg dws’
SDA goes law tefore 501 U - Controller & seading data * Indicates that the :5 e . S0A poes high ater 51
periphers Ad r ,’.nd ar

~yl rlc(ﬂf‘\ equest

« Data frame(s) follow
 Sent as entire bytes, plus and ACK
« As many as needed before Stop condition

» Stop condition
« SDA goes high while SCL is high (normally data only changes when clock is low)
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Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

38



Bus arbitration

« Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

- What happens in I2C if one controller wants a low bit and
the other wants a high bit?

« Low bit wins! (so smaller address or data wins)

« Each controller constantly checks whether SDA matches the
voltage level it expects
 Stops attempting to transmit if it ever does not
* (Only actually needs to check high signals)
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Repeated start conditions

« Repeated start conditions

Despite the idle state of the bus, After the repeated start, a new
d I IOW the bUS tO be . Used no other controller may assert transfer, complete with address frame(s),
aga|n Wh||e arb|trat|on Was control of the bus during this period. ~ must begin. .
won ¥ s %
o *l * KRS - " =58

- Trigger another Start | SDA."X D7 \Aé{‘/ \ / A6 X AS X A4X~*.
condition without triggering : : 3 . :

Stop condition \_/‘\j\_/‘\_/ ;

« Send address again SCL".
~~4-' \l‘.sl ‘._Y...

- -
e 8 TP ==~

* Frequently used for write : . g
then read pattern Last data frame  No stop condition  Another start occurs-

. - of prior transfer  is present this is the "repeated start"
« Write which value you want
« Then repeated start and read
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Clock stretching

» Clock is an open-drain
line too

 Either device could
keep it low

« Transaction can be
briefly paused by
holding SCL low

ACK/NACK occurs as normal, bu
we can assume ACK, or no clock
stretch would have occurred.

-
-
-
-

- =
ry -~

-
-
-~
-

= ¥ *.\
SDA .'Dz X D1 X DO \

t

The data frame can be completed
as normal, either with a stop condition,
another data frame, or a repeated start.

’
’

- .
o -
.
.
- .

ACK

U\/\ /\

Data transfer is completed as
normal, with 8 bits being
transferred.

\

-~

-

The peripheral is not ready for more
data so it buys time by holding the

-

* clock low. The controller will wait for

the clock line to be released before
proceeding to the next frame.
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Real-world I2C transactions

Write Read
7-bit 7-bit
Bl : ACK Data ACK I ACK Dpata NACK
S [1001011{0 [OOOOOOOOE]Stop bomonb]@] @ootoouﬁ] Stop

....“...rt ‘ T T N e e

123456789 123456789 123456789 123456789




Each I2C device on a bus must have a different address

 Shared addresses would cause both to 038y Vog T0 381
respond OV TOVee
.j_ 1 uF
. T .
» ICs often have one or more address pin(s) = g““‘“é'“"ﬂ ?“‘
used to select bit(s) of address o
0 pins: only one may be on bus
1 pin: two may be on bus GND sl .
« 2 pins: four may be on bus ‘_ _
*— Al INT L
- If no address pins (or not enough), need | msrssos
an I2C address translator chip AQ is low: address 1001010x
« Translates addresses for one or more A0 is high: address 1001011x

peripheral chips
I have a bunch of these on hand, just in case
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Sparkfun Qwiic connect system

 System for wiring multiple prototyping boards together

 Four-pin connector
« VCC (3.3 volts)
« Ground
* SDA
« SCL

« Daisy-chains through boards
« Actually connects to chips in parallel as a bus

https://www.sparkfun.com/gwiic
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System Management Bus (SMBus)

 Related communication specification
* A little more strict in places, but generally interoperable

» Adds ability to broadcast or unicast messages
« Generic addresses for Controller and various peripherals (Battery)

« Adds an open-drain shared interrupt signal
 High-impedance or pull low, just like SDA and SCL
 Allows any device to alert a controller
 Controller has to probe bus to determine which device wants attention
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[2C use cases

* Various sensors
 Usually low to medium speed
 Even relatively high speed stuff often has I2C for convenience
 Accelerometers and microphones
 Often with intelligent filtering built in

« Communication between microcontrollers
« Either can act as the Controller when necessary

« Commonly exists internally within smartphones and laptops too
« Light sensors, Temperature sensors, etc.
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[2C Pros and Cons

* Pros
« Wiring is simple
* Only uses two pins
 Very widely supported

» Cons
» Relatively slow communication rate
« Speed versus power use tradeoff (due to pull-down resistor)
« Open collector makes debugging difficult
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Break + Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)
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Break + Open Question

« Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

* Too slow:
 Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

 Not robust:
« No effort put into the electrical encoding of data or error checking
 Long external cables lead to additional errors

» Overall: they're too simple
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Outline
* SPI

« [2C

« Using SPI and 12C




Common sensor interaction pattern

* First write one byte to the device
 This selects what data you want to interact with, called a “register address”

» Second read/write one (or more) bytes
 This is the actual data

 SPI and I2C devices both work this way

« Datasheet will have a list of registers you can read/write
 Each register will have some address: that’s the first byte you write
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Example: Microbit accelerometer

Table 26. Register address map

Register address

Name Type! Default Comment
Hex Binary

Reserved 00 - 06 Reserved
STATUS_REG_AUX_A R 07 000 0111
Reserved R 08-0B Reserved
OUT_TEMP_L_A R 0C 000 1100 Output
OUT_TEMP_H_A R 0D 000 1101 Output Output registers
INT_COUNTER_REG_A R OE 000 1110
WHO_AM_I_A R OF 000 1111 | 00110011 | Dummy register
Reserved 10 -1E Reserved
TEMP_CFG_REG_A R/W 1F 001 1111 | 00000000
CTRL_REG1_A R/W 20 010 0000 0000011
CTRL_REG2_A R/W 21 010 0001 | 00000000
CTRL_REG3_A R/W 22 010 0010 | 00000000 | Accelerometer control
CTRL_REG4_A R/W 23 010 0011 00000000 |registers
CTRL_REGS5_A R/W 24 010 0100 00000000
CTRL_REG6_A R/W 25 010 0101 00000000

register on
later pages
show you the
structure of
the data read
or written

 Details of each
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Register/data pattern in 12C

« [2C is the more difficult of these

* Need some way to tell the device “this transaction is still going”, but switch
from writing to reading

* This is the use of the “repeated start” option
e Continues the “transaction” PR W YU SO—

no other controller may assert transfer, complete with address frame(s),
control of the bus during this period. must begin. .

d oy B /’AGX AS X A4 X

Last data frame  No stop condition  Another start occurs-
of prior transfer  is present this is the "repeated start"
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[2C Read Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Read From One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Device (Slave) Address (7 bits) Data Byte From Register N (8 bits)
A A
( A 4 N 4 h 4 N\

S |A6 |AS | A4 | A3 [ A2 | Al | AD B7 | B6|B5| B4 |B3|B2|B1|B0 Sr|AB| A5 | Ad| A3 | A2 | Al | AD D7|De|D5| D4 | D3| D2| D1 | DO | NA

! U f 1 T

START R/W=0 ACK Y& '@l Repeated START R/W=1 ACK NACK STOP

» First, write the address of the register you want
* Then, repeated start
» Finally, read the data from the device
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[2C Write Transaction

Controller Controls SDA Line

Peripheral Controls SDA Line

Write to One Register in a Device

Device (Slave) Address (7 bits) Register Address N (8 bits) Data Byte to Register N (8 bits)
A A
( ) 4 N A
S |A6|A5|Ad4|A3|A2|A1|A0| 0| A |B7|B6|B5|B4|B3|B2|B1|BO| A |D7|D6|DS|D4|D3|D2|D1|DO| A | P
1 T 1 t Tt

START R/W=0 ACK ACK ACK STOP

» Just write the data. No need to change modes in the middle

« Some devices also allow “repeated start” in the middle of write transactions
« But it's not necessary



NRF I2C Implementation

*nrf twi mngr driver: I2C (Two-Wire Interface) manager
 Expects transactions to occur and is set up to run those

 Takes in an array of “transfer” operations as an argument

« Each operation is either a read or a write

 Includes a device address, includes a pointer to data and length
» Includes flags like NRF TWI MNGR NO STOP which does not execute a
stop bit (and instead does a repeated start for the next operation)

* Your job is to set up the array of transfer operations
» Then the driver will make it happen
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Register/data pattern in SPI

« SPI is easier to implement transactions for
 No indication of reading/writing by default
* You can just hold Chip Select low and stop clocking if you want to pause

* Need some way to indicate to the peripheral whether you're
reading or writing though
 Possibly different register addresses for read versus write
 Possibly 7-bit addresses, with a bit leftover for read/write specification
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SPI Read Transaction

 Chip select goes low to select the device
» First byte is the register address and read/write selection
« Next bytes are the data to write

s\ [

YAV AYAVAVAVAVAVAVAVAVAVAVAVAVAY AR
SDO X ) [

RNV MS ADS AD4 AD3 ADZ AD1 ADO

SbL LA A A A A A

DO DO6 DOs DO4 DO3 DO2 DO DOO




SPI Write Transaction

 Chip select goes low to select the device
» First byte is the register address and read/write selection
« Next bytes are the data to write

cs |\ /[

SOV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVY
SDO XX X R X e X e X X X

RW MS ADS AD4 AD3 AD2 AD1 ADOD DI7 DI6 DIS DI4 DI3 DI2 DI DIO




NRF SPI Implementation

* nrfx spim driver: nRF SPI Master (Controller)

« Expects data in "XFER" (transfer) operations
 Can either be read, write, or read AND write (both simultaneously)

» Flags control whether CS pin goes high afterwards or if it stays low
 Or you could just manually control the CS pin
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Outline
* SPI

« [2C

» Using SPI and 12C
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