
Lecture 08
Driver Design

CE346 – Microcontroller System Design

Branden Ghena – Fall 2024

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administriva

• Postlab 2 questions due today. Don’t forget!

• Project Proposals due today!
• A few are in so far and they look great and I’m super excited!!!!!

• My goal is get you feedback sometime next week

• Otherwise, class keeps going as usual
• Still have four more lab sessions

• Still have three more quizzes

• Lots more content to cover

2

Today’s Goals

• Deep-dive into driver design options

• Explore another aspect of device driver design
• Non-blocking vs Blocking interfaces

• Discuss how interrupts interact with these
• Event-loop as a partial alternative

• Introduce State Machines for coordinating logic

• Consider how an LED matrix driver could be constructed

3

4

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• State Machines

• Continuous Operation

Outline

How should we write driver software?

• There are various knobs available to us from hardware
• Polling, Interrupts, DMA

• There are also various software interface design
• Synchronous

• Asynchronous

• Callback

• Event-driven model

5

Synchronous device drivers

• Synchronous functions
• Function call issues a command

• Does not return until action is complete and result is ready

• Example: most functions we’re used to
• sqrt() for example

• printf() also usually works this way (with some exceptions)

• Arduino interfaces are usually like this!
• Easy to get started with and understand

6

Downside of synchronous code: the waiting

• How long will it take until the function returns?
• Immediately, seconds, minutes?

• What if there’s an error and the device never responds?
• More advanced interface could include a timeout option

• Synchronous designs require other synchronous designs
• We can build synchronous interfaces from asynchronous ones

• But we can’t go the other way

7

Asynchronous drivers

• Goal: let the hardware run on its own and have the code get back
to it later

• Challenge: programmers don’t think that way

• Other challenge: how do we “get back to it later”?
• Callbacks

• Event-driven model

8

Callbacks

• Callbacks reuse a similar idea to interrupts
• When the event occurs, call this function

• General pattern
• Call driver function with one argument being a function pointer

• Driver sets up interaction and returns immediately

• Later the event happens and the driver calls the function pointer

9

Function pointers in C

• Harder than in Javascript or C++. Can’t define anonymous function inline
• Instead create a pointer to an existing function in your code

void myfun(int a) {

 // do something here

}

void main() {

 void (*fun_ptr)(int) = &myfun;

 fun_ptr(10); // dereference happens automatically

}

10

& is actually unnecessary.
With or without are identical.

Callback functions

• uint32_t timer_start(
 uint32_t microseconds,

 void (*callback_fn)(void*),

 void* context

);

• timer_start(duration, my_timer_handler, context);

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function

• Often a pointer to a position in a structure or a shared variable to modify

11

Callbacks usually run in an interrupt mode

• If the interrupt handler calls the callback, the callback will be
within that same interrupt mode

• Be careful which variables you modify!!
• Could lead to concurrency issues if you modify a public structure

• Starts to get pretty annoying
• Embedded systems have to deal with concurrency issues just like OSes

12

Building synchronous code out of callbacks

• Callback handlers can be used to build synchronous code

void myfun(void* context) {

 (boolean)context = true; // context is the flag pointer

}

void timer_start_blocking(duration) {

 volatile boolean flag = false;

 timer_start(duration, &myfun, &flag);

 while (!flag) { // spin-loop }

}

13

Live Coding: Temp driver example

nu-microbit-base/software/apps/temp_driver/

• Some necessary functions
• NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor

• NVIC_SetPriority(irq, priority)

14

https://github.com/nu-ce346/nu-microbit-base/blob/main/software/apps/temp_driver

15

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• State Machines

• Continuous Operation

Outline

Interrupts are frustrating

• We do not always want to block on every call

• We also do not want to deal with concurrency issues

• An alternative: one main event loop
• Polls necessary sensors

• Iterates through state machine and determine actions

• Runs at a certain frequency

16

Event loop

• Rather than polling a single driver, poll all of them
• Each time through the loop check all relevant inputs

• Respond to events that are necessary

• Sleep until ready to start again

while (1) {

 time start = get_time();

 boolean result = check_timer();

 if (result) { check_gps(); }

 adjust_throttle();

 delay_ms(1000 – (get_time() – start));

}

17

Downsides of event loop design

• Timeliness can be a problem

• How long between the timer being ready and the GPS being
checked in this example?
• Maximum of 1 second plus the time spent checking other stuff

18

while (1) {

 time start = get_time();

 boolean result = check_timer();

 if (result) { check_gps(); }

 adjust_throttle();

 delay_ms(1000 – (get_time() – start));

}

Top-half / Bottom-half handler design

• Top half
• Interrupt handler

• Immediately continues next transaction

• Or signals for top half to continue (often with shared variable)

• Bottom half
• Performs logic to actually process and respond to the event

• Run in a non-interrupt context when the scheduler is ready for it

• Usually safe to run it even while interrupts could be occurring

19

Live Codeing: Temperature event-loop example

nu-microbit-base/software/apps/temp_event_loop/

• Some necessary functions
• NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor

• NVIC_SetPriority(irq, priority)

20

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/temp_event_loop

21

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• State Machines

• Continuous Operation

Outline

Complex devices often have multiple states of operation

• Temperature peripheral
• Start a temperature measurement

• Wait for temperature to be ready

• SD Card
• Can accept data very quickly, but then takes a while to process the data

• Write configuration for which block you’re accessing

• Wait as it reconfigures itself

• Write data to the SD Card

• Wait as the SD Card records the data

• Repeat

22

Finite State Machine (FSM)

• Model of computation
• Often used in code and hardware design

• FSM components
• A set of states for some system
• Inputs to the system
• Transitions between states based on inputs

• Not necessarily all states can connect to all other states

• FSMs can generate output
• Moore machine: output depends on the current state
• Mealy machine: output depends on the current state plus the current inputs

23

State machine for a turnstyle

• Starts in the “Locked” state

• Inputs are “Coin” or “Push”

• Transitions are shown with arrows

• Output: status of the user (stuck still or moving through)

24

State machines can help structure actions in code

25

if (state == A){
 // do A actions here
 state = B;

} else if (state == B) {
 // do B actions here
 if (input == VALUE) {
 state = C;
 } else {
 state = A;
 }

} else if (state == C) {
 // do C actions here
 state = A;
}

A B

C

Truncated example of SD Card driver state machine

26

Idle

InitReset

InitCheckVersion

InitRepeatHCSInit InitAppSpecificInit

InitCheckCapacity

InitComplete

On error

…

StartReadBlocks

WaitReadBlocks

ReadBlockComplete

On error

https://github.com/tock/tock/blob/master/capsules/extra/src/sdcard.rs#L482

https://github.com/tock/tock/blob/master/capsules/extra/src/sdcard.rs#L482

Calling into the state machine

• Might be executed each time through the loop
• Just call “advance_state_machine()” each time through the main loop

• Could advance through interrupts or timers
• On hardware event, run the state machine and determine what to do now

27

28

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• State Machines

• Continuous Operation

Outline

Continuous operation

• For some sensors/actuators they might be continuously updating
in the background

• For those, we only need one init_and_start() function and a
read or write function
• Continuous sensors are always ready with the most recent sample

• Continuous actuators will always update to the new command as soon as
possible

• They might skip a command if you give it multiple very quickly

29

Continuously updating temperature

• Temperature driver design
1. In the interrupt handler, copy over the value

2. Start the next event, which will automatically re-trigger the interrupt

• No more is_ready() function, data is always ready with the most up-to-
date value

• Might be a little behind real-time, but only by one sample

• This particular implementation would mean a TON of interrupts
• Probably want to combine with a timer to run it more slowly

30

LED Matrix design

• This is a good example of a continuous operation actuator

• General driver design
• Split operation between a Model and a View

(Model-View-Controller design)

• Model contains what you want the state of the LEDs to be

• Only updates when the user calls a function

• Updates immediately (non-blocking)

• View contains the code to take the model and display it on the LEDs

• Continuously updates the LED states with a timer

31

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

LEDs on the Microbit

• Use two GPIO pins to control each
LED
• Row high as VDD

• Column low as Ground

• Remember, connections only exist
where there are dots

32

Controlling the LED matrix

• We can light up all the LEDs at
once:
• Set all rows to High

• Clear all columns to Low

33

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Controlling the LED matrix

• But now how do we turn off
the right middle LED?

34

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Can we control by row?

• But now how do we turn off
the right middle LED?

• What if we clear the row to
Low?
• Messes up the entire row

35

HIGH

HIGH

LOW

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Can we control by column?

• But now how do we turn off
the right middle LED?

• What if we set the column to
High?
• Messes up the entire column

• We don’t actually have
arbitrary control over the
whole thing at once

36

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

HIGH

Persistence of vision

• The solution here is to abuse how human eyes work

• Eyes can’t detect changes in light that are going faster than a
certain speed
• Or if they do at all, it’s interpreted as slightly dimmer light

• Any given LED should be above ~100 Hz to keep humans from noticing
the flicker

37

Persistance of vision on an LED matrix

38

One column at a time

• What if we instead control a
single column at a time?

• First column, all LEDs on

39

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

40

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

41

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

42

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Last column we only turn on
some of the LEDs

• As long as we keep cycling
through columns fast enough,
the whole thing becomes a
display

43

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LED matrix full design

• Requires GPIO pins and a Timer

• When the Timer fires
• Change which column you are displaying

• Update the row pins based on this new column

• Read row data from a 5x5 array that models what the screen should
show

• When the user wants to change the display
• Update that 5x5 array in memory

• It’ll start getting drawn on the screen the next time the Timer fires

44

45

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• State Machines

• Continuous Operation

Outline

	Default Section
	Slide 1: Lecture 08 Driver Design

	Goals
	Slide 2: Administriva
	Slide 3: Today’s Goals

	Driver Interfaces
	Slide 4: Outline
	Slide 5: How should we write driver software?
	Slide 6: Synchronous device drivers
	Slide 7: Downside of synchronous code: the waiting
	Slide 8: Asynchronous drivers
	Slide 9: Callbacks
	Slide 10: Function pointers in C
	Slide 11: Callback functions
	Slide 12: Callbacks usually run in an interrupt mode
	Slide 13: Building synchronous code out of callbacks
	Slide 14: Live Coding: Temp driver example

	Event-Loop
	Slide 15: Outline
	Slide 16: Interrupts are frustrating
	Slide 17: Event loop
	Slide 18: Downsides of event loop design
	Slide 19: Top-half / Bottom-half handler design
	Slide 20: Live Codeing: Temperature event-loop example

	State Machines
	Slide 21: Outline
	Slide 22: Complex devices often have multiple states of operation
	Slide 23: Finite State Machine (FSM)
	Slide 24: State machine for a turnstyle
	Slide 25: State machines can help structure actions in code
	Slide 26: Truncated example of SD Card driver state machine
	Slide 27: Calling into the state machine

	LED Matrix
	Slide 28: Outline
	Slide 29: Continuous operation
	Slide 30: Continuously updating temperature
	Slide 31: LED Matrix design
	Slide 32: LEDs on the Microbit
	Slide 33: Controlling the LED matrix
	Slide 34: Controlling the LED matrix
	Slide 35: Can we control by row?
	Slide 36: Can we control by column?
	Slide 37: Persistence of vision
	Slide 38: Persistance of vision on an LED matrix
	Slide 39: One column at a time
	Slide 40: One column at a time
	Slide 41: One column at a time
	Slide 42: One column at a time
	Slide 43: One column at a time
	Slide 44: LED matrix full design

	Wrapup
	Slide 45: Outline

