Lecture 03
Embedded Software

CE346 — Microcontroller System Design
Branden Ghena — Fall 2024

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

« Make sure you have your personal lab setup working
 Ask in office hours or on Piazza if you run into issues

« Office hours delayed until later this week
« I have time after class today if people have questions

 Labs will start this Friday!!!
* You MUST come to your scheduled lab session
 Not really enough room for students to move sections

« If there's some known obligation and you give me a heads up, I could
approve a few per week

Today’s Goals

» Discuss challenges of embedded software

 Describe compilation and linking of embedded code

 Actually applies to all code, but you probably never learned much about
linking before

 Introduce new software pattern: interrupts

 Explore the microcontroller boot process

Outline
- Embedded Software

 Embedded Toolchain

» Lab Software Environment

e Interrupts

* Boot Process

Review: C memory layout

« Stack Section
* Local variables
« Function arguments

» Heap Section
« Memory granted through malloc ()

» Static Section (a.k.a. Data Section)

 Global variables
« Static function variables

 Text Section (a.k.a Code Section)
* Program code

Address
OxFFFFFFFFFFFFFFFF =——>

Address
0x0000000000000000 =——>

Stack

Heap

Static

Text

Assumptions of embedded programs

» Expect limitations
* Very little memory
* Very little computational power
* Very little energy

* Don't expect a lot of support
* Likely no operating system
« Might not even have error reporting capabilities

 Moral: think differently about your programs

Ramifications of limited memory

« Stack and Data sections are limited
» Be careful about too much recursion
 Be careful about large local variables

 Large data structures defined globally are preferred
» Fail at compile time
« In embedded, we often encourage global variables for large things

» Heap section is likely non-existent
 Why?

Ramifications of limited memory

« Stack and Data sections are limited
» Be careful about too much recursion
 Be careful about large local variables

 Large data structures defined globally are preferred
» Fail at compile time
« In embedded, we often encourage global variables for large things

» Heap section is likely non-existent
 Why?
« Malloc could run out of memory at runtime

Avoiding dynamic memory

» Malloc is scary in an embedded context

« What if there’s no more memory available?
 Traditional computer
« Swap memory to disk
« Worst case: wait for a process to end (or kill one)

 Embedded computer

» There’s likely only a single application
« And it’s the one asking for more memory

 So it’s not giving anything back anytime soon

» This is unlikely to happen at boot
« Instead it'll happen hours or days into running as memory is slowly exhausted...

Limitations on processing power

» Typically not all that important
 Code still runs pretty fast
« 10 MHz -> 100 ns per cycle (i.e. ~100 ns per instruction)
 Controlling hardware usually doesn’t have a lot of code complexity
 Quickly gets to the “waiting on hardware” part (apps are I/O bound)

* Problems
« Machine learning
 Learning on the device is neigh impossible
« Memory limitations make it hard to fit weights anyways
 Cryptography
 Public key encryption takes seconds to minutes

10

Common programming languages for embedded
. C

 For all the reasons that you assume
« Easy to map variables to memory usage and code to instructions

» Assembly
 Not entirely uncommon, but rarer than you might guess
« C code optimized by a modern compiler is likely faster
» Notable uses:
 Cryptography to create deterministic algorithms
» Operating Systems to handle process swaps

« C++
 Similar to C but with better library support
« Libraries take up a lot of code space though ~100 KB

11

Rarer programming languages for embedded

* Rust
« Modern language with safety and reliability guarantees
« Increasingly relevant in the embedded space
 But with a high learning curve

 Python, Javascript, etc.
« Mostly toy languages
 Fine for simple things but incapable of complex operations
 Especially low-level things like managing memory

12

What's missing from programming languages?

* The embedded domain has several requirements that other
domains do not

« What is missing from programming languages that it wants?
 Sense of time

« Sense of energy

13

Programming languages have no sense of time
« Imagine a system that needs to send messages to a motor every

10 milliseconds
« Write a function that definitely completes within 10 milliseconds

 Accounting for timing when programming is very challenging
« We can profile code and determine timing at runtime

« If we know many details of hardware, instructions can give timing
 Unless the code interacts with external devices

14

Determining energy use is rather complicated

» Software might

» Start executing a loop
« Turn on/off an LED
« Send messages over a wired bus to another device

» Determining energy these operations take is really difficult
« Even with many details of the hardware
« Different choices of processor clocks can have a large impact

 Often profiled at runtime after writing the code
« Iterative write-test-modify cycle

15

Break + Say hi to your neighbors

 Things to share
 Name

« Major

« One of the following
 Favorite Candy
 Favorite Pokemon
 Favorite Emoji

16

Break + Say hi to your neighbors

 Things to share
« Name -Branden

« Major -Electrical and Computer Engineering, and Computer Science

« One of the following
« Favorite Candy - Twix
 Favorite Pokemon - Eevee
o Favorite Emoji - &

17

Outline
 Embedded Software

« Embedded Toolchain

» Lab Software Environment

e Interrupts

* Boot Process

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for code size instead of speed)

19

Cross compilers compile for different architectures

» The compiler we'll be using is a cross compiler
« Run on one architecture but compile code for another
« Example: runs on x86-64 but compiles armv7e-m

» GCC naming scheme: ARCH-VENDOR-(OS-)-ABI-gcc
« arm-none-eabi-gcc
* ARM architecture
* No vendor
* No OS
« Embedded Application Binary Interface
« Others: arm-none-linux-gnueabi-gcc, i686-pc-windows-msvc-gcc

20

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker

« Combine multiple C files together
 Resolve dependencies
» Point function calls at correct place
« Connect creation and uses of global variables

21

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

 How do x86-64 compilers know which addresses to use?

22

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

 How do x86-64 compilers know which addresses to use?
« Virtual memory allows all applications to use the same memory addresses

« Embedded solution
* Only run a single application
 Provide an LD file
 Specifies memory layout for a certain system
* Places sections of code in different places in memory

23

Anatomy of an LD file

« NRF52833: 512 KB Flash, 128 KB SRAM
* First, LD file defines memory regions

MEMORY {
FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x20000

}

* A neat thing about microcontrollers: pointers have meaning
« Just printing the value of a pointer can tell you if it's in Flash or RAM

24

Anatomy of an LD file

« It then places sections of code into those memory regions

.text | .data : AT (etext) {
KEEP (* (.Vectors)) __data start =
* (.text*) *(.data*)
x (. rodata*) __data end = .;
. = ALIGN (4); } > RAM
} > FLASH
__etext = .; .bss : {
. = ALIGN (4) ;
__bss start = .;
(.bss¥)
. = ALIGN (4) ;
__bss end = .;

} > RAM

.
L 4

25

Sections of code

 Where do these sections come from?

» Most are generated by the compiler
e .text, .rodata, .data, .bss
 You need to be deep in the docs to figure out how the esoteric ones work

« Some are generated by the programmer
* Allows you to place certain data items in a specific way

__attribute ((section(".foo")))
int testf(10] = {0,0,0,0,0,0,0,0,0,0};

26

Embedded compilation steps

« Same first steps as any system

1. Compiler
« Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker
« Combine multiple C files together
» Resolve dependencies
 Point function calls at correct place
« Connect creation and uses of global variables

 Output: a binary (or hex) file

27

Loading the hex file onto a board

* This is a use case for JTAG
* You provide it a hex file which specifies addresses and values
It writes those into Flash on the microcontroller

* The LD file already specified addresses
S0 passing around hex files is enough to load an application

« But a hex file for one microcontroller won't work on another with a
different memory layout

28

Example

« Demonstrated in the blink application in lab repo

» https://github.com/nu-ce346/nu-microbit-
base/tree/main/software/apps/blink

29

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink
https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink

Outline
 Embedded Software

 Embedded Toolchain

 Lab Software Environment

e Interrupts

* Boot Process

Embedded environments

« There are a multitude of embedded software systems
« Every microcontroller vendor has their own
« Popular platforms like Arduino

« We're using the Nordic software development libraries plus some
extensions made by my research group
o It'll be a week until that matters for the most part
« We'll start off by writing low-level drivers ourselves without libraries

31

Software Development Kit (SDK)

« Libraries provided by Nordic for using their microcontrollers
» Actually incredibly well documented! (relatively)
» Various peripherals and library tools

* SDK documentation

« https://docs.nordicsemi.com/bundle/sdk nrf5 v16.0.0/page/index.html
« Warning: search doesn’t really work

 Possibly more useful: the list of data structures
 Search that page for whatever “thing” you're working with
» https://docs.nordicsemi.com/bundle/sdk nrf5 v16.0.0/page/annotated.html

32

https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/index.html
https://docs.nordicsemi.com/bundle/sdk_nrf5_v16.0.0/page/annotated.html

NRF52x-base

« Wrapper built around the SDK by Lab11
« Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
 Allows everything to be used with Makefiles and command line
e https://github.com/lab11/nrf52x-base

« We include it as a submodule
» It has a copy of the SDK code and softdevice binaries
« It has a whole Makefile system to include to proper C and H files

« We include a Board file that specifies our specific board’s needs and
capabilities

GO to repo to explain

33

https://github.com/lab11/nrf52x-base

Break

34

Outline
 Embedded Software

 Embedded Toolchain

» Lab Software Environment

« Interrupts

* Boot Process

What do interactions with devices look like?

Registers | Status Command Data Interface

* (Need to make sure device is ready for a command) model of I/O.

Write value(s) to DATA
(s) “Poll” the peripheral

Write command(s) to COMMAND in software repeatedly
to see if it's ready yet.

while STATUS==BUSY; Wait

« (Need to make sure device has completed the request)

Read value(s) from Data

36

Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
* (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
* (Need to make sure device has completed the request)

5. Read value(s) from Data

* Problem: imagine a keyboard device
« CPU could be waiting for minutes before data arrives
* Need a way to notify CPU when an event occurs
* Interrupts!

37

Interrupts

« What is an interrupt?
« Some event which causes the processor to stop normal execution
» The processor instead jumps to a software “handler” for that event
« Then returns back to what it was doing afterwards

« What causes interrupts?
« Hardware exceptions
« Divide by zero, Undefined Instruction, Memory bus error
 Software
« Syscall, Software Interrupt (SWI)
« External hardware
 Input pin, Timer, various “Data Ready”

38

Interrupts, visually

Some code
that’s executing

39

Interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ
Interrupt handler

code

40

Interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ

Continue

original code

v

Interrupt handler
code

41

ARM |Nested|Vectored| Interrupt Controller|(NVIC)

R

Handles interrupt

Interrupts can Jump directly to entry and exit
preempt other the interrupt . Stacking

interrupts! handler - Unstacking
Priorities

« Manages interrupt requests (IRQ)
» Stores all caller-saved registers on the stack
 So the handler code doesn’t overwrite them
» Moves execution to proper handler, a.k.a. Interrupt Service Routine (ISR)
 Restores registers after handler returns and moves execution back

ARM Vector table

« List of function pointers to
handler for each
interrupt/exception

* First 15 are architecture-
specific exceptions

* After that are
microcontroller interrupt
signals

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus faulit Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

11 SVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA —

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

43

Vector table in software

 Placed in its own section
* LD file puts it first in Flash

« Reset Handler determines
where software starts
executing

« After that are all exception
and interrupt handlers

« All function pointers to some
C code somewhere

NVIC functionality

« NVIC functions
* NVIC EnableIRQ (number)
* NVIC DisableIRQ (number)
* NVIC SetPriority (number, priority)
 Technically 256 priorities
« Only 8 are implemented

« Must enable interrupts in two places!
 Enabling interrupt in the peripheral will generate the signal
 Enabling interrupt in the NVIC will cause signal to jump to handler

* Priority determines which interrupt goes first
« And determines how interrupts are nested

45

Nested interrupts, visually

Some code
that’s executing

Interrupt
triggers!

ﬁ

Higher priority Interrupt handler

Interrupt triggers! Interrupt handler

continues

Continue
original code

Break + Open Question

» When should a system use polling versus interrupts?

47

Break + Open Question

» When should a system use polling versus interrupts?

» Polling
 Great if the device is going to respond immediately (like 1 cycle)
« Important if we need to respond very quick (less than a microsecond)

* Interrupts
 Great if we'll need to wait a long time for status to change
« Still responds pretty quickly, but not /mmediately
« Needs to context switch from running code to interrupt handler

48

Outline
 Embedded Software

 Embedded Toolchain

» Lab Software Environment

e Interrupts

 Boot Process

How does a microcontroller start running code?

* Power comes on
 Microcontroller needs to start executing assembly code

* You expect your main() function to run
« But a few things need to happen first

50

Step 0: set a stack pointer

» Assembly code might need to write data to the stack
 Might call functions that need to stack registers

« ARM: Valid address for the stack pointer is at address 0 in Flash
» Needs to point to somewhere in RAM

« Hardware loads it into the Stack Pointer when it powers on

51

Step 1: set the program counter (PC)

* a.k.a. the Instruction Pointer (IP) in x86 land

« 32-bit ARM: valid instruction pointer is at address 4 in Flash
» Could point to RAM, usually to Flash though
 In interrupt terms: this is the "Reset Handler”!

« Automatically loaded into the PC after the SP is loaded
 Again, hardware does this

52

Step 2: “reset handler” prepares memory

» Code that handles system resets
« Either reset button or power-on reset
« Address was loaded into PC in Step 1

« Reset handler code:
« Loads initial values of .data section from Flash into RAM
« Loads zeros as values of .bss section in RAM
 Calls SystemlInit
« Starts correct clocks for the system
« Handles various hardware configurations/errata
« Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/gcc startup nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/system nrf52.c

53

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

e _start is provided by newlib
« An implementation of libc — the C standard library
o Startup is a file usually named crt0

« Does more setup, almost none of which is relevant for our system
 Probably is this code that actually zeros out .bss
« Sets argcand argvto 0
 Calls main() !

https://sourceware.org/git/qgitweb.cqi?p=newlib-cygwin.qgit;a=blob plain;f=libgloss/arm/crt0.S;hb=HEAD

54

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

 Relevant guide!!

« https://embeddedar
tistry.com/blog/2019

/04/17/exploring-
startup-
implementations-
newlib-arm/

« Covers the nRF52!

v!-

Key

Reset_Handler Syareminit
2 |y N
> meams et
4:
hardware_init_hook
>
bart 5
foware_ini k
. 50 _imir_hoo
B: 7
> atexit > __register_exitproc
10: |y 8: 9:
—libe_init_array _imit
»> i >
Frain
11: * 12
__rcall_sxitprocs
_'p
exit
13: 14:
_eHit _kill_shared
»> »>

nRF52

Mewlib

Application

55

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

Outline
 Embedded Software

 Embedded Toolchain

» Lab Software Environment

e Interrupts

* Boot Process

	Default Section
	Slide 1: Lecture 03 Embedded Software

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Embedded Software
	Slide 4: Outline
	Slide 5: Review: C memory layout
	Slide 6: Assumptions of embedded programs
	Slide 7: Ramifications of limited memory
	Slide 8: Ramifications of limited memory
	Slide 9: Avoiding dynamic memory
	Slide 10: Limitations on processing power
	Slide 11: Common programming languages for embedded
	Slide 12: Rarer programming languages for embedded
	Slide 13: What’s missing from programming languages?
	Slide 14: Programming languages have no sense of time
	Slide 15: Determining energy use is rather complicated
	Slide 16: Break + Say hi to your neighbors
	Slide 17: Break + Say hi to your neighbors

	Embedded Toolchain
	Slide 18: Outline
	Slide 19: Embedded compilation steps
	Slide 20: Cross compilers compile for different architectures
	Slide 21: Embedded compilation steps
	Slide 22: Informing linker of system memory
	Slide 23: Informing linker of system memory
	Slide 24: Anatomy of an LD file
	Slide 25: Anatomy of an LD file
	Slide 26: Sections of code
	Slide 27: Embedded compilation steps
	Slide 28: Loading the hex file onto a board
	Slide 29: Example

	Lab software environment
	Slide 30: Outline
	Slide 31: Embedded environments
	Slide 32: Software Development Kit (SDK)
	Slide 33: nRF52x-base
	Slide 34: Break

	Interrupts
	Slide 35: Outline
	Slide 36: What do interactions with devices look like?
	Slide 37: Waiting can be a waste of CPU time
	Slide 38: Interrupts
	Slide 39: Interrupts, visually
	Slide 40: Interrupts, visually
	Slide 41: Interrupts, visually
	Slide 42: ARM Nested Vectored Interrupt Controller (NVIC)
	Slide 43: ARM Vector table
	Slide 44: Vector table in software
	Slide 45: NVIC functionality
	Slide 46: Nested interrupts, visually
	Slide 47: Break + Open Question
	Slide 48: Break + Open Question

	Boot process
	Slide 49: Outline
	Slide 50: How does a microcontroller start running code?
	Slide 51: Step 0: set a stack pointer
	Slide 52: Step 1: set the program counter (PC)
	Slide 53: Step 2: “reset handler” prepares memory
	Slide 54: Step 3: set up C runtime
	Slide 55: Online writeup with way more details and a diagram

	Wrapup
	Slide 56: Outline

