
Lecture 15
Nonvolatile Memory &
Energy Management

CE346 – Microprocessor System Design

Branden Ghena – Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Quiz today! Remind me at 4:30

• Office Hours
• Still available for projects
• Friday 1-5 we’ll be in the Ford classroom for project help

• Projects
• Get working on them! Likely can’t order new things after Thanksgiving

• Hardware
• I have the rest of the hardware on hand to distribute
• Let’s do it right now so I don’t have to interrupt the quizzes later

2

Bonus Topics

• We won’t have time to talk about these, but I have slides, so I
included them at the end of this lecture

• SD Card protocol

• PPI and task/event chaining

3

Today’s Goals

• Discuss uses of memory, especially nonvolatile memory, in
embedded systems

• Introduce internal flash peripheral

• Discuss matters of energy on embedded systems
• Where to gain energy?

• How much does the Microbit use?

• How do we write software for very low energy systems?

4

5

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

Memory in computing

• Various different memories serve different purposes in computing

• Needs
• Fast, infinite-lifetime memory to keep things like stack memory

• Nonvolatile memory that can be read from

• Desires
• Fast, infinite-lifetime nonvolatile memory

6

Register technology: SRAM

• Static RAM (SRAM)
• Each cell stores a bit in a bi-stable circuit,

typically a six-transistor circuit

• Static – no need for periodic refreshing;
keeps data while powered

• Relatively insensitive to disturbances such as electrical noise

• Energetic particles (alpha particles, cosmic rays) can flip stored bits

• Fastest memory on computer
• Also most expensive and takes up most space per bit

• Typically used for registers and cache memories

7

SRAM can be used a permanent memory in a pinch

• Gameboy and Gameboy Color
used batteries to save state

• Gameboy Advanced games
used batteries for an internal
clock

• PSA: old Gameboy games have
likely lost their save files

8

Disk drive storage

9

Necessity breeds creativity

• Original iPod used a
small disk drive

10

Floating-gate transistors

• Concept behind transistor-based non-volatile memory
• EPROM, EEPROM, and Flash

• High voltage on control gate creates charge on floating gate

• Charge on floating gate activates/deactivates transistor

• High voltage degrades
the structure, leading it
to eventually fail after
enough writes

11

EPROM

• Erasable programmable read-only memory

• Erasable
• If you shine UV light directly on the IC
• Needed a window to expose the IC

• Programmable
• With high voltage (25-50 volts)

• Typically acted as read-only memory in
circuits

12

EEPROM

• Electrically-erasable programable
read-only memory

• Same concept as EPROM, but includes internal
circuitry to allow rewriting under normal
conditions
• Slow and high-power to write
• Has a longer lifetime compared to flash, ~100k writes

• Can be built into other ICs
• Example: AT90USB162 microcontroller (512 bytes)

13

Flash

• Similarly based on floating-gate transistors
• But with a different design that allows for faster erase of entire blocks
• More limited lifetime, ~1k-100k writes (10k common for embedded)

• Cannot erase individual bytes, must erase in units of blocks
• Read can happen in units of bytes though

• Heavily used in commercial devices
• Flash drives
• SSDs
• Smartphone storage
• Microcontroller non-volatile storage!

14

More exotic memories

• FRAM and MRAM are both rising protentional Flash replacements
• Non-volatile

• Writable at the byte level

• Very high to infinite write/erase cycles

• Lower energy costs for writing and reading

• They use unrelated magnetic techniques for data storage

• Starting to appear in microcontrollers
• TI MSP430s have used 16 kB FRAM

• Apollo4 (ARM Cortex-M4F) has 2 MB of MRAM

15

16

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

Flash memory on the nRF52833

• 512 kB total Flash memory
• 128 pages each 4 kB in size

• Non-Volatile Memory Controller (NVMC) controls access
• Enables writing to flash

• Enables erasing flash

• Manages status of flash

17

Writing to Flash

• Configurable, disabled by default
• Enable with configuration register

• Rules for writing to Flash
• Must write word-aligned 32-bit values

• Can only write 0 values, not ones

• Can only write 2 times before erasing (even if there are still 1 bits)

• Takes 42.5 μs to write a 32-bit word
• 64 MHz clock ⇨ 2720 cycles per 32-bit write

18

Erasing Flash

• Lifetime: 10000 erase cycles per page

• Options
• Erase a single page (4 kB): 87.5 ms

• Erase all of flash (512 kB): 173 ms

• CPU is halted if executing code from Flash during the erase
• That’s 5.6 million cycles…

• Code can execute from SRAM instead

• Can also be split into a series of partial erases

• Which must add up to a complete erase time before writing

19

Factory Information Configuration Registers

• Read-only memory

• Chip-specific information and configuration
• Code size

• Unique device ID

• Production IDs

• Temperature conversion functions

20

User Information Configuration Registers

• Additional Flash memory for non-volatile user configurations
• Writable and erasable through NVMC processes described earlier

• 32 words of customer information (128 bytes total)

• Special configurations
• Reset pin

• NFC pin enable/disable

• Debug configuration

21

Break + Question

• Could you run a system entirely within Flash?

• Could you run a system entirely within RAM?

22

Break + Question

• Could you run a system entirely within Flash?
• Yes, but it would go _very_ slowly

• Local variables would be pretty hard to manage

• 87.5 ms of code pause every time you write to a variable…

• Could you run a system entirely within RAM?
• Yes, but code would need to be loaded from somewhere else

• Need initial state that is nonvolatile

• Would run just as fast and be lower energy, actually

23

24

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

Measuring energy use

• Base equations
• Power = Current * Voltage (Watts)
• Energy = Power * Time (Joules)

• Energy = volts * amps * seconds
• Voltage is usually constant for a system
• Time is how long you are running for / measurement period

• Current changes based on activities being done
• Often energy is presented as a current draw
• Maybe an average current draw
• With Voltage and Time implicit

25

Example current trace during wireless communication

26

Wired power through USB

• Provides 5v at up to 500 mA (USB 2.0) or 900 mA (USB 3.0)
• Or power delivery specifications, which can do far more power

• Must be converted to different voltage to use
• Voltage regulator takes in 5v and spits out 3.3v

• Has its own maximum current!

• System is limited by the minimum of USB or regulator power
• Microbit: regulator gives 3.3v at up to 600 mA

• USB 2.5 Watts, Regulator 1.98 Watts ⇨ System 1.98 Watts

• This is a max! Stay 15-30% below regulator limit

27

Thinking about energy

• Batteries often list energy in mA*h (milliamp – hours)
• Coin cell battery: 3v at 220 mAh
• 2x AA battery: 3v at 2000 mAh
• iPhone 11 battery: 3.7v at 3000 mAh

• Also usually limited by regulator
• Sometimes just directly connected to system
• We can run at 3v just fine! (3.7v is no good though)

• Voltage can vary with charge
• But only a little, right before battery is depleted
• Example: coin cell goes down to ~2.7 volts

28

How are batteries measured?

• Measuring energy remaining is a difficult problem
• Many questions to be handled

• How much did it start with?
• How much energy has been used?
• What type of battery is it?

• Energy is not as constant a quantity as one would hope
• Pulling out lots at once has an overhead penalty

• Coulomb Counter (aka Battery Fuel Gauge)
• Designed for a specific battery “chemistry”
• Monitors charge flowing in each direction
• I2C interface for reading battery state

• Accuracy is not exact, more of an educated guess

29

How are batteries managed?

• Usually a dedicated IC for charging and managing battery packs
• Recharges battery with appropriate amount of current

• Monitors issues of battery health

• Various status monitoring
• Overcharge, undercharge

• Overcurrent

• Overtemperature, undertemperature

• Will go so far as to cut off the system to protect the battery

• Takeaway: complicated problem, approach with caution!
• Best to reuse an existing design, if possible

30

Microbit only uses battery energy in a simple way

• Battery input connects directly to regulator
• No protection for battery health

• No battery charging capabilities

• Usually this is fine for simple, low-power systems
• It means that the input voltage can vary though

• Makes the reference voltages for the ADC/Comparator more important

31

Energy harvesting

• Grab energy from the environment and use that!
• Could augment with a battery and use energy to recharge

• Could go entirely batteryless and live on harvested energy alone

• Sources
• Light (outdoor or indoor. most successful)

• Airflow (outdoor or air vents)

• Motion (on human body)

• Temperature differential (difficult in practice)

• RF (very low energy source)

32

Temperature harvesting from hot pipes

• Peltier junctions create a voltage from temperature differential
• Challenge: needs a large differential for more energy

33

Managing harvested energy

• Often uses an IC to pull in energy and provide to system

• Harvested voltage/current are often very small
• Signal in millivolts is pretty common

• Need to accumulate over time to power system

• Fill up a capacitor

• Need particular load for maximum power
• ICs often implement

Maximum Power Point Tracking (MPPT)

• Varies load automatically to always
harvest the most possible energy

34

35

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

Thinking about energy

• Battery energy
• Coin cell battery: 3v at 220 mAh

• 2x AA battery: 3v at 2000 mAh

• iPhone 11 battery: 3.7v at 3000 mAh

• nRF52833 active current: 5.6 mA (at 3v)
• Coin cell: 40 hours -> ~2 days

• 2x AA: 360 hours -> ~15 days

• iPhone 11: 535 hours -> ~22 days

• So how does any of this work???

36

Sleep mode power draw

37

Microcontroller sleep modes

• Sleep mode
• Processor stops running but memory values are preserved
• Most peripherals are disabled
• Continues until an interrupt occurs and wakes the microcontroller

• Usually a timer or GPIO input

• nRF52833 sleep mode current: 1.8 μA (GPIO port event only)
• Coin cell: 122222 hours -> ~5000 days -> ~14 years

• Low-power systems shoot for less than 1% duty cycle
• Average current of ~100 μA or less
• Warning: other stuff on the board counts!!

• LEDs are 1-10 mA each… Power is not a concern of the Microbit

38

Microbit current draw (microcontroller)

• Active CPU
• 5.6 mA (executing from Flash)
• 1.8 μA (sleep mode with RAM retention)

• Transmitting RF packet
• 15.5 mA (+8 dBm)

• Other peripherals
• SAADC: 1.37 mA
• Timer: 729 μA (for any Timer peripheral)
• I2C: 6.6 mA (pull-down resistors when transmitting 0 bit)
• Everything else is handfuls of μA

39

Microbit current draw (non-microcontroller)

• KL27 (JTAG interface microcontroller)
• 2 μA sleep, 8 mA active

• Speaker
• 0-27.5 mA (changes with input signal)

• Microphone
• 0-120 μA (activated with GPIO pin)

• Accelerometer/Magnetometer
• 2-212 μA (depends on sensing rates, 200 is magnetometer)

• LEDs
• 0-230 mA (can be activated individually)

• Everything else
• 0-1 mA (mostly due to pull-up resistors)

40

Max and min current for Microbit

• Maximum current: 280 mA at 3.3 volts (~1 W)
• With everything active

• Well within limits of regulator

• Minimum current
• ~15 mA (always-on power LED)

• If you removed the power LED:

• <100 μA (with everything off)

41

nRF52 sleep mode

• Triggered with assembly instruction
• WFI (Wait For Interrupt) or WFE (Wait For Event)

• Stops processor until woken by interrupt, exception, or event

• On nRF52 automatically disables high frequency clock if unneeded

42

43

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

Reducing energy consumption even further

• If sleep isn’t enough, you can power things off completely
• Transistor can be used to turn off the sensor

44

Energy harvesting can lead to intermittent computing

45

Disabling the microcontroller

• Even 2 μA sleep current might be too much for energy harvesting
• Can turn off microcontroller periodically

• Enable it again once VCC returns

• Problem: how do you write software to deal with intermittency?
• Run-to-completion with relatively quick code

• Initialize, sample sensor, send packet, turn off again

• Code checkpointing

• Save state from code and restore when power resumes

• Might be as little as which state the system is in, plus some samples

• Might be as much as saving entire stack state

• Needs low-energy, nonvolatile storage (FRAM or MRAM help!)

46

Programs may not finish

E
x
e
cu

ti
o
n
 T

im
e

count++

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

47

Programs may not finish

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

48

count++;

buf[count] = accel()

.

.

.

Power fail

Programs may not finish

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

Power fail

.

.

.

49

Need to latch execution

state periodically!

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

Power fail

.

.

.

50

Need to latch execution

state periodically!

count++

buf[count] = accel()

Power fail

Checkpoint

Execute with

checkpoints

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

Power fail

.

.

.

51

Need to latch execution

state periodically!

count++

buf[count] = accel()

buf[count] = accel()

avg = sum(buf)/count

transmit-

Power fail

Power fail

Checkpoint

Checkpoint

Execute with

checkpoints

Checkpointing enables progress

E
xe

cu
ti

o
n

 T
im

e

count++

buf[count] = accel()

count++;

buf[count] = accel()

Power fail

int process() {

 count++;

 buf[count] = accel();

 avg = sum(buf)/count;

 transmit(avg);

}

Power fail

.

.

.

52

Need to latch execution

state periodically!

count++

buf[count] = accel()

buf[count] = accel()

avg = sum(buf)/count

transmit-

Power fail

Power fail

Checkpoint

Checkpoint

transmit(avg)

Execute with

checkpoints

Checkpointing goals

• Have the compiler automatically insert checkpoints as needed
• Human doesn’t have to think about them when programming

• Limit checkpointing overhead while maximizing forward progress
• Checkpointing will take time to perform, so want to do it rarely

• Rarer checkpoints mean more progress is lost in average outage

• Need to compromise on the two based on available energy

53

54

• Memory in Computing

• nRF52 Non-Volatile Memory Controller

• Energy Sources

• Microbit Energy Use

• Intermittent Computing

Outline

55

• Bonus: SD Cards

Outline

SD card references

• ChaN
• Embedded systems engineer in Japan (and is amazing)

• http://elm-chan.org/docs/mmc/mmc_e.html

• http://elm-chan.org/fsw/ff/00index_e.html

• Various others
• http://users.ece.utexas.edu/~gerstl/ee445m_s15/lectures/Lec08.pdf

• http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf

• https://luckyresistor.me/cat-protector/software/sdcard-2/

• http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf

• https://github.com/tock/tock/blob/master/capsules/src/sdcard.rs

56

http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://users.ece.utexas.edu/~gerstl/ee445m_s15/lectures/Lec08.pdf
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf
https://luckyresistor.me/cat-protector/software/sdcard-2/
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf
https://github.com/tock/tock/blob/master/capsules/src/sdcard.rs

SD cards

• “Secure Digital” Card
• Includes various formfactors

• Flash memory

• Capacities from 8 MB to 128 TB

• 512 byte blocks

• Supports 1-bit SPI interface
• As well as 4-bit SD bus protocol

• Easy to support in embedded systems
• Cheap but high power

57

Electrical connections for an SD card

• SD Card connections
• SPI SDI, SDO, CS, SCLK

• Plus a switch to enable/disable the SD card and a detect signal

58

Controlling the SD card

• Index: 6-bit value of command being sent

• Argument: 32-bit value that may be arguments to commands

• CRC: checks for bit errors

• Response (after delay)

59

SD card SPI commands

60

Reading from the SD card

• Single block read

• Multiple block read (CMD12 – Stop Transmission)

61

SD card delays can be significant

• Performing a single byte read
• Almost 300 μs before the SD card starts sending data

• ~200 μs additional time to send the 512 bytes (20 Mbps data, 8 Mbps total)

62

Writing to the SD card

• Single block write

• Multiple block write

63

Layering a filesystem on top of an SD card

• FatFs library implements the filesystem
agnostic of application and storage medium

• Enables the use of file system calls:
• Open, Close, Read, Seek

• Connects to generic interface for low-level
implementation
• disk_status, disk_init, disk_read, disk_write

64

65

• Bonus: Task/Event Chaining with PPI

Outline

Software stops when the processor does, but peripherals continue

• Problem: when the processor is off, no code is running

• Solutions
• Peripherals can wake it up again

• Can probably go for milliseconds to minutes without any actions

• Timer interrupt can wake processor to do things

• Have hardware handle some parts in the background without the
processor’s involvement

• DMA

• PPI

66

Controlling peripherals while processor sleeps

• DMA (Direct Memory Access)
• Set up a pointer to memory and a length

• Peripheral can load/store memory without processor’s involvement

• Usually use completion interrupt to wake processor

• PPI (Programmable Peripheral Interconnect)
• Any Event can be tied to any Task within the nRF52

• Allows for complicated actions to be chained together

67

nRF52 Tasks and Events

• Tasks are used to perform
some operation
• Often written to by software

• Events change value when
some change in status occurs
• Often used to trigger interrupts

• PPI peripheral can connect
any TASK to any EVENT

68

Example: Timer peripheral

nRF52 PPI peripheral

• Connects Events to
Tasks via hardware

• Each channel gets one
Event pointer and up to
two Task pointers
• Must point to Event/Task

registers

69

Example PPI use case

• Automatic high-speed ADC sampling

• Software configures and sleeps
• ADC (buffer and enable)
• Timer (prescaler, compare value, short from compare to clear, and start)

• PPI: When Timer fires (EVENTS_COMPARE[0]),
• Sample ADC (TASKS_SAMPLE)

• PPI: When ADC buffer full (EVENTS_END),
• Stop Timer (TASKS_STOP)
• Fork: wake processor (via software interrupt from EGU)

70

	Default Section
	Slide 1: Lecture 15 Nonvolatile Memory & Energy Management

	Goals
	Slide 2: Administrivia
	Slide 3: Bonus Topics
	Slide 4: Today’s Goals

	Memory in Computing
	Slide 5: Outline
	Slide 6: Memory in computing
	Slide 7: Register technology: SRAM
	Slide 8: SRAM can be used a permanent memory in a pinch
	Slide 9: Disk drive storage
	Slide 10: Necessity breeds creativity
	Slide 11: Floating-gate transistors
	Slide 12: EPROM
	Slide 13: EEPROM
	Slide 14: Flash
	Slide 15: More exotic memories

	nRF52 NVMC
	Slide 16: Outline
	Slide 17: Flash memory on the nRF52833
	Slide 18: Writing to Flash
	Slide 19: Erasing Flash
	Slide 20: Factory Information Configuration Registers
	Slide 21: User Information Configuration Registers
	Slide 22: Break + Question
	Slide 23: Break + Question

	Energy Sources
	Slide 24: Outline
	Slide 25: Measuring energy use
	Slide 26: Example current trace during wireless communication
	Slide 27: Wired power through USB
	Slide 28: Thinking about energy
	Slide 29: How are batteries measured?
	Slide 30: How are batteries managed?
	Slide 31: Microbit only uses battery energy in a simple way
	Slide 32: Energy harvesting
	Slide 33: Temperature harvesting from hot pipes
	Slide 34: Managing harvested energy

	Microbit Energy Use
	Slide 35: Outline
	Slide 36: Thinking about energy
	Slide 37: Sleep mode power draw
	Slide 38: Microcontroller sleep modes
	Slide 39: Microbit current draw (microcontroller)
	Slide 40: Microbit current draw (non-microcontroller)
	Slide 41: Max and min current for Microbit
	Slide 42: nRF52 sleep mode

	Intermittent Computing
	Slide 43: Outline
	Slide 44: Reducing energy consumption even further
	Slide 45: Energy harvesting can lead to intermittent computing
	Slide 46: Disabling the microcontroller
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Checkpointing goals

	Wrapup
	Slide 54: Outline

	SD Cards
	Slide 55: Outline
	Slide 56: SD card references
	Slide 57: SD cards
	Slide 58: Electrical connections for an SD card
	Slide 59: Controlling the SD card
	Slide 60: SD card SPI commands
	Slide 61: Reading from the SD card
	Slide 62: SD card delays can be significant
	Slide 63: Writing to the SD card
	Slide 64: Layering a filesystem on top of an SD card

	Task/Event Chaining with PPI
	Slide 65: Outline
	Slide 66: Software stops when the processor does, but peripherals continue
	Slide 67: Controlling peripherals while processor sleeps
	Slide 68: nRF52 Tasks and Events
	Slide 69: nRF52 PPI peripheral
	Slide 70: Example PPI use case

