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Administrivia

• Place hardware orders ASAP!
• 12 out of 23 groups have done so

• Can’t start your project if you don’t have any hardware…

• No lab this Friday! Everybody enjoy your extra time!
• And use it to work on projects!

• We’ll hold open office hours on future Fridays
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Administrivia

• Lecture schedule for the rest of the quarter
• Thursday (11/09) – Wireless Communication

• Tuesday (11/14) – Nonvolatile Memory & Energy Management

• Also the final quiz

• Thursday (11/16) – Microprocessors + Wrapup

• Tuesday (11/21) – Embedded Systems Research

• Tuesday before Thanksgiving

• Tuesday (11/28) & Thursday (11/30) – Project Office Hours
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Today’s Goals

• Discuss more advanced wired communication protocols
• With a little less detail

• Just give a taste of what they are like

• Think about higher-layer concerns like data routing, interpretation, 
and reliability
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• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



USB references

• USB in a NutShell
• https://www.beyondlogic.org/usbnutshell

• Other stuff I found useful
• https://www.usbmadesimple.co.uk/

• http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf

• https://en.wikipedia.org/wiki/USB

6

https://www.beyondlogic.org/usbnutshell
https://www.usbmadesimple.co.uk/
http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf
https://en.wikipedia.org/wiki/USB


Universal Serial Bus (USB)

• Pervasive wired communication protocol
• Universal accurately applies!
• Targets predominantly external devices over a plug/cable

• Good combination of simple and capable
• Base version for simple devices does not require too much

in terms of pins or resources
• More complex versions can transfer a significant amount of data

• These grew organically over time though

• Great support for interoperability
• Generic device profiles that allowed for plug-and-play
• Supported by OS initiatives to include driver software
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USB is a layered protocol

• USB protocol describes how to:
• Electrically send bits

• Send frames of multiple bytes

• Communicate data between two devices

• Communicate specific application data (through device classes)

• Much more complicated, compared to others
• SPI: only how to electrically send bits

• UART and I2C: how to send frames of bytes
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Roles and topology

• Hosts and Devices
• USB On-The-Go allows host negotiation

• Added later. Support devices like smartphones

• Host is in charge of communication (“Upstream”)

• Devices provide various capabilities Host can
interact with (“Downstream”)

• Tiered star topology
• Host connects to hubs, which connect to devices
• Up to 127 devices per hub. Up to 5 layers of hubs
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USB Outline

• Low-layer details
• How are bits sent

• How are packets (collections of bits) sent

• Higher-layer details
• How do we interact with devices

• How do we determine what devices are and how they work
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USB signals

• Four signals
• Vbus (5 volts, can power devices)

• D+

• D-

• Ground

• D+/D- are a differential pair
• Signals are inverses of each other

• Usually, occasionally act separately to signal special conditions

• Increases voltage difference between states (5 - -5 = 10 volts)

• Wires are twisted to avoid interference
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Synchronizing data

• No clock signal!! How is USB so fast?
• Partially EE magics: better receivers, matched wire impedance
• Partially easier to distinguish signal states
• Also guaranteed transitions, which allow resynchronization

• Transitions are used to denote data (non-return-to-zero inverted)
• With guaranteed transition in within every 8 bits (bit stuffing)
• Allows clocks on the two devices to synchronize
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USB speeds

• USB 1.0
• Low Speed: 1.5 Mbps

• Not clear if this is used anymore
• Full Speed: 12 Mbps

• Microcontrollers tend to support Full Speed
• We’re focusing on details from it

• USB 2.0
• High Speed: 480 Mbps

• USB 3.0+
• Super Speed: 5-20 Gbps
• Adds multiple parallel data connections
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detection of a plugged device

• Also identify speed



USB interactions

• General transaction format
1. Host sends a Token packet: identifies 

transfer direction and device

2. Host or Device send data depending 
on direction

3. Other side acknowledges receipt of 
data

• Like a maxed-out version of the I2C 
transaction pattern
• Host always initiates communication
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Reading data from Device
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USB token packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Token type: Setup device, Read from device, or Write to device

• Address+Endpoint to identify Device

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 5-bit CRC

15



USB data packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Data: application data

• Data, up to 1023 bytes (full speed, often capped at 64 for 
microcontrollers)

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 16-bit CRC
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Cyclic Redundancy Check (CRC)

• Determines if the data received matches the data sent
• CRC value is calculated on original data and appended to message

• CRC value is recalculated on the received data

• Value appended to message and value recalculated MUST match

• Essentially some kind of hash operation
• Turns many bits into some smaller number of bits that are unique-ish

• CRC algorithms are:
• Particularly good at single bit errors AND contiguous bit errors

• Relatively simple to calculate

• Very widely used in communication

17



Break + Question

• Why have two CRC values?
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Writing data to Device



Break + Question

• Why have two CRC values?

• Devices that aren’t addressed want to 
be able to determine that right away 
without reading all of the data

• For reading, data is sent by two 
different devices, so it needs two CRCs

• Keep writes the same for symmetry
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Writing data to Device



USB Outline

• Low-layer details
• How are bits sent

• How are packets (collections of bits) sent

• Higher-layer details
• How do we interact with devices

• How do we determine what devices are and how they work
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Interacting with USB devices

• Each Device is given a 
separate address on the bus

• Each Device also has a 
number of Endpoints
• Logical communication channels

• Direct data and guide 
communication patterns
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USB endpoint types

• Interrupt transfers
• Guaranteed latency, small amounts of data
• Important sensor data (mice and keyboards)
• Polled frequently by Host

• Bulk transfers
• Sporadic large transfers, reliable communication
• General reading/writing of data (flash drives and USB serial)
• Polled by Host whenever there is available bandwidth

• Isochronous transfers
• Guaranteed data rate, unreliable communication
• Continuous data streaming (audio and webcams)
• Polled frequently by host
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USB control endpoint

• Every USB Device has a special Control endpoint as well

• Used for setting up the USB Device
driver on the Host

• Initializing a Device
• Host sends SETUP transaction requesting

device descriptor
• Host performs IN transaction to read

device descriptor
• Host performs OUT transaction to write

device status
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USB device descriptors

• Packed version of tree structure describing the device
• Interfaces it provides

• Endpoints associated with each interface
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Example Microbit

• Interface: Communications, Abstract (modem), CDC
• Endpoint: 3, IN, Interrupt

• Interface: CDC Data, CDC DATA interface
• Endpoint: 1, IN, Bulk
• Endpoint: 2, OUT, Bulk

• Interface: Vendor Specific Class, Subclass, Protocol
• Endpoint: 5, IN, Bulk
• Endpoint: 4, OUT, Bulk

• Interface: Mass Storage, SCSI, MSD interface
• Endpoint: 7, IN, Bulk
• Endpoint: 6, OUT, Bulk
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interface

Virtual serial 
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lsusb output

• lsusb

• List USB devices

• Combine with –s flag to select a single device

• Combine with -v flag for verbose mode with more information
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Minimal virtual serial USB Device

• Virtual Serial Device

• Endpoint 0: Control, IN/OUT
• Respond to IN requests by setting up OUT with a buffer of descriptor data of 

the correct size

• Endpoint 1: Interrupt, IN
• Needed for serial modem controls, just ignore it

• Endpoint 2: Bulk, OUT
• Connect to buffer from _write() (just takes raw characters)

• Endpoint 3: Bulk, IN
• Connect buffer to _read() (just provides raw characters)

27



HID USB Device (Human Interface Device)

• Used for human interaction devices, like keyboard/mouse

• “Report” structure is provided over Interrupt IN endpoint
• Or on demand via Control IN endpoint
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Example mouse with 
x,y and three buttons



USB summary

• Specification for fast data communication

• Specification for interacting with abstract device types
• Connects correct driver to interpret and send data

• Pros
• Very fast

• Very interoperable

• Cons
• Hardware and software are way more complex than simple protocols like 

UART, SPI, and I2C

• Not very energy efficient
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nRF52 USBD

• Implements USB Device (not Host)
• Control endpoint

• 14 bulk/interrupt (7 IN, 7 OUT)

• 64-byte transfers

• 2 isochronous (1 IN, 1 OUT)

• 1023-byte transfers

• Full-speed USB
• With 5 volt signals
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Break + Question

• What are the ramifications of many USB devices sharing a bus?
• Consider: throughput and latency

• What if I really had 127 USB mice on a single USB hub?
• What if it was microphones instead?
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Break + Question

• What are the ramifications of many USB devices sharing a bus?
• Consider: throughput and latency

• Devices need to share bandwidth

• Also devices are “polled” one-at-a-time

• What if I really had 127 USB mice on a single USB hub?
• What if it was microphones instead?

• You might saturate the data throughput capabilities!
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• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



Controller Area Network (CAN bus)

• Designed for highly reliable interactions within a vehicle

• Multi-master with arbitration
• Similar to I2C

• Mechanism for sending messages with “identifiers”
• Identifies the data in the message, not the device its for

• Lower value identifiers have high priority

• All messages are received by all CAN nodes

• Which can decide at higher levels which identifiers they care about
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CAN physical connections

• Two differential, wired-AND signal lines
• Transitions are used to transmit bits (non-return-to-zero) with bit-stuffing

• Combines aspects of USB and I2C

• 125 kHz – 5 Mbps speeds

35



CAN packet format

• 11-bit identifier
• Check bits as they are sent to see if you win arbitration

• Up to 8 bytes (64 bits) of data
• Very small messages!

• CRC for checking

• Acknowledgement
• Like I2C, let the line float and see if another device responds
• If not, explicitly retransmit!
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CAN message types

• Data frame
• Transmission of data for a certain identifier

• Remote frame
• Requests data transmission of a certain identifier

• Error frame
• Transmitted when an error is detected with the previous message

• Overload frame
• Transmitted by a node that is too busy to respond right now
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CAN reliability design – detecting errors

• Check for errors everywhere and appropriately handle
• Bit error

• If the value found on the bus differs from the one sent

• Stuff error
• If 6 consecutive bits of the same type are found

• CRC error
• If CRC does not match

• Form error
• Format field has unexpected values

• Acknowledgement error
• No ACK received

• Devices detecting an error broadcast a message signifying it!
• Multiple devices sending the same message works without arbitration loss
• Previous message is then retransmitted
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CAN reliability design – handling errors

• Each node accepts the possibility that maybe it is the faulty one

• Track errors and successes and change device state
• Passive: limited error signaling and transmissions

• Bus off: does not transmit in any way

• Idea is that the CAN
controller hardware can
be faulty but still detect
it in some cases

39



CAN summary

• Designed for reliable vehicular communication

• Multi-master bus with serial communication

• Pros
• Highly reliable

• Extensible to many devices

• Cons
• Special-purpose design. Whole system has to agree on identifiers

• Relatively slower throughput
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Break + Open Question

• Why is CAN a good choice for vehicles (historically)?

• What problems is CAN facing today?
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Break + Open Question

• Why is CAN a good choice for vehicles (historically)?

• High reliability

• A few low-data-rate sensors scattered throughout the car

• What problems is CAN facing today?

• Camera data doesn’t fit in 8-byte packets…
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• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



Controlling a protocol without a peripheral

• If your microcontroller doesn’t have a hardware peripheral to 
control a certain protocol, you could still emulate it
• Known as bit-banging

• Example: use GPIO to create a UART
• Set high/low values with certain timings to make start, data, and stop bits

• Probably based on an interrupt if microcontroller is fast enough

• Or maybe is hard-coded with delays

• For reading the UART, instead read bits from the bus at a given rate

• Expect start/stop bits, but ignore them
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Two bit-banging examples

1. 1-Wire Protocol

2. Neopixel LED strip
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1-Wire Protocol

• Similar to I2C, but without a clock line

• Devices can optionally power themselves off the data line
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1-wire read operations

• Controller drives line low, then releases samples 15 μs later
• Falling edge wakes up peripheral devices

• Peripheral device either drives low for a 0 or also releases for a 1
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Peripheral writes 0 Peripheral writes 1

Controller 

samples at 

~15 μs

Controller 

samples at 

~15 μs

Controller pulling data line low

Peripheral pulling data line low

Resistor pullup



Controlling 1-wire with a UART

• 1-wire is not supported by most microcontrollers
• Instead, it must be emulated either with GPIO or with another protocol

• Example: UART plus an external transistor can emulate 1-wire
• Run UART way faster than 1-wire: each UART byte is one 1-wire bit

• Connect TX to a transistor which can connect to Ground or disconnect

• Connect RX to the data line

• To read, write data 0xFF

• Start bit pulls line low to trigger peripheral device

• 8 data bits do not affect data line (disconnected)

• RX line will match 0xFF for reading a 1, or will be anything else for a 0
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Two bit-banging examples

1. 1-Wire Protocol

2. Neopixel LED strip
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Neopixel LED strips

• LEDs on a long strip 
connected in series
• Often capable of RGB control

• Custom protocol for driving 
them
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Neopixel protocol

• 32 bits for each LED
• After the first LED gets its data, all the next bits are forwarded down the 

chain
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Each bit is represented by an 
amount of time high and low



Emulating Neopixel protocol with SPI

• Idea: configure SPI speed so N bits 
line up with the period of the bit
• For example, 8 bits per period

• To send a 0 bit: 0xE0 (0b11100000)

• To send a 1 bit: 0xF8 (0b11111000)

• From the Neopixel perspective, that 
data is just the square wave it wanted
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Warning: I don’t promise the actual 
numbers here are correct. Just the 
overall idea. Recalculate the numbers 
yourself based on timing requirements



Emulating Neopixel protocol with PWM

• Idea: these are just differing duty-cycle 
square waves i.e., PWM
• Set PWM period to equal the period for 

sending a bit
• Needs to be a left-aligned PWM signal

• To send a 0 bit: 30% duty cycle

• To send a 1 bit: 70% duty cycle

• Driver translates colors into a byte array, 
then bits in the array into duty cycles,
then just plays the duty cycles
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Details on NeoPixels

• Datasheets:
• https://cdn-shop.adafruit.com/product-

files/2757/p2757_SK6812RGBW_REV01.pdf

• https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

• Good writeups on using NeoPixels:
• https://github.com/japaric/ws2812b/blob/master/firmware/README.md

• https://wp.josh.com/2014/05/13/ws2812-neopixels-are-not-so-finicky-
once-you-get-to-know-them/
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Controlling video output

• Not very common for embedded systems
• Either directly connected to a screen over SPI/I2C, or not at all

• Very common for traditional computing though
• And while we’re talking about protocols, let’s look at them!

• Reminder: memory is a huge embedded systems concern here
• 640 x 480 pixels @ 18-bit color = 675 kB

• nRF52833 RAM: 128 kB, Flash: 512 kB
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VGA connector

• All data goes to the display

• Horizontal and Vertical sync lines
• Timing control
• Horizontal: when each row restarts
• Vertical: when the entire screen restarts

• Red/Green/Blue lines
• Analog voltage for intensity: 0-0.7 volts

• Ground pins
• To connect ground between devices
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Old-school VGA display design

• Screen lights up when hit with electrons
• Separate Red, Green, and Blue activation areas

• System directs electrons at each pixel of the screen on a loop
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Example display: 640x480 at 60 Hz

• Send each pixel in a row at
20 MHz (40 ns per pixel)
• 25 μs for the entire 640 pixel row 

• 6.35 μs pause before next row

• After all 480 rows, 1.43 ms pause before next frame

• High resolution devices would have to go faster
• Possibly MUCH faster
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More modern VGA devices

• Protocol doesn’t really make any sense for a digital device
• But it already existed and was very popular

• So LCD monitors implemented it too

• ADC reads in analog voltages for Red, Green, and Blue into a 
memory

• Data from the memory is displayed on the screen
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VGA Extension - Display Data Channel (DDC)

• Uses extra wires in the VGA connector
• Originally “4-bit monitor ID”, but rarely used in practice

• Instead uses two as I2C data and clock lines

• Monitor is always a peripheral device at address 0x50

• Provides a “Extended Display Identification Data” payload
• 128-256 bytes of data

• “Descriptor” for the display, like USB descriptors

• Identifies manufacturer, resolution(s), refresh rate(s), timing requirements
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HDMI

• Clock plus three data “channels”
• Transition-Minimized Differential Signaling 

(TMDS)
• Similar to USB with twisted pair wiring
• Send data packets to display

• I2C data and clock for Display Data 
Channel (DDC)
• Adapted from VGA

• Consumer Electronics Control (CEC) 
enables control of devices
• Similar to the 1-wire protocol
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