
Lecture 14
Other Protocols

CE346 – Microprocessor System Design

Branden Ghena – Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Administrivia

• Place hardware orders ASAP!
• 12 out of 23 groups have done so

• Can’t start your project if you don’t have any hardware…

• No lab this Friday! Everybody enjoy your extra time!
• And use it to work on projects!

• We’ll hold open office hours on future Fridays

2



Administrivia

• Lecture schedule for the rest of the quarter
• Thursday (11/09) – Wireless Communication

• Tuesday (11/14) – Nonvolatile Memory & Energy Management

• Also the final quiz

• Thursday (11/16) – Microprocessors + Wrapup

• Tuesday (11/21) – Embedded Systems Research

• Tuesday before Thanksgiving

• Tuesday (11/28) & Thursday (11/30) – Project Office Hours

3



Today’s Goals

• Discuss more advanced wired communication protocols
• With a little less detail

• Just give a taste of what they are like

• Think about higher-layer concerns like data routing, interpretation, 
and reliability

4



5

• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



USB references

• USB in a NutShell
• https://www.beyondlogic.org/usbnutshell

• Other stuff I found useful
• https://www.usbmadesimple.co.uk/

• http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf

• https://en.wikipedia.org/wiki/USB

6

https://www.beyondlogic.org/usbnutshell
https://www.usbmadesimple.co.uk/
http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf
https://en.wikipedia.org/wiki/USB


Universal Serial Bus (USB)

• Pervasive wired communication protocol
• Universal accurately applies!
• Targets predominantly external devices over a plug/cable

• Good combination of simple and capable
• Base version for simple devices does not require too much

in terms of pins or resources
• More complex versions can transfer a significant amount of data

• These grew organically over time though

• Great support for interoperability
• Generic device profiles that allowed for plug-and-play
• Supported by OS initiatives to include driver software

7



USB is a layered protocol

• USB protocol describes how to:
• Electrically send bits

• Send frames of multiple bytes

• Communicate data between two devices

• Communicate specific application data (through device classes)

• Much more complicated, compared to others
• SPI: only how to electrically send bits

• UART and I2C: how to send frames of bytes

8



Roles and topology

• Hosts and Devices
• USB On-The-Go allows host negotiation

• Added later. Support devices like smartphones

• Host is in charge of communication (“Upstream”)

• Devices provide various capabilities Host can
interact with (“Downstream”)

• Tiered star topology
• Host connects to hubs, which connect to devices
• Up to 127 devices per hub. Up to 5 layers of hubs

9



USB Outline

• Low-layer details
• How are bits sent

• How are packets (collections of bits) sent

• Higher-layer details
• How do we interact with devices

• How do we determine what devices are and how they work

10



USB signals

• Four signals
• Vbus (5 volts, can power devices)

• D+

• D-

• Ground

• D+/D- are a differential pair
• Signals are inverses of each other

• Usually, occasionally act separately to signal special conditions

• Increases voltage difference between states (5 - -5 = 10 volts)

• Wires are twisted to avoid interference

11



Synchronizing data

• No clock signal!! How is USB so fast?
• Partially EE magics: better receivers, matched wire impedance
• Partially easier to distinguish signal states
• Also guaranteed transitions, which allow resynchronization

• Transitions are used to denote data (non-return-to-zero inverted)
• With guaranteed transition in within every 8 bits (bit stuffing)
• Allows clocks on the two devices to synchronize

12



USB speeds

• USB 1.0
• Low Speed: 1.5 Mbps

• Not clear if this is used anymore
• Full Speed: 12 Mbps

• Microcontrollers tend to support Full Speed
• We’re focusing on details from it

• USB 2.0
• High Speed: 480 Mbps

• USB 3.0+
• Super Speed: 5-20 Gbps
• Adds multiple parallel data connections

13

• Pull-up resistors allow for 
detection of a plugged device

• Also identify speed



USB interactions

• General transaction format
1. Host sends a Token packet: identifies 

transfer direction and device

2. Host or Device send data depending 
on direction

3. Other side acknowledges receipt of 
data

• Like a maxed-out version of the I2C 
transaction pattern
• Host always initiates communication

14

Reading data from Device

Writing data to Device



USB token packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Token type: Setup device, Read from device, or Write to device

• Address+Endpoint to identify Device

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 5-bit CRC

15



USB data packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Data: application data

• Data, up to 1023 bytes (full speed, often capped at 64 for 
microcontrollers)

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 16-bit CRC

16



Cyclic Redundancy Check (CRC)

• Determines if the data received matches the data sent
• CRC value is calculated on original data and appended to message

• CRC value is recalculated on the received data

• Value appended to message and value recalculated MUST match

• Essentially some kind of hash operation
• Turns many bits into some smaller number of bits that are unique-ish

• CRC algorithms are:
• Particularly good at single bit errors AND contiguous bit errors

• Relatively simple to calculate

• Very widely used in communication

17



Break + Question

• Why have two CRC values?

18

Reading data from Device

Writing data to Device



Break + Question

• Why have two CRC values?

• Devices that aren’t addressed want to 
be able to determine that right away 
without reading all of the data

• For reading, data is sent by two 
different devices, so it needs two CRCs

• Keep writes the same for symmetry

19

Reading data from Device

Writing data to Device



USB Outline

• Low-layer details
• How are bits sent

• How are packets (collections of bits) sent

• Higher-layer details
• How do we interact with devices

• How do we determine what devices are and how they work

20



Interacting with USB devices

• Each Device is given a 
separate address on the bus

• Each Device also has a 
number of Endpoints
• Logical communication channels

• Direct data and guide 
communication patterns

21



USB endpoint types

• Interrupt transfers
• Guaranteed latency, small amounts of data
• Important sensor data (mice and keyboards)
• Polled frequently by Host

• Bulk transfers
• Sporadic large transfers, reliable communication
• General reading/writing of data (flash drives and USB serial)
• Polled by Host whenever there is available bandwidth

• Isochronous transfers
• Guaranteed data rate, unreliable communication
• Continuous data streaming (audio and webcams)
• Polled frequently by host

22



USB control endpoint

• Every USB Device has a special Control endpoint as well

• Used for setting up the USB Device
driver on the Host

• Initializing a Device
• Host sends SETUP transaction requesting

device descriptor
• Host performs IN transaction to read

device descriptor
• Host performs OUT transaction to write

device status

23



USB device descriptors

• Packed version of tree structure describing the device
• Interfaces it provides

• Endpoints associated with each interface

24



Example Microbit

• Interface: Communications, Abstract (modem), CDC
• Endpoint: 3, IN, Interrupt

• Interface: CDC Data, CDC DATA interface
• Endpoint: 1, IN, Bulk
• Endpoint: 2, OUT, Bulk

• Interface: Vendor Specific Class, Subclass, Protocol
• Endpoint: 5, IN, Bulk
• Endpoint: 4, OUT, Bulk

• Interface: Mass Storage, SCSI, MSD interface
• Endpoint: 7, IN, Bulk
• Endpoint: 6, OUT, Bulk

25

SEGGER JTAG 
interface

Virtual serial 
device

USB external 
filesystem



lsusb output

• lsusb

• List USB devices

• Combine with –s flag to select a single device

• Combine with -v flag for verbose mode with more information

26



Minimal virtual serial USB Device

• Virtual Serial Device

• Endpoint 0: Control, IN/OUT
• Respond to IN requests by setting up OUT with a buffer of descriptor data of 

the correct size

• Endpoint 1: Interrupt, IN
• Needed for serial modem controls, just ignore it

• Endpoint 2: Bulk, OUT
• Connect to buffer from _write() (just takes raw characters)

• Endpoint 3: Bulk, IN
• Connect buffer to _read() (just provides raw characters)

27



HID USB Device (Human Interface Device)

• Used for human interaction devices, like keyboard/mouse

• “Report” structure is provided over Interrupt IN endpoint
• Or on demand via Control IN endpoint

28

Example mouse with 
x,y and three buttons



USB summary

• Specification for fast data communication

• Specification for interacting with abstract device types
• Connects correct driver to interpret and send data

• Pros
• Very fast

• Very interoperable

• Cons
• Hardware and software are way more complex than simple protocols like 

UART, SPI, and I2C

• Not very energy efficient

29



nRF52 USBD

• Implements USB Device (not Host)
• Control endpoint

• 14 bulk/interrupt (7 IN, 7 OUT)

• 64-byte transfers

• 2 isochronous (1 IN, 1 OUT)

• 1023-byte transfers

• Full-speed USB
• With 5 volt signals

30



Break + Question

• What are the ramifications of many USB devices sharing a bus?
• Consider: throughput and latency

• What if I really had 127 USB mice on a single USB hub?
• What if it was microphones instead?

31



Break + Question

• What are the ramifications of many USB devices sharing a bus?
• Consider: throughput and latency

• Devices need to share bandwidth

• Also devices are “polled” one-at-a-time

• What if I really had 127 USB mice on a single USB hub?
• What if it was microphones instead?

• You might saturate the data throughput capabilities!

32



33

• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



Controller Area Network (CAN bus)

• Designed for highly reliable interactions within a vehicle

• Multi-master with arbitration
• Similar to I2C

• Mechanism for sending messages with “identifiers”
• Identifies the data in the message, not the device its for

• Lower value identifiers have high priority

• All messages are received by all CAN nodes

• Which can decide at higher levels which identifiers they care about

34



CAN physical connections

• Two differential, wired-AND signal lines
• Transitions are used to transmit bits (non-return-to-zero) with bit-stuffing

• Combines aspects of USB and I2C

• 125 kHz – 5 Mbps speeds

35



CAN packet format

• 11-bit identifier
• Check bits as they are sent to see if you win arbitration

• Up to 8 bytes (64 bits) of data
• Very small messages!

• CRC for checking

• Acknowledgement
• Like I2C, let the line float and see if another device responds
• If not, explicitly retransmit!

36



CAN message types

• Data frame
• Transmission of data for a certain identifier

• Remote frame
• Requests data transmission of a certain identifier

• Error frame
• Transmitted when an error is detected with the previous message

• Overload frame
• Transmitted by a node that is too busy to respond right now

37



CAN reliability design – detecting errors

• Check for errors everywhere and appropriately handle
• Bit error

• If the value found on the bus differs from the one sent

• Stuff error
• If 6 consecutive bits of the same type are found

• CRC error
• If CRC does not match

• Form error
• Format field has unexpected values

• Acknowledgement error
• No ACK received

• Devices detecting an error broadcast a message signifying it!
• Multiple devices sending the same message works without arbitration loss
• Previous message is then retransmitted

38



CAN reliability design – handling errors

• Each node accepts the possibility that maybe it is the faulty one

• Track errors and successes and change device state
• Passive: limited error signaling and transmissions

• Bus off: does not transmit in any way

• Idea is that the CAN
controller hardware can
be faulty but still detect
it in some cases

39



CAN summary

• Designed for reliable vehicular communication

• Multi-master bus with serial communication

• Pros
• Highly reliable

• Extensible to many devices

• Cons
• Special-purpose design. Whole system has to agree on identifiers

• Relatively slower throughput

40



Break + Open Question

• Why is CAN a good choice for vehicles (historically)?

• What problems is CAN facing today?

41



Break + Open Question

• Why is CAN a good choice for vehicles (historically)?

• High reliability

• A few low-data-rate sensors scattered throughout the car

• What problems is CAN facing today?

• Camera data doesn’t fit in 8-byte packets…

42



43

• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



Controlling a protocol without a peripheral

• If your microcontroller doesn’t have a hardware peripheral to 
control a certain protocol, you could still emulate it
• Known as bit-banging

• Example: use GPIO to create a UART
• Set high/low values with certain timings to make start, data, and stop bits

• Probably based on an interrupt if microcontroller is fast enough

• Or maybe is hard-coded with delays

• For reading the UART, instead read bits from the bus at a given rate

• Expect start/stop bits, but ignore them

44



Two bit-banging examples

1. 1-Wire Protocol

2. Neopixel LED strip

45



1-Wire Protocol

• Similar to I2C, but without a clock line

• Devices can optionally power themselves off the data line

46



1-wire read operations

• Controller drives line low, then releases samples 15 μs later
• Falling edge wakes up peripheral devices

• Peripheral device either drives low for a 0 or also releases for a 1

47

Peripheral writes 0 Peripheral writes 1

Controller 

samples at 

~15 μs

Controller 

samples at 

~15 μs

Controller pulling data line low

Peripheral pulling data line low

Resistor pullup



Controlling 1-wire with a UART

• 1-wire is not supported by most microcontrollers
• Instead, it must be emulated either with GPIO or with another protocol

• Example: UART plus an external transistor can emulate 1-wire
• Run UART way faster than 1-wire: each UART byte is one 1-wire bit

• Connect TX to a transistor which can connect to Ground or disconnect

• Connect RX to the data line

• To read, write data 0xFF

• Start bit pulls line low to trigger peripheral device

• 8 data bits do not affect data line (disconnected)

• RX line will match 0xFF for reading a 1, or will be anything else for a 0

48



Two bit-banging examples

1. 1-Wire Protocol

2. Neopixel LED strip

49



Neopixel LED strips

• LEDs on a long strip 
connected in series
• Often capable of RGB control

• Custom protocol for driving 
them

50



Neopixel protocol

• 32 bits for each LED
• After the first LED gets its data, all the next bits are forwarded down the 

chain

51

Each bit is represented by an 
amount of time high and low



Emulating Neopixel protocol with SPI

• Idea: configure SPI speed so N bits 
line up with the period of the bit
• For example, 8 bits per period

• To send a 0 bit: 0xE0 (0b11100000)

• To send a 1 bit: 0xF8 (0b11111000)

• From the Neopixel perspective, that 
data is just the square wave it wanted

52

Warning: I don’t promise the actual 
numbers here are correct. Just the 
overall idea. Recalculate the numbers 
yourself based on timing requirements



Emulating Neopixel protocol with PWM

• Idea: these are just differing duty-cycle 
square waves i.e., PWM
• Set PWM period to equal the period for 

sending a bit
• Needs to be a left-aligned PWM signal

• To send a 0 bit: 30% duty cycle

• To send a 1 bit: 70% duty cycle

• Driver translates colors into a byte array, 
then bits in the array into duty cycles,
then just plays the duty cycles

53

Warning: I don’t promise the actual 
numbers here are correct. Just the 
overall idea. Recalculate the numbers 
yourself based on timing requirements



Details on NeoPixels

• Datasheets:
• https://cdn-shop.adafruit.com/product-

files/2757/p2757_SK6812RGBW_REV01.pdf

• https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

• Good writeups on using NeoPixels:
• https://github.com/japaric/ws2812b/blob/master/firmware/README.md

• https://wp.josh.com/2014/05/13/ws2812-neopixels-are-not-so-finicky-
once-you-get-to-know-them/

54

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://github.com/japaric/ws2812b/blob/master/firmware/README.md
https://wp.josh.com/2014/05/13/ws2812-neopixels-are-not-so-finicky-once-you-get-to-know-them/
https://wp.josh.com/2014/05/13/ws2812-neopixels-are-not-so-finicky-once-you-get-to-know-them/


55

• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline



Controlling video output

• Not very common for embedded systems
• Either directly connected to a screen over SPI/I2C, or not at all

• Very common for traditional computing though
• And while we’re talking about protocols, let’s look at them!

• Reminder: memory is a huge embedded systems concern here
• 640 x 480 pixels @ 18-bit color = 675 kB

• nRF52833 RAM: 128 kB, Flash: 512 kB

56



VGA connector

• All data goes to the display

• Horizontal and Vertical sync lines
• Timing control
• Horizontal: when each row restarts
• Vertical: when the entire screen restarts

• Red/Green/Blue lines
• Analog voltage for intensity: 0-0.7 volts

• Ground pins
• To connect ground between devices

57



Old-school VGA display design

• Screen lights up when hit with electrons
• Separate Red, Green, and Blue activation areas

• System directs electrons at each pixel of the screen on a loop

58



Example display: 640x480 at 60 Hz

• Send each pixel in a row at
20 MHz (40 ns per pixel)
• 25 μs for the entire 640 pixel row 

• 6.35 μs pause before next row

• After all 480 rows, 1.43 ms pause before next frame

• High resolution devices would have to go faster
• Possibly MUCH faster

59

https://digilent.com/reference/learn/programmable-logic/tutorials/vga-display-congroller/start

https://digilent.com/reference/learn/programmable-logic/tutorials/vga-display-congroller/start


More modern VGA devices

• Protocol doesn’t really make any sense for a digital device
• But it already existed and was very popular

• So LCD monitors implemented it too

• ADC reads in analog voltages for Red, Green, and Blue into a 
memory

• Data from the memory is displayed on the screen

60



VGA Extension - Display Data Channel (DDC)

• Uses extra wires in the VGA connector
• Originally “4-bit monitor ID”, but rarely used in practice

• Instead uses two as I2C data and clock lines

• Monitor is always a peripheral device at address 0x50

• Provides a “Extended Display Identification Data” payload
• 128-256 bytes of data

• “Descriptor” for the display, like USB descriptors

• Identifies manufacturer, resolution(s), refresh rate(s), timing requirements

61



HDMI

• Clock plus three data “channels”
• Transition-Minimized Differential Signaling 

(TMDS)
• Similar to USB with twisted pair wiring
• Send data packets to display

• I2C data and clock for Display Data 
Channel (DDC)
• Adapted from VGA

• Consumer Electronics Control (CEC) 
enables control of devices
• Similar to the 1-wire protocol

62



63

• USB

• CAN

• Bit-banging
• 1-wire

• Neopixel LED strips

• Video Protocols
• VGA

• HDMI

Outline


	Default Section
	Slide 1: Lecture 14 Other Protocols

	Goals
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Today’s Goals

	USB
	Slide 5: Outline
	Slide 6: USB references
	Slide 7: Universal Serial Bus (USB)
	Slide 8: USB is a layered protocol
	Slide 9: Roles and topology
	Slide 10: USB Outline
	Slide 11: USB signals
	Slide 12: Synchronizing data
	Slide 13: USB speeds
	Slide 14: USB interactions
	Slide 15: USB token packets
	Slide 16: USB data packets
	Slide 17: Cyclic Redundancy Check (CRC)
	Slide 18: Break + Question
	Slide 19: Break + Question
	Slide 20: USB Outline
	Slide 21: Interacting with USB devices
	Slide 22: USB endpoint types
	Slide 23: USB control endpoint
	Slide 24: USB device descriptors
	Slide 25: Example Microbit
	Slide 26: lsusb output
	Slide 27: Minimal virtual serial USB Device
	Slide 28: HID USB Device (Human Interface Device)
	Slide 29: USB summary
	Slide 30: nRF52 USBD
	Slide 31: Break + Question
	Slide 32: Break + Question

	CAN
	Slide 33: Outline
	Slide 34: Controller Area Network (CAN bus)
	Slide 35: CAN physical connections
	Slide 36: CAN packet format
	Slide 37: CAN message types
	Slide 38: CAN reliability design – detecting errors
	Slide 39: CAN reliability design – handling errors
	Slide 40: CAN summary
	Slide 41: Break + Open Question
	Slide 42: Break + Open Question

	Bit-Banging a Protocol
	Slide 43: Outline
	Slide 44: Controlling a protocol without a peripheral
	Slide 45: Two bit-banging examples
	Slide 46: 1-Wire Protocol
	Slide 47: 1-wire read operations
	Slide 48: Controlling 1-wire with a UART
	Slide 49: Two bit-banging examples
	Slide 50: Neopixel LED strips
	Slide 51: Neopixel protocol
	Slide 52: Emulating Neopixel protocol with SPI
	Slide 53: Emulating Neopixel protocol with PWM
	Slide 54: Details on NeoPixels

	Video Protocols
	Slide 55: Outline
	Slide 56: Controlling video output
	Slide 57: VGA connector
	Slide 58: Old-school VGA display design
	Slide 59: Example display: 640x480 at 60 Hz
	Slide 60: More modern VGA devices
	Slide 61: VGA Extension - Display Data Channel (DDC)
	Slide 62: HDMI

	Wrapup
	Slide 63: Outline


